static void addCoroutineSCCPasses(const PassManagerBuilder &Builder, legacy::PassManagerBase &PM) { PM.add(createCoroSplitPass()); }
static void addAddressSanitizerPasses(const PassManagerBuilder &Builder, legacy::PassManagerBase &PM) { PM.add(createAddressSanitizerFunctionPass()); PM.add(createAddressSanitizerModulePass()); }
void PassManagerBuilder::addLTOOptimizationPasses(legacy::PassManagerBase &PM) { // Load sample profile before running the LTO optimization pipeline. if (!PGOSampleUse.empty()) { PM.add(createPruneEHPass()); PM.add(createSampleProfileLoaderPass(PGOSampleUse)); } // Remove unused virtual tables to improve the quality of code generated by // whole-program devirtualization and bitset lowering. PM.add(createGlobalDCEPass()); // Provide AliasAnalysis services for optimizations. addInitialAliasAnalysisPasses(PM); // Allow forcing function attributes as a debugging and tuning aid. PM.add(createForceFunctionAttrsLegacyPass()); // Infer attributes about declarations if possible. PM.add(createInferFunctionAttrsLegacyPass()); if (OptLevel > 1) { // Split call-site with more constrained arguments. PM.add(createCallSiteSplittingPass()); // Indirect call promotion. This should promote all the targets that are // left by the earlier promotion pass that promotes intra-module targets. // This two-step promotion is to save the compile time. For LTO, it should // produce the same result as if we only do promotion here. PM.add( createPGOIndirectCallPromotionLegacyPass(true, !PGOSampleUse.empty())); // Propagate constants at call sites into the functions they call. This // opens opportunities for globalopt (and inlining) by substituting function // pointers passed as arguments to direct uses of functions. PM.add(createIPSCCPPass()); // Attach metadata to indirect call sites indicating the set of functions // they may target at run-time. This should follow IPSCCP. PM.add(createCalledValuePropagationPass()); } // Infer attributes about definitions. The readnone attribute in particular is // required for virtual constant propagation. PM.add(createPostOrderFunctionAttrsLegacyPass()); PM.add(createReversePostOrderFunctionAttrsPass()); // Split globals using inrange annotations on GEP indices. This can help // improve the quality of generated code when virtual constant propagation or // control flow integrity are enabled. PM.add(createGlobalSplitPass()); // Apply whole-program devirtualization and virtual constant propagation. PM.add(createWholeProgramDevirtPass(ExportSummary, nullptr)); // That's all we need at opt level 1. if (OptLevel == 1) return; // Now that we internalized some globals, see if we can hack on them! PM.add(createGlobalOptimizerPass()); // Promote any localized global vars. PM.add(createPromoteMemoryToRegisterPass()); // Linking modules together can lead to duplicated global constants, only // keep one copy of each constant. PM.add(createConstantMergePass()); // Remove unused arguments from functions. PM.add(createDeadArgEliminationPass()); // Reduce the code after globalopt and ipsccp. Both can open up significant // simplification opportunities, and both can propagate functions through // function pointers. When this happens, we often have to resolve varargs // calls, etc, so let instcombine do this. if (OptLevel > 2) PM.add(createAggressiveInstCombinerPass()); addInstructionCombiningPass(PM); addExtensionsToPM(EP_Peephole, PM); // Inline small functions bool RunInliner = Inliner; if (RunInliner) { PM.add(Inliner); Inliner = nullptr; } PM.add(createPruneEHPass()); // Remove dead EH info. // CSFDO instrumentation and use pass. addPGOInstrPasses(PM, /* IsCS */ true); // Optimize globals again if we ran the inliner. if (RunInliner) PM.add(createGlobalOptimizerPass()); PM.add(createGlobalDCEPass()); // Remove dead functions. // If we didn't decide to inline a function, check to see if we can // transform it to pass arguments by value instead of by reference. PM.add(createArgumentPromotionPass()); // The IPO passes may leave cruft around. Clean up after them. addInstructionCombiningPass(PM); addExtensionsToPM(EP_Peephole, PM); PM.add(createJumpThreadingPass()); // Break up allocas PM.add(createSROAPass()); // LTO provides additional opportunities for tailcall elimination due to // link-time inlining, and visibility of nocapture attribute. PM.add(createTailCallEliminationPass()); // Run a few AA driven optimizations here and now, to cleanup the code. PM.add(createPostOrderFunctionAttrsLegacyPass()); // Add nocapture. PM.add(createGlobalsAAWrapperPass()); // IP alias analysis. PM.add(createLICMPass(LicmMssaOptCap, LicmMssaNoAccForPromotionCap)); PM.add(createMergedLoadStoreMotionPass()); // Merge ld/st in diamonds. PM.add(NewGVN ? createNewGVNPass() : createGVNPass(DisableGVNLoadPRE)); // Remove redundancies. PM.add(createMemCpyOptPass()); // Remove dead memcpys. // Nuke dead stores. PM.add(createDeadStoreEliminationPass()); // More loops are countable; try to optimize them. PM.add(createIndVarSimplifyPass()); PM.add(createLoopDeletionPass()); if (EnableLoopInterchange) PM.add(createLoopInterchangePass()); // Unroll small loops PM.add(createSimpleLoopUnrollPass(OptLevel, DisableUnrollLoops, ForgetAllSCEVInLoopUnroll)); PM.add(createLoopVectorizePass(true, !LoopVectorize)); // The vectorizer may have significantly shortened a loop body; unroll again. PM.add(createLoopUnrollPass(OptLevel, DisableUnrollLoops, ForgetAllSCEVInLoopUnroll)); PM.add(createWarnMissedTransformationsPass()); // Now that we've optimized loops (in particular loop induction variables), // we may have exposed more scalar opportunities. Run parts of the scalar // optimizer again at this point. addInstructionCombiningPass(PM); // Initial cleanup PM.add(createCFGSimplificationPass()); // if-convert PM.add(createSCCPPass()); // Propagate exposed constants addInstructionCombiningPass(PM); // Clean up again PM.add(createBitTrackingDCEPass()); // More scalar chains could be vectorized due to more alias information if (SLPVectorize) PM.add(createSLPVectorizerPass()); // Vectorize parallel scalar chains. // After vectorization, assume intrinsics may tell us more about pointer // alignments. PM.add(createAlignmentFromAssumptionsPass()); // Cleanup and simplify the code after the scalar optimizations. addInstructionCombiningPass(PM); addExtensionsToPM(EP_Peephole, PM); PM.add(createJumpThreadingPass()); }
static void addBoundsCheckingPass(const PassManagerBuilder &Builder, legacy::PassManagerBase &PM) { PM.add(createBoundsCheckingPass()); }
void PassManagerBuilder::addLTOOptimizationPasses(legacy::PassManagerBase &PM) { // Provide AliasAnalysis services for optimizations. addInitialAliasAnalysisPasses(PM); // Propagate constants at call sites into the functions they call. This // opens opportunities for globalopt (and inlining) by substituting function // pointers passed as arguments to direct uses of functions. PM.add(createIPSCCPPass()); // Now that we internalized some globals, see if we can hack on them! PM.add(createGlobalOptimizerPass()); // Linking modules together can lead to duplicated global constants, only // keep one copy of each constant. PM.add(createConstantMergePass()); // Remove unused arguments from functions. PM.add(createDeadArgEliminationPass()); // Reduce the code after globalopt and ipsccp. Both can open up significant // simplification opportunities, and both can propagate functions through // function pointers. When this happens, we often have to resolve varargs // calls, etc, so let instcombine do this. PM.add(createInstructionCombiningPass()); addExtensionsToPM(EP_Peephole, PM); // Inline small functions bool RunInliner = Inliner; if (RunInliner) { PM.add(Inliner); Inliner = nullptr; } PM.add(createPruneEHPass()); // Remove dead EH info. // Optimize globals again if we ran the inliner. if (RunInliner) PM.add(createGlobalOptimizerPass()); PM.add(createGlobalDCEPass()); // Remove dead functions. // If we didn't decide to inline a function, check to see if we can // transform it to pass arguments by value instead of by reference. PM.add(createArgumentPromotionPass()); // The IPO passes may leave cruft around. Clean up after them. PM.add(createInstructionCombiningPass()); addExtensionsToPM(EP_Peephole, PM); PM.add(createJumpThreadingPass()); // Break up allocas if (UseNewSROA) PM.add(createSROAPass()); else PM.add(createScalarReplAggregatesPass()); // Run a few AA driven optimizations here and now, to cleanup the code. PM.add(createFunctionAttrsPass()); // Add nocapture. PM.add(createGlobalsModRefPass()); // IP alias analysis. PM.add(createLICMPass()); // Hoist loop invariants. if (EnableMLSM) PM.add(createMergedLoadStoreMotionPass()); // Merge ld/st in diamonds. PM.add(createGVNPass(DisableGVNLoadPRE)); // Remove redundancies. PM.add(createMemCpyOptPass()); // Remove dead memcpys. // Nuke dead stores. PM.add(createDeadStoreEliminationPass()); // More loops are countable; try to optimize them. PM.add(createIndVarSimplifyPass()); PM.add(createLoopDeletionPass()); if (EnableLoopInterchange) PM.add(createLoopInterchangePass()); PM.add(createLoopVectorizePass(true, LoopVectorize)); // More scalar chains could be vectorized due to more alias information if (RunSLPAfterLoopVectorization) if (SLPVectorize) PM.add(createSLPVectorizerPass()); // Vectorize parallel scalar chains. // After vectorization, assume intrinsics may tell us more about pointer // alignments. PM.add(createAlignmentFromAssumptionsPass()); if (LoadCombine) PM.add(createLoadCombinePass()); // Cleanup and simplify the code after the scalar optimizations. PM.add(createInstructionCombiningPass()); addExtensionsToPM(EP_Peephole, PM); PM.add(createJumpThreadingPass()); }
void PassManagerBuilder::addFunctionSimplificationPasses( legacy::PassManagerBase &MPM) { // Start of function pass. // Break up aggregate allocas, using SSAUpdater. MPM.add(createSROAPass()); MPM.add(createEarlyCSEPass(true /* Enable mem-ssa. */)); // Catch trivial redundancies if (EnableGVNHoist) MPM.add(createGVNHoistPass()); if (EnableGVNSink) { MPM.add(createGVNSinkPass()); MPM.add(createCFGSimplificationPass()); } // Speculative execution if the target has divergent branches; otherwise nop. MPM.add(createSpeculativeExecutionIfHasBranchDivergencePass()); MPM.add(createJumpThreadingPass()); // Thread jumps. MPM.add(createCorrelatedValuePropagationPass()); // Propagate conditionals MPM.add(createCFGSimplificationPass()); // Merge & remove BBs // Combine silly seq's if (OptLevel > 2) MPM.add(createAggressiveInstCombinerPass()); addInstructionCombiningPass(MPM); if (SizeLevel == 0 && !DisableLibCallsShrinkWrap) MPM.add(createLibCallsShrinkWrapPass()); addExtensionsToPM(EP_Peephole, MPM); // Optimize memory intrinsic calls based on the profiled size information. if (SizeLevel == 0) MPM.add(createPGOMemOPSizeOptLegacyPass()); MPM.add(createTailCallEliminationPass()); // Eliminate tail calls MPM.add(createCFGSimplificationPass()); // Merge & remove BBs MPM.add(createReassociatePass()); // Reassociate expressions // Begin the loop pass pipeline. if (EnableSimpleLoopUnswitch) { // The simple loop unswitch pass relies on separate cleanup passes. Schedule // them first so when we re-process a loop they run before other loop // passes. MPM.add(createLoopInstSimplifyPass()); MPM.add(createLoopSimplifyCFGPass()); } // Rotate Loop - disable header duplication at -Oz MPM.add(createLoopRotatePass(SizeLevel == 2 ? 0 : -1)); MPM.add(createLICMPass(LicmMssaOptCap, LicmMssaNoAccForPromotionCap)); if (EnableSimpleLoopUnswitch) MPM.add(createSimpleLoopUnswitchLegacyPass()); else MPM.add(createLoopUnswitchPass(SizeLevel || OptLevel < 3, DivergentTarget)); // FIXME: We break the loop pass pipeline here in order to do full // simplify-cfg. Eventually loop-simplifycfg should be enhanced to replace the // need for this. MPM.add(createCFGSimplificationPass()); addInstructionCombiningPass(MPM); // We resume loop passes creating a second loop pipeline here. MPM.add(createIndVarSimplifyPass()); // Canonicalize indvars MPM.add(createLoopIdiomPass()); // Recognize idioms like memset. addExtensionsToPM(EP_LateLoopOptimizations, MPM); MPM.add(createLoopDeletionPass()); // Delete dead loops if (EnableLoopInterchange) MPM.add(createLoopInterchangePass()); // Interchange loops // Unroll small loops MPM.add(createSimpleLoopUnrollPass(OptLevel, DisableUnrollLoops, ForgetAllSCEVInLoopUnroll)); addExtensionsToPM(EP_LoopOptimizerEnd, MPM); // This ends the loop pass pipelines. if (OptLevel > 1) { MPM.add(createMergedLoadStoreMotionPass()); // Merge ld/st in diamonds MPM.add(NewGVN ? createNewGVNPass() : createGVNPass(DisableGVNLoadPRE)); // Remove redundancies } MPM.add(createMemCpyOptPass()); // Remove memcpy / form memset MPM.add(createSCCPPass()); // Constant prop with SCCP // Delete dead bit computations (instcombine runs after to fold away the dead // computations, and then ADCE will run later to exploit any new DCE // opportunities that creates). MPM.add(createBitTrackingDCEPass()); // Delete dead bit computations // Run instcombine after redundancy elimination to exploit opportunities // opened up by them. addInstructionCombiningPass(MPM); addExtensionsToPM(EP_Peephole, MPM); MPM.add(createJumpThreadingPass()); // Thread jumps MPM.add(createCorrelatedValuePropagationPass()); MPM.add(createDeadStoreEliminationPass()); // Delete dead stores MPM.add(createLICMPass(LicmMssaOptCap, LicmMssaNoAccForPromotionCap)); addExtensionsToPM(EP_ScalarOptimizerLate, MPM); if (RerollLoops) MPM.add(createLoopRerollPass()); MPM.add(createAggressiveDCEPass()); // Delete dead instructions MPM.add(createCFGSimplificationPass()); // Merge & remove BBs // Clean up after everything. addInstructionCombiningPass(MPM); addExtensionsToPM(EP_Peephole, MPM); if (EnableCHR && OptLevel >= 3 && (!PGOInstrUse.empty() || !PGOSampleUse.empty() || EnablePGOCSInstrGen)) MPM.add(createControlHeightReductionLegacyPass()); }
static void addInstructionCombiningPass(const PassManagerBuilder &Builder, legacy::PassManagerBase &PM) { PM.add(createInstructionCombiningPass()); }
void PassManagerBuilder::populateModulePassManager( legacy::PassManagerBase &MPM) { // Allow forcing function attributes as a debugging and tuning aid. MPM.add(createForceFunctionAttrsLegacyPass()); // If all optimizations are disabled, just run the always-inline pass and, // if enabled, the function merging pass. if (OptLevel == 0) { addPGOInstrPasses(MPM); if (Inliner) { MPM.add(Inliner); Inliner = nullptr; } // FIXME: The BarrierNoopPass is a HACK! The inliner pass above implicitly // creates a CGSCC pass manager, but we don't want to add extensions into // that pass manager. To prevent this we insert a no-op module pass to reset // the pass manager to get the same behavior as EP_OptimizerLast in non-O0 // builds. The function merging pass is if (MergeFunctions) MPM.add(createMergeFunctionsPass()); else if (!GlobalExtensions->empty() || !Extensions.empty()) MPM.add(createBarrierNoopPass()); addExtensionsToPM(EP_EnabledOnOptLevel0, MPM); return; } // Add LibraryInfo if we have some. if (LibraryInfo) MPM.add(new TargetLibraryInfoWrapperPass(*LibraryInfo)); addInitialAliasAnalysisPasses(MPM); if (!DisableUnitAtATime) { // Infer attributes about declarations if possible. MPM.add(createInferFunctionAttrsLegacyPass()); addExtensionsToPM(EP_ModuleOptimizerEarly, MPM); MPM.add(createIPSCCPPass()); // IP SCCP MPM.add(createGlobalOptimizerPass()); // Optimize out global vars // Promote any localized global vars. MPM.add(createPromoteMemoryToRegisterPass()); MPM.add(createDeadArgEliminationPass()); // Dead argument elimination MPM.add(createInstructionCombiningPass()); // Clean up after IPCP & DAE addExtensionsToPM(EP_Peephole, MPM); MPM.add(createCFGSimplificationPass()); // Clean up after IPCP & DAE } if (!PerformThinLTO) /// PGO instrumentation is added during the compile phase for ThinLTO, do /// not run it a second time addPGOInstrPasses(MPM); if (EnableNonLTOGlobalsModRef) // We add a module alias analysis pass here. In part due to bugs in the // analysis infrastructure this "works" in that the analysis stays alive // for the entire SCC pass run below. MPM.add(createGlobalsAAWrapperPass()); // Start of CallGraph SCC passes. if (!DisableUnitAtATime) MPM.add(createPruneEHPass()); // Remove dead EH info if (Inliner) { MPM.add(Inliner); Inliner = nullptr; } if (!DisableUnitAtATime) MPM.add(createPostOrderFunctionAttrsLegacyPass()); if (OptLevel > 2) MPM.add(createArgumentPromotionPass()); // Scalarize uninlined fn args addFunctionSimplificationPasses(MPM); // If we are planning to perform ThinLTO later, let's not bloat the code with // unrolling/vectorization/... now. We'll first run the inliner + CGSCC passes // during ThinLTO and perform the rest of the optimizations afterward. if (PrepareForThinLTO) return; // FIXME: This is a HACK! The inliner pass above implicitly creates a CGSCC // pass manager that we are specifically trying to avoid. To prevent this // we must insert a no-op module pass to reset the pass manager. MPM.add(createBarrierNoopPass()); // Scheduling LoopVersioningLICM when inlining is over, because after that // we may see more accurate aliasing. Reason to run this late is that too // early versioning may prevent further inlining due to increase of code // size. By placing it just after inlining other optimizations which runs // later might get benefit of no-alias assumption in clone loop. if (UseLoopVersioningLICM) { MPM.add(createLoopVersioningLICMPass()); // Do LoopVersioningLICM MPM.add(createLICMPass()); // Hoist loop invariants } if (!DisableUnitAtATime) MPM.add(createReversePostOrderFunctionAttrsPass()); if (!DisableUnitAtATime && OptLevel > 1 && !PrepareForLTO) // Remove avail extern fns and globals definitions if we aren't // compiling an object file for later LTO. For LTO we want to preserve // these so they are eligible for inlining at link-time. Note if they // are unreferenced they will be removed by GlobalDCE later, so // this only impacts referenced available externally globals. // Eventually they will be suppressed during codegen, but eliminating // here enables more opportunity for GlobalDCE as it may make // globals referenced by available external functions dead // and saves running remaining passes on the eliminated functions. MPM.add(createEliminateAvailableExternallyPass()); if (PerformThinLTO) { // Remove dead fns and globals. Removing unreferenced functions could lead // to more opportunities for globalopt. MPM.add(createGlobalDCEPass()); MPM.add(createGlobalOptimizerPass()); // Remove dead fns and globals after globalopt. MPM.add(createGlobalDCEPass()); addFunctionSimplificationPasses(MPM); } if (EnableNonLTOGlobalsModRef) // We add a fresh GlobalsModRef run at this point. This is particularly // useful as the above will have inlined, DCE'ed, and function-attr // propagated everything. We should at this point have a reasonably minimal // and richly annotated call graph. By computing aliasing and mod/ref // information for all local globals here, the late loop passes and notably // the vectorizer will be able to use them to help recognize vectorizable // memory operations. // // Note that this relies on a bug in the pass manager which preserves // a module analysis into a function pass pipeline (and throughout it) so // long as the first function pass doesn't invalidate the module analysis. // Thus both Float2Int and LoopRotate have to preserve AliasAnalysis for // this to work. Fortunately, it is trivial to preserve AliasAnalysis // (doing nothing preserves it as it is required to be conservatively // correct in the face of IR changes). MPM.add(createGlobalsAAWrapperPass()); if (RunFloat2Int) MPM.add(createFloat2IntPass()); addExtensionsToPM(EP_VectorizerStart, MPM); // Re-rotate loops in all our loop nests. These may have fallout out of // rotated form due to GVN or other transformations, and the vectorizer relies // on the rotated form. Disable header duplication at -Oz. MPM.add(createLoopRotatePass(SizeLevel == 2 ? 0 : -1)); // Distribute loops to allow partial vectorization. I.e. isolate dependences // into separate loop that would otherwise inhibit vectorization. if (EnableLoopDistribute) MPM.add(createLoopDistributePass()); MPM.add(createLoopVectorizePass(DisableUnrollLoops, LoopVectorize)); // Eliminate loads by forwarding stores from the previous iteration to loads // of the current iteration. if (EnableLoopLoadElim) MPM.add(createLoopLoadEliminationPass()); // FIXME: Because of #pragma vectorize enable, the passes below are always // inserted in the pipeline, even when the vectorizer doesn't run (ex. when // on -O1 and no #pragma is found). Would be good to have these two passes // as function calls, so that we can only pass them when the vectorizer // changed the code. MPM.add(createInstructionCombiningPass()); if (OptLevel > 1 && ExtraVectorizerPasses) { // At higher optimization levels, try to clean up any runtime overlap and // alignment checks inserted by the vectorizer. We want to track correllated // runtime checks for two inner loops in the same outer loop, fold any // common computations, hoist loop-invariant aspects out of any outer loop, // and unswitch the runtime checks if possible. Once hoisted, we may have // dead (or speculatable) control flows or more combining opportunities. MPM.add(createEarlyCSEPass()); MPM.add(createCorrelatedValuePropagationPass()); MPM.add(createInstructionCombiningPass()); MPM.add(createLICMPass()); MPM.add(createLoopUnswitchPass(SizeLevel || OptLevel < 3)); MPM.add(createCFGSimplificationPass()); MPM.add(createInstructionCombiningPass()); } if (RunSLPAfterLoopVectorization) { if (SLPVectorize) { MPM.add(createSLPVectorizerPass()); // Vectorize parallel scalar chains. if (OptLevel > 1 && ExtraVectorizerPasses) { MPM.add(createEarlyCSEPass()); } } if (BBVectorize) { MPM.add(createBBVectorizePass()); MPM.add(createInstructionCombiningPass()); addExtensionsToPM(EP_Peephole, MPM); if (OptLevel > 1 && UseGVNAfterVectorization) MPM.add(createGVNPass(DisableGVNLoadPRE)); // Remove redundancies else MPM.add(createEarlyCSEPass()); // Catch trivial redundancies // BBVectorize may have significantly shortened a loop body; unroll again. if (!DisableUnrollLoops) MPM.add(createLoopUnrollPass()); } } addExtensionsToPM(EP_Peephole, MPM); MPM.add(createCFGSimplificationPass()); MPM.add(createInstructionCombiningPass()); if (!DisableUnrollLoops) { MPM.add(createLoopUnrollPass()); // Unroll small loops // LoopUnroll may generate some redundency to cleanup. MPM.add(createInstructionCombiningPass()); // Runtime unrolling will introduce runtime check in loop prologue. If the // unrolled loop is a inner loop, then the prologue will be inside the // outer loop. LICM pass can help to promote the runtime check out if the // checked value is loop invariant. MPM.add(createLICMPass()); } // After vectorization and unrolling, assume intrinsics may tell us more // about pointer alignments. MPM.add(createAlignmentFromAssumptionsPass()); if (!DisableUnitAtATime) { // FIXME: We shouldn't bother with this anymore. MPM.add(createStripDeadPrototypesPass()); // Get rid of dead prototypes // GlobalOpt already deletes dead functions and globals, at -O2 try a // late pass of GlobalDCE. It is capable of deleting dead cycles. if (OptLevel > 1) { MPM.add(createGlobalDCEPass()); // Remove dead fns and globals. MPM.add(createConstantMergePass()); // Merge dup global constants } } if (MergeFunctions) MPM.add(createMergeFunctionsPass()); addExtensionsToPM(EP_OptimizerLast, MPM); }
static void loadPass(const PassManagerBuilder &Builder, legacy::PassManagerBase &PM) { PM.add(new Hello()); }
static void registerClangPass(const PassManagerBuilder &, legacy::PassManagerBase &PM) { PM.add(new Scatter()); }
void PassManagerBuilder::addLTOOptimizationPasses(legacy::PassManagerBase &PM) { // Provide AliasAnalysis services for optimizations. addInitialAliasAnalysisPasses(PM); if (ModuleSummary) PM.add(createFunctionImportPass(ModuleSummary)); // Allow forcing function attributes as a debugging and tuning aid. PM.add(createForceFunctionAttrsLegacyPass()); // Infer attributes about declarations if possible. PM.add(createInferFunctionAttrsLegacyPass()); // Indirect call promotion. This should promote all the targets that are left // by the earlier promotion pass that promotes intra-module targets. // This two-step promotion is to save the compile time. For LTO, it should // produce the same result as if we only do promotion here. PM.add(createPGOIndirectCallPromotionPass(true)); // Propagate constants at call sites into the functions they call. This // opens opportunities for globalopt (and inlining) by substituting function // pointers passed as arguments to direct uses of functions. PM.add(createIPSCCPPass()); // Now that we internalized some globals, see if we can hack on them! PM.add(createPostOrderFunctionAttrsLegacyPass()); PM.add(createReversePostOrderFunctionAttrsPass()); PM.add(createGlobalOptimizerPass()); // Promote any localized global vars. PM.add(createPromoteMemoryToRegisterPass()); // Linking modules together can lead to duplicated global constants, only // keep one copy of each constant. PM.add(createConstantMergePass()); // Remove unused arguments from functions. PM.add(createDeadArgEliminationPass()); // Reduce the code after globalopt and ipsccp. Both can open up significant // simplification opportunities, and both can propagate functions through // function pointers. When this happens, we often have to resolve varargs // calls, etc, so let instcombine do this. addInstructionCombiningPass(PM); addExtensionsToPM(EP_Peephole, PM); // Inline small functions bool RunInliner = Inliner; if (RunInliner) { PM.add(Inliner); Inliner = nullptr; } PM.add(createPruneEHPass()); // Remove dead EH info. // Optimize globals again if we ran the inliner. if (RunInliner) PM.add(createGlobalOptimizerPass()); PM.add(createGlobalDCEPass()); // Remove dead functions. // If we didn't decide to inline a function, check to see if we can // transform it to pass arguments by value instead of by reference. PM.add(createArgumentPromotionPass()); // The IPO passes may leave cruft around. Clean up after them. addInstructionCombiningPass(PM); addExtensionsToPM(EP_Peephole, PM); PM.add(createJumpThreadingPass()); // Break up allocas if (UseNewSROA) PM.add(createSROAPass()); else PM.add(createScalarReplAggregatesPass()); // Run a few AA driven optimizations here and now, to cleanup the code. PM.add(createPostOrderFunctionAttrsLegacyPass()); // Add nocapture. PM.add(createGlobalsAAWrapperPass()); // IP alias analysis. PM.add(createLICMPass()); // Hoist loop invariants. if (EnableMLSM) PM.add(createMergedLoadStoreMotionPass()); // Merge ld/st in diamonds. PM.add(createGVNPass(DisableGVNLoadPRE)); // Remove redundancies. PM.add(createMemCpyOptPass()); // Remove dead memcpys. // Nuke dead stores. PM.add(createDeadStoreEliminationPass()); // More loops are countable; try to optimize them. PM.add(createIndVarSimplifyPass()); PM.add(createLoopDeletionPass()); if (EnableLoopInterchange) PM.add(createLoopInterchangePass()); if (!DisableUnrollLoops) PM.add(createSimpleLoopUnrollPass()); // Unroll small loops PM.add(createLoopVectorizePass(true, LoopVectorize)); // The vectorizer may have significantly shortened a loop body; unroll again. if (!DisableUnrollLoops) PM.add(createLoopUnrollPass()); // Now that we've optimized loops (in particular loop induction variables), // we may have exposed more scalar opportunities. Run parts of the scalar // optimizer again at this point. addInstructionCombiningPass(PM); // Initial cleanup PM.add(createCFGSimplificationPass()); // if-convert PM.add(createSCCPPass()); // Propagate exposed constants addInstructionCombiningPass(PM); // Clean up again PM.add(createBitTrackingDCEPass()); // More scalar chains could be vectorized due to more alias information if (RunSLPAfterLoopVectorization) if (SLPVectorize) PM.add(createSLPVectorizerPass()); // Vectorize parallel scalar chains. // After vectorization, assume intrinsics may tell us more about pointer // alignments. PM.add(createAlignmentFromAssumptionsPass()); if (LoadCombine) PM.add(createLoadCombinePass()); // Cleanup and simplify the code after the scalar optimizations. addInstructionCombiningPass(PM); addExtensionsToPM(EP_Peephole, PM); PM.add(createJumpThreadingPass()); }
static void registerAppendBogusCode(const PassManagerBuilder &, legacy::PassManagerBase &PM) { PM.add(new AppendBogusCode()); }
static void addCoroutineOptimizerLastPasses(const PassManagerBuilder &Builder, legacy::PassManagerBase &PM) { PM.add(createCoroCleanupPass()); }
static void registerCatPass (const PassManagerBuilder &, legacy::PassManagerBase &PM) { PM.add(new CatPass()); }
// Automatically enable the pass. // http://adriansampson.net/blog/clangpass.html static void registerTraversalPass(const PassManagerBuilder &, legacy::PassManagerBase &PM) { PM.add(new TraversalPass()); }
void PassManagerBuilder::addFunctionSimplificationPasses( legacy::PassManagerBase &MPM) { // Start of function pass. // Break up aggregate allocas, using SSAUpdater. if (UseNewSROA) MPM.add(createSROAPass()); else MPM.add(createScalarReplAggregatesPass(-1, false)); MPM.add(createEarlyCSEPass()); // Catch trivial redundancies MPM.add(createJumpThreadingPass()); // Thread jumps. MPM.add(createCorrelatedValuePropagationPass()); // Propagate conditionals MPM.add(createCFGSimplificationPass()); // Merge & remove BBs MPM.add(createInstructionCombiningPass()); // Combine silly seq's addExtensionsToPM(EP_Peephole, MPM); MPM.add(createTailCallEliminationPass()); // Eliminate tail calls MPM.add(createCFGSimplificationPass()); // Merge & remove BBs MPM.add(createReassociatePass()); // Reassociate expressions if (PrepareForThinLTO) { MPM.add(createAggressiveDCEPass()); // Delete dead instructions MPM.add(createInstructionCombiningPass()); // Combine silly seq's return; } // Rotate Loop - disable header duplication at -Oz MPM.add(createLoopRotatePass(SizeLevel == 2 ? 0 : -1)); MPM.add(createLICMPass()); // Hoist loop invariants MPM.add(createLoopUnswitchPass(SizeLevel || OptLevel < 3)); MPM.add(createCFGSimplificationPass()); MPM.add(createInstructionCombiningPass()); MPM.add(createIndVarSimplifyPass()); // Canonicalize indvars MPM.add(createLoopIdiomPass()); // Recognize idioms like memset. MPM.add(createLoopDeletionPass()); // Delete dead loops if (EnableLoopInterchange) { MPM.add(createLoopInterchangePass()); // Interchange loops MPM.add(createCFGSimplificationPass()); } if (!DisableUnrollLoops) MPM.add(createSimpleLoopUnrollPass()); // Unroll small loops addExtensionsToPM(EP_LoopOptimizerEnd, MPM); if (OptLevel > 1) { if (EnableMLSM) MPM.add(createMergedLoadStoreMotionPass()); // Merge ld/st in diamonds MPM.add(createGVNPass(DisableGVNLoadPRE)); // Remove redundancies } MPM.add(createMemCpyOptPass()); // Remove memcpy / form memset MPM.add(createSCCPPass()); // Constant prop with SCCP // Delete dead bit computations (instcombine runs after to fold away the dead // computations, and then ADCE will run later to exploit any new DCE // opportunities that creates). MPM.add(createBitTrackingDCEPass()); // Delete dead bit computations // Run instcombine after redundancy elimination to exploit opportunities // opened up by them. MPM.add(createInstructionCombiningPass()); addExtensionsToPM(EP_Peephole, MPM); MPM.add(createJumpThreadingPass()); // Thread jumps MPM.add(createCorrelatedValuePropagationPass()); MPM.add(createDeadStoreEliminationPass()); // Delete dead stores MPM.add(createLICMPass()); addExtensionsToPM(EP_ScalarOptimizerLate, MPM); if (RerollLoops) MPM.add(createLoopRerollPass()); if (!RunSLPAfterLoopVectorization) { if (SLPVectorize) MPM.add(createSLPVectorizerPass()); // Vectorize parallel scalar chains. if (BBVectorize) { MPM.add(createBBVectorizePass()); MPM.add(createInstructionCombiningPass()); addExtensionsToPM(EP_Peephole, MPM); if (OptLevel > 1 && UseGVNAfterVectorization) MPM.add(createGVNPass(DisableGVNLoadPRE)); // Remove redundancies else MPM.add(createEarlyCSEPass()); // Catch trivial redundancies // BBVectorize may have significantly shortened a loop body; unroll again. if (!DisableUnrollLoops) MPM.add(createLoopUnrollPass()); } } if (LoadCombine) MPM.add(createLoadCombinePass()); MPM.add(createAggressiveDCEPass()); // Delete dead instructions MPM.add(createCFGSimplificationPass()); // Merge & remove BBs MPM.add(createInstructionCombiningPass()); // Clean up after everything. addExtensionsToPM(EP_Peephole, MPM); }
static void addKernelAddressSanitizerPasses(const PassManagerBuilder &Builder, legacy::PassManagerBase &PM) { PM.add(createAddressSanitizerFunctionPass(/*CompileKernel*/true)); PM.add(createAddressSanitizerModulePass(/*CompileKernel*/true)); }
void PassManagerBuilder::populateModulePassManager( legacy::PassManagerBase &MPM) { // If all optimizations are disabled, just run the always-inline pass and, // if enabled, the function merging pass. if (OptLevel == 0) { if (Inliner) { MPM.add(Inliner); Inliner = nullptr; } // FIXME: The BarrierNoopPass is a HACK! The inliner pass above implicitly // creates a CGSCC pass manager, but we don't want to add extensions into // that pass manager. To prevent this we insert a no-op module pass to reset // the pass manager to get the same behavior as EP_OptimizerLast in non-O0 // builds. The function merging pass is if (MergeFunctions) MPM.add(createMergeFunctionsPass()); else if (!GlobalExtensions->empty() || !Extensions.empty()) MPM.add(createBarrierNoopPass()); addExtensionsToPM(EP_EnabledOnOptLevel0, MPM); return; } // Add LibraryInfo if we have some. if (LibraryInfo) MPM.add(new TargetLibraryInfoWrapperPass(*LibraryInfo)); addInitialAliasAnalysisPasses(MPM); if (!DisableUnitAtATime) { addExtensionsToPM(EP_ModuleOptimizerEarly, MPM); MPM.add(createIPSCCPPass()); // IP SCCP MPM.add(createGlobalOptimizerPass()); // Optimize out global vars MPM.add(createDeadArgEliminationPass()); // Dead argument elimination MPM.add(createInstructionCombiningPass());// Clean up after IPCP & DAE addExtensionsToPM(EP_Peephole, MPM); MPM.add(createCFGSimplificationPass()); // Clean up after IPCP & DAE } // Start of CallGraph SCC passes. if (!DisableUnitAtATime) MPM.add(createPruneEHPass()); // Remove dead EH info if (Inliner) { MPM.add(Inliner); Inliner = nullptr; } if (!DisableUnitAtATime) MPM.add(createFunctionAttrsPass()); // Set readonly/readnone attrs if (OptLevel > 2) MPM.add(createArgumentPromotionPass()); // Scalarize uninlined fn args // Start of function pass. // Break up aggregate allocas, using SSAUpdater. if (UseNewSROA) MPM.add(createSROAPass(/*RequiresDomTree*/ false)); else MPM.add(createScalarReplAggregatesPass(-1, false)); MPM.add(createEarlyCSEPass()); // Catch trivial redundancies MPM.add(createJumpThreadingPass()); // Thread jumps. MPM.add(createCorrelatedValuePropagationPass()); // Propagate conditionals MPM.add(createCFGSimplificationPass()); // Merge & remove BBs MPM.add(createInstructionCombiningPass()); // Combine silly seq's addExtensionsToPM(EP_Peephole, MPM); MPM.add(createTailCallEliminationPass()); // Eliminate tail calls MPM.add(createCFGSimplificationPass()); // Merge & remove BBs MPM.add(createReassociatePass()); // Reassociate expressions // Rotate Loop - disable header duplication at -Oz MPM.add(createLoopRotatePass(SizeLevel == 2 ? 0 : -1)); MPM.add(createLICMPass()); // Hoist loop invariants MPM.add(createLoopUnswitchPass(SizeLevel || OptLevel < 3)); MPM.add(createInstructionCombiningPass()); MPM.add(createIndVarSimplifyPass()); // Canonicalize indvars MPM.add(createLoopIdiomPass()); // Recognize idioms like memset. MPM.add(createLoopDeletionPass()); // Delete dead loops if (EnableLoopInterchange) { MPM.add(createLoopInterchangePass()); // Interchange loops MPM.add(createCFGSimplificationPass()); } if (!DisableUnrollLoops) MPM.add(createSimpleLoopUnrollPass()); // Unroll small loops addExtensionsToPM(EP_LoopOptimizerEnd, MPM); if (OptLevel > 1) { if (EnableMLSM) MPM.add(createMergedLoadStoreMotionPass()); // Merge ld/st in diamonds MPM.add(createGVNPass(DisableGVNLoadPRE)); // Remove redundancies } MPM.add(createMemCpyOptPass()); // Remove memcpy / form memset MPM.add(createSCCPPass()); // Constant prop with SCCP // Delete dead bit computations (instcombine runs after to fold away the dead // computations, and then ADCE will run later to exploit any new DCE // opportunities that creates). MPM.add(createBitTrackingDCEPass()); // Delete dead bit computations // Run instcombine after redundancy elimination to exploit opportunities // opened up by them. MPM.add(createInstructionCombiningPass()); addExtensionsToPM(EP_Peephole, MPM); MPM.add(createJumpThreadingPass()); // Thread jumps MPM.add(createCorrelatedValuePropagationPass()); MPM.add(createDeadStoreEliminationPass()); // Delete dead stores MPM.add(createLICMPass()); addExtensionsToPM(EP_ScalarOptimizerLate, MPM); if (RerollLoops) MPM.add(createLoopRerollPass()); if (!RunSLPAfterLoopVectorization) { if (SLPVectorize) MPM.add(createSLPVectorizerPass()); // Vectorize parallel scalar chains. if (BBVectorize) { MPM.add(createBBVectorizePass()); MPM.add(createInstructionCombiningPass()); addExtensionsToPM(EP_Peephole, MPM); if (OptLevel > 1 && UseGVNAfterVectorization) MPM.add(createGVNPass(DisableGVNLoadPRE)); // Remove redundancies else MPM.add(createEarlyCSEPass()); // Catch trivial redundancies // BBVectorize may have significantly shortened a loop body; unroll again. if (!DisableUnrollLoops) MPM.add(createLoopUnrollPass()); } } if (LoadCombine) MPM.add(createLoadCombinePass()); MPM.add(createAggressiveDCEPass()); // Delete dead instructions MPM.add(createCFGSimplificationPass()); // Merge & remove BBs MPM.add(createInstructionCombiningPass()); // Clean up after everything. addExtensionsToPM(EP_Peephole, MPM); // FIXME: This is a HACK! The inliner pass above implicitly creates a CGSCC // pass manager that we are specifically trying to avoid. To prevent this // we must insert a no-op module pass to reset the pass manager. MPM.add(createBarrierNoopPass()); if (RunFloat2Int) MPM.add(createFloat2IntPass()); // Re-rotate loops in all our loop nests. These may have fallout out of // rotated form due to GVN or other transformations, and the vectorizer relies // on the rotated form. Disable header duplication at -Oz. MPM.add(createLoopRotatePass(SizeLevel == 2 ? 0 : -1)); // Distribute loops to allow partial vectorization. I.e. isolate dependences // into separate loop that would otherwise inhibit vectorization. if (EnableLoopDistribute) MPM.add(createLoopDistributePass()); MPM.add(createLoopVectorizePass(DisableUnrollLoops, LoopVectorize)); // FIXME: Because of #pragma vectorize enable, the passes below are always // inserted in the pipeline, even when the vectorizer doesn't run (ex. when // on -O1 and no #pragma is found). Would be good to have these two passes // as function calls, so that we can only pass them when the vectorizer // changed the code. MPM.add(createInstructionCombiningPass()); if (OptLevel > 1 && ExtraVectorizerPasses) { // At higher optimization levels, try to clean up any runtime overlap and // alignment checks inserted by the vectorizer. We want to track correllated // runtime checks for two inner loops in the same outer loop, fold any // common computations, hoist loop-invariant aspects out of any outer loop, // and unswitch the runtime checks if possible. Once hoisted, we may have // dead (or speculatable) control flows or more combining opportunities. MPM.add(createEarlyCSEPass()); MPM.add(createCorrelatedValuePropagationPass()); MPM.add(createInstructionCombiningPass()); MPM.add(createLICMPass()); MPM.add(createLoopUnswitchPass(SizeLevel || OptLevel < 3)); MPM.add(createCFGSimplificationPass()); MPM.add(createInstructionCombiningPass()); } if (RunSLPAfterLoopVectorization) { if (SLPVectorize) { MPM.add(createSLPVectorizerPass()); // Vectorize parallel scalar chains. if (OptLevel > 1 && ExtraVectorizerPasses) { MPM.add(createEarlyCSEPass()); } } if (BBVectorize) { MPM.add(createBBVectorizePass()); MPM.add(createInstructionCombiningPass()); addExtensionsToPM(EP_Peephole, MPM); if (OptLevel > 1 && UseGVNAfterVectorization) MPM.add(createGVNPass(DisableGVNLoadPRE)); // Remove redundancies else MPM.add(createEarlyCSEPass()); // Catch trivial redundancies // BBVectorize may have significantly shortened a loop body; unroll again. if (!DisableUnrollLoops) MPM.add(createLoopUnrollPass()); } } addExtensionsToPM(EP_Peephole, MPM); MPM.add(createCFGSimplificationPass()); MPM.add(createInstructionCombiningPass()); if (!DisableUnrollLoops) { MPM.add(createLoopUnrollPass()); // Unroll small loops // LoopUnroll may generate some redundency to cleanup. MPM.add(createInstructionCombiningPass()); // Runtime unrolling will introduce runtime check in loop prologue. If the // unrolled loop is a inner loop, then the prologue will be inside the // outer loop. LICM pass can help to promote the runtime check out if the // checked value is loop invariant. MPM.add(createLICMPass()); } // After vectorization and unrolling, assume intrinsics may tell us more // about pointer alignments. MPM.add(createAlignmentFromAssumptionsPass()); if (!DisableUnitAtATime) { // FIXME: We shouldn't bother with this anymore. MPM.add(createStripDeadPrototypesPass()); // Get rid of dead prototypes // GlobalOpt already deletes dead functions and globals, at -O2 try a // late pass of GlobalDCE. It is capable of deleting dead cycles. if (OptLevel > 1) { if (!PrepareForLTO) { // Remove avail extern fns and globals definitions if we aren't // compiling an object file for later LTO. For LTO we want to preserve // these so they are eligible for inlining at link-time. Note if they // are unreferenced they will be removed by GlobalDCE below, so // this only impacts referenced available externally globals. // Eventually they will be suppressed during codegen, but eliminating // here enables more opportunity for GlobalDCE as it may make // globals referenced by available external functions dead. MPM.add(createEliminateAvailableExternallyPass()); } MPM.add(createGlobalDCEPass()); // Remove dead fns and globals. MPM.add(createConstantMergePass()); // Merge dup global constants } } if (MergeFunctions) MPM.add(createMergeFunctionsPass()); addExtensionsToPM(EP_OptimizerLast, MPM); }
static void registerBlockMarker(const PassManagerBuilder &, legacy::PassManagerBase &PM) { PM.add(new BlockMarker()); }
void PassManagerBuilder::addInstructionCombiningPass( legacy::PassManagerBase &PM) const { bool ExpensiveCombines = OptLevel > 2; PM.add(createInstructionCombiningPass(ExpensiveCombines)); }
void PassManagerBuilder::addFunctionSimplificationPasses( legacy::PassManagerBase &MPM) { // Start of function pass. // Break up aggregate allocas, using SSAUpdater. MPM.add(createSROAPass()); MPM.add(createEarlyCSEPass(EnableEarlyCSEMemSSA)); // Catch trivial redundancies if (EnableGVNHoist) MPM.add(createGVNHoistPass()); if (EnableGVNSink) { MPM.add(createGVNSinkPass()); MPM.add(createCFGSimplificationPass()); } // Speculative execution if the target has divergent branches; otherwise nop. MPM.add(createSpeculativeExecutionIfHasBranchDivergencePass()); MPM.add(createJumpThreadingPass()); // Thread jumps. MPM.add(createCorrelatedValuePropagationPass()); // Propagate conditionals MPM.add(createCFGSimplificationPass()); // Merge & remove BBs // Combine silly seq's addInstructionCombiningPass(MPM); if (SizeLevel == 0 && !DisableLibCallsShrinkWrap) MPM.add(createLibCallsShrinkWrapPass()); addExtensionsToPM(EP_Peephole, MPM); // Optimize memory intrinsic calls based on the profiled size information. if (SizeLevel == 0) MPM.add(createPGOMemOPSizeOptLegacyPass()); MPM.add(createTailCallEliminationPass()); // Eliminate tail calls MPM.add(createCFGSimplificationPass()); // Merge & remove BBs MPM.add(createReassociatePass()); // Reassociate expressions // Rotate Loop - disable header duplication at -Oz MPM.add(createLoopRotatePass(SizeLevel == 2 ? 0 : -1)); MPM.add(createLICMPass()); // Hoist loop invariants if (EnableSimpleLoopUnswitch) MPM.add(createSimpleLoopUnswitchLegacyPass()); else MPM.add(createLoopUnswitchPass(SizeLevel || OptLevel < 3, DivergentTarget)); MPM.add(createCFGSimplificationPass()); addInstructionCombiningPass(MPM); MPM.add(createIndVarSimplifyPass()); // Canonicalize indvars MPM.add(createLoopIdiomPass()); // Recognize idioms like memset. addExtensionsToPM(EP_LateLoopOptimizations, MPM); MPM.add(createLoopDeletionPass()); // Delete dead loops if (EnableLoopInterchange) { MPM.add(createLoopInterchangePass()); // Interchange loops MPM.add(createCFGSimplificationPass()); } if (!DisableUnrollLoops) MPM.add(createSimpleLoopUnrollPass(OptLevel)); // Unroll small loops addExtensionsToPM(EP_LoopOptimizerEnd, MPM); if (OptLevel > 1) { MPM.add(createMergedLoadStoreMotionPass()); // Merge ld/st in diamonds MPM.add(NewGVN ? createNewGVNPass() : createGVNPass(DisableGVNLoadPRE)); // Remove redundancies } MPM.add(createMemCpyOptPass()); // Remove memcpy / form memset MPM.add(createSCCPPass()); // Constant prop with SCCP // Delete dead bit computations (instcombine runs after to fold away the dead // computations, and then ADCE will run later to exploit any new DCE // opportunities that creates). MPM.add(createBitTrackingDCEPass()); // Delete dead bit computations // Run instcombine after redundancy elimination to exploit opportunities // opened up by them. addInstructionCombiningPass(MPM); addExtensionsToPM(EP_Peephole, MPM); MPM.add(createJumpThreadingPass()); // Thread jumps MPM.add(createCorrelatedValuePropagationPass()); MPM.add(createDeadStoreEliminationPass()); // Delete dead stores MPM.add(createLICMPass()); addExtensionsToPM(EP_ScalarOptimizerLate, MPM); if (RerollLoops) MPM.add(createLoopRerollPass()); if (!RunSLPAfterLoopVectorization && SLPVectorize) MPM.add(createSLPVectorizerPass()); // Vectorize parallel scalar chains. MPM.add(createAggressiveDCEPass()); // Delete dead instructions MPM.add(createCFGSimplificationPass()); // Merge & remove BBs // Clean up after everything. addInstructionCombiningPass(MPM); addExtensionsToPM(EP_Peephole, MPM); }
void PassManagerBuilder::populateModulePassManager( legacy::PassManagerBase &MPM) { // Whether this is a default or *LTO pre-link pipeline. The FullLTO post-link // is handled separately, so just check this is not the ThinLTO post-link. bool DefaultOrPreLinkPipeline = !PerformThinLTO; if (!PGOSampleUse.empty()) { MPM.add(createPruneEHPass()); // In ThinLTO mode, when flattened profile is used, all the available // profile information will be annotated in PreLink phase so there is // no need to load the profile again in PostLink. if (!(FlattenedProfileUsed && PerformThinLTO)) MPM.add(createSampleProfileLoaderPass(PGOSampleUse)); } // Allow forcing function attributes as a debugging and tuning aid. MPM.add(createForceFunctionAttrsLegacyPass()); // If all optimizations are disabled, just run the always-inline pass and, // if enabled, the function merging pass. if (OptLevel == 0) { addPGOInstrPasses(MPM); if (Inliner) { MPM.add(Inliner); Inliner = nullptr; } // FIXME: The BarrierNoopPass is a HACK! The inliner pass above implicitly // creates a CGSCC pass manager, but we don't want to add extensions into // that pass manager. To prevent this we insert a no-op module pass to reset // the pass manager to get the same behavior as EP_OptimizerLast in non-O0 // builds. The function merging pass is if (MergeFunctions) MPM.add(createMergeFunctionsPass()); else if (GlobalExtensionsNotEmpty() || !Extensions.empty()) MPM.add(createBarrierNoopPass()); if (PerformThinLTO) { // Drop available_externally and unreferenced globals. This is necessary // with ThinLTO in order to avoid leaving undefined references to dead // globals in the object file. MPM.add(createEliminateAvailableExternallyPass()); MPM.add(createGlobalDCEPass()); } addExtensionsToPM(EP_EnabledOnOptLevel0, MPM); if (PrepareForLTO || PrepareForThinLTO) { MPM.add(createCanonicalizeAliasesPass()); // Rename anon globals to be able to export them in the summary. // This has to be done after we add the extensions to the pass manager // as there could be passes (e.g. Adddress sanitizer) which introduce // new unnamed globals. MPM.add(createNameAnonGlobalPass()); } return; } // Add LibraryInfo if we have some. if (LibraryInfo) MPM.add(new TargetLibraryInfoWrapperPass(*LibraryInfo)); addInitialAliasAnalysisPasses(MPM); // For ThinLTO there are two passes of indirect call promotion. The // first is during the compile phase when PerformThinLTO=false and // intra-module indirect call targets are promoted. The second is during // the ThinLTO backend when PerformThinLTO=true, when we promote imported // inter-module indirect calls. For that we perform indirect call promotion // earlier in the pass pipeline, here before globalopt. Otherwise imported // available_externally functions look unreferenced and are removed. if (PerformThinLTO) MPM.add(createPGOIndirectCallPromotionLegacyPass(/*InLTO = */ true, !PGOSampleUse.empty())); // For SamplePGO in ThinLTO compile phase, we do not want to unroll loops // as it will change the CFG too much to make the 2nd profile annotation // in backend more difficult. bool PrepareForThinLTOUsingPGOSampleProfile = PrepareForThinLTO && !PGOSampleUse.empty(); if (PrepareForThinLTOUsingPGOSampleProfile) DisableUnrollLoops = true; // Infer attributes about declarations if possible. MPM.add(createInferFunctionAttrsLegacyPass()); addExtensionsToPM(EP_ModuleOptimizerEarly, MPM); if (OptLevel > 2) MPM.add(createCallSiteSplittingPass()); MPM.add(createIPSCCPPass()); // IP SCCP MPM.add(createCalledValuePropagationPass()); MPM.add(createGlobalOptimizerPass()); // Optimize out global vars // Promote any localized global vars. MPM.add(createPromoteMemoryToRegisterPass()); MPM.add(createDeadArgEliminationPass()); // Dead argument elimination addInstructionCombiningPass(MPM); // Clean up after IPCP & DAE addExtensionsToPM(EP_Peephole, MPM); MPM.add(createCFGSimplificationPass()); // Clean up after IPCP & DAE // For SamplePGO in ThinLTO compile phase, we do not want to do indirect // call promotion as it will change the CFG too much to make the 2nd // profile annotation in backend more difficult. // PGO instrumentation is added during the compile phase for ThinLTO, do // not run it a second time if (DefaultOrPreLinkPipeline && !PrepareForThinLTOUsingPGOSampleProfile) addPGOInstrPasses(MPM); // Create profile COMDAT variables. Lld linker wants to see all variables // before the LTO/ThinLTO link since it needs to resolve symbols/comdats. if (!PerformThinLTO && EnablePGOCSInstrGen) MPM.add(createPGOInstrumentationGenCreateVarLegacyPass(PGOInstrGen)); // We add a module alias analysis pass here. In part due to bugs in the // analysis infrastructure this "works" in that the analysis stays alive // for the entire SCC pass run below. MPM.add(createGlobalsAAWrapperPass()); // Start of CallGraph SCC passes. MPM.add(createPruneEHPass()); // Remove dead EH info bool RunInliner = false; if (Inliner) { MPM.add(Inliner); Inliner = nullptr; RunInliner = true; } MPM.add(createPostOrderFunctionAttrsLegacyPass()); if (OptLevel > 2) MPM.add(createArgumentPromotionPass()); // Scalarize uninlined fn args addExtensionsToPM(EP_CGSCCOptimizerLate, MPM); addFunctionSimplificationPasses(MPM); // FIXME: This is a HACK! The inliner pass above implicitly creates a CGSCC // pass manager that we are specifically trying to avoid. To prevent this // we must insert a no-op module pass to reset the pass manager. MPM.add(createBarrierNoopPass()); if (RunPartialInlining) MPM.add(createPartialInliningPass()); if (OptLevel > 1 && !PrepareForLTO && !PrepareForThinLTO) // Remove avail extern fns and globals definitions if we aren't // compiling an object file for later LTO. For LTO we want to preserve // these so they are eligible for inlining at link-time. Note if they // are unreferenced they will be removed by GlobalDCE later, so // this only impacts referenced available externally globals. // Eventually they will be suppressed during codegen, but eliminating // here enables more opportunity for GlobalDCE as it may make // globals referenced by available external functions dead // and saves running remaining passes on the eliminated functions. MPM.add(createEliminateAvailableExternallyPass()); // CSFDO instrumentation and use pass. Don't invoke this for Prepare pass // for LTO and ThinLTO -- The actual pass will be called after all inlines // are performed. // Need to do this after COMDAT variables have been eliminated, // (i.e. after EliminateAvailableExternallyPass). if (!(PrepareForLTO || PrepareForThinLTO)) addPGOInstrPasses(MPM, /* IsCS */ true); if (EnableOrderFileInstrumentation) MPM.add(createInstrOrderFilePass()); MPM.add(createReversePostOrderFunctionAttrsPass()); // The inliner performs some kind of dead code elimination as it goes, // but there are cases that are not really caught by it. We might // at some point consider teaching the inliner about them, but it // is OK for now to run GlobalOpt + GlobalDCE in tandem as their // benefits generally outweight the cost, making the whole pipeline // faster. if (RunInliner) { MPM.add(createGlobalOptimizerPass()); MPM.add(createGlobalDCEPass()); } // If we are planning to perform ThinLTO later, let's not bloat the code with // unrolling/vectorization/... now. We'll first run the inliner + CGSCC passes // during ThinLTO and perform the rest of the optimizations afterward. if (PrepareForThinLTO) { // Ensure we perform any last passes, but do so before renaming anonymous // globals in case the passes add any. addExtensionsToPM(EP_OptimizerLast, MPM); MPM.add(createCanonicalizeAliasesPass()); // Rename anon globals to be able to export them in the summary. MPM.add(createNameAnonGlobalPass()); return; } if (PerformThinLTO) // Optimize globals now when performing ThinLTO, this enables more // optimizations later. MPM.add(createGlobalOptimizerPass()); // Scheduling LoopVersioningLICM when inlining is over, because after that // we may see more accurate aliasing. Reason to run this late is that too // early versioning may prevent further inlining due to increase of code // size. By placing it just after inlining other optimizations which runs // later might get benefit of no-alias assumption in clone loop. if (UseLoopVersioningLICM) { MPM.add(createLoopVersioningLICMPass()); // Do LoopVersioningLICM MPM.add(createLICMPass(LicmMssaOptCap, LicmMssaNoAccForPromotionCap)); } // We add a fresh GlobalsModRef run at this point. This is particularly // useful as the above will have inlined, DCE'ed, and function-attr // propagated everything. We should at this point have a reasonably minimal // and richly annotated call graph. By computing aliasing and mod/ref // information for all local globals here, the late loop passes and notably // the vectorizer will be able to use them to help recognize vectorizable // memory operations. // // Note that this relies on a bug in the pass manager which preserves // a module analysis into a function pass pipeline (and throughout it) so // long as the first function pass doesn't invalidate the module analysis. // Thus both Float2Int and LoopRotate have to preserve AliasAnalysis for // this to work. Fortunately, it is trivial to preserve AliasAnalysis // (doing nothing preserves it as it is required to be conservatively // correct in the face of IR changes). MPM.add(createGlobalsAAWrapperPass()); MPM.add(createFloat2IntPass()); addExtensionsToPM(EP_VectorizerStart, MPM); // Re-rotate loops in all our loop nests. These may have fallout out of // rotated form due to GVN or other transformations, and the vectorizer relies // on the rotated form. Disable header duplication at -Oz. MPM.add(createLoopRotatePass(SizeLevel == 2 ? 0 : -1)); // Distribute loops to allow partial vectorization. I.e. isolate dependences // into separate loop that would otherwise inhibit vectorization. This is // currently only performed for loops marked with the metadata // llvm.loop.distribute=true or when -enable-loop-distribute is specified. MPM.add(createLoopDistributePass()); MPM.add(createLoopVectorizePass(!LoopsInterleaved, !LoopVectorize)); // Eliminate loads by forwarding stores from the previous iteration to loads // of the current iteration. MPM.add(createLoopLoadEliminationPass()); // FIXME: Because of #pragma vectorize enable, the passes below are always // inserted in the pipeline, even when the vectorizer doesn't run (ex. when // on -O1 and no #pragma is found). Would be good to have these two passes // as function calls, so that we can only pass them when the vectorizer // changed the code. addInstructionCombiningPass(MPM); if (OptLevel > 1 && ExtraVectorizerPasses) { // At higher optimization levels, try to clean up any runtime overlap and // alignment checks inserted by the vectorizer. We want to track correllated // runtime checks for two inner loops in the same outer loop, fold any // common computations, hoist loop-invariant aspects out of any outer loop, // and unswitch the runtime checks if possible. Once hoisted, we may have // dead (or speculatable) control flows or more combining opportunities. MPM.add(createEarlyCSEPass()); MPM.add(createCorrelatedValuePropagationPass()); addInstructionCombiningPass(MPM); MPM.add(createLICMPass(LicmMssaOptCap, LicmMssaNoAccForPromotionCap)); MPM.add(createLoopUnswitchPass(SizeLevel || OptLevel < 3, DivergentTarget)); MPM.add(createCFGSimplificationPass()); addInstructionCombiningPass(MPM); } // Cleanup after loop vectorization, etc. Simplification passes like CVP and // GVN, loop transforms, and others have already run, so it's now better to // convert to more optimized IR using more aggressive simplify CFG options. // The extra sinking transform can create larger basic blocks, so do this // before SLP vectorization. MPM.add(createCFGSimplificationPass(1, true, true, false, true)); if (SLPVectorize) { MPM.add(createSLPVectorizerPass()); // Vectorize parallel scalar chains. if (OptLevel > 1 && ExtraVectorizerPasses) { MPM.add(createEarlyCSEPass()); } } addExtensionsToPM(EP_Peephole, MPM); addInstructionCombiningPass(MPM); if (EnableUnrollAndJam && !DisableUnrollLoops) { // Unroll and Jam. We do this before unroll but need to be in a separate // loop pass manager in order for the outer loop to be processed by // unroll and jam before the inner loop is unrolled. MPM.add(createLoopUnrollAndJamPass(OptLevel)); } // Unroll small loops MPM.add(createLoopUnrollPass(OptLevel, DisableUnrollLoops, ForgetAllSCEVInLoopUnroll)); if (!DisableUnrollLoops) { // LoopUnroll may generate some redundency to cleanup. addInstructionCombiningPass(MPM); // Runtime unrolling will introduce runtime check in loop prologue. If the // unrolled loop is a inner loop, then the prologue will be inside the // outer loop. LICM pass can help to promote the runtime check out if the // checked value is loop invariant. MPM.add(createLICMPass(LicmMssaOptCap, LicmMssaNoAccForPromotionCap)); } MPM.add(createWarnMissedTransformationsPass()); // After vectorization and unrolling, assume intrinsics may tell us more // about pointer alignments. MPM.add(createAlignmentFromAssumptionsPass()); // FIXME: We shouldn't bother with this anymore. MPM.add(createStripDeadPrototypesPass()); // Get rid of dead prototypes // GlobalOpt already deletes dead functions and globals, at -O2 try a // late pass of GlobalDCE. It is capable of deleting dead cycles. if (OptLevel > 1) { MPM.add(createGlobalDCEPass()); // Remove dead fns and globals. MPM.add(createConstantMergePass()); // Merge dup global constants } // See comment in the new PM for justification of scheduling splitting at // this stage (\ref buildModuleSimplificationPipeline). if (EnableHotColdSplit && !(PrepareForLTO || PrepareForThinLTO)) MPM.add(createHotColdSplittingPass()); if (MergeFunctions) MPM.add(createMergeFunctionsPass()); // LoopSink pass sinks instructions hoisted by LICM, which serves as a // canonicalization pass that enables other optimizations. As a result, // LoopSink pass needs to be a very late IR pass to avoid undoing LICM // result too early. MPM.add(createLoopSinkPass()); // Get rid of LCSSA nodes. MPM.add(createInstSimplifyLegacyPass()); // This hoists/decomposes div/rem ops. It should run after other sink/hoist // passes to avoid re-sinking, but before SimplifyCFG because it can allow // flattening of blocks. MPM.add(createDivRemPairsPass()); // LoopSink (and other loop passes since the last simplifyCFG) might have // resulted in single-entry-single-exit or empty blocks. Clean up the CFG. MPM.add(createCFGSimplificationPass()); addExtensionsToPM(EP_OptimizerLast, MPM); if (PrepareForLTO) { MPM.add(createCanonicalizeAliasesPass()); // Rename anon globals to be able to handle them in the summary MPM.add(createNameAnonGlobalPass()); } }
static void registerRMCPass(const PassManagerBuilder &, legacy::PassManagerBase &PM) { if (DoRMC) { PM.add(new RealizeRMCPass()); } }
static void addAddDiscriminatorsPass(const PassManagerBuilder &Builder, legacy::PassManagerBase &PM) { PM.add(createAddDiscriminatorsPass()); }
static void registerCleanupPass(const PassManagerBuilder &, legacy::PassManagerBase &PM) { if (DoCleanupCopies) { PM.add(new CleanupCopiesPass()); } }
static void addThreadSanitizerPass(const PassManagerBuilder &Builder, legacy::PassManagerBase &PM) { PM.add(createThreadSanitizerPass()); }
static void addCoroutineScalarOptimizerPasses(const PassManagerBuilder &Builder, legacy::PassManagerBase &PM) { PM.add(createCoroElidePass()); }