Beispiel #1
0
PythonObject::PythonObject(const Py::Object& object)
    : Qross::Object()
    , d(new Private(object))
{
    #ifdef QROSS_PYTHON_FUNCTION_DEBUG
        qrossdebug( QString("PythonObject::PythonObject() constructor") );
    #endif

    Py::List x( object.dir() );
    for(Py::Sequence::iterator i= x.begin(); i != x.end(); ++i) {
        std::string s = (*i).str();
        if(s == "__init__")
            continue;

        //if(! m_pyobject.hasAttr( (*i).str() )) continue;
        Py::Object o = d->m_pyobject.getAttr(s);

        #ifdef QROSS_PYTHON_FUNCTION_DEBUG
            QString t;
            if(o.isCallable()) t += "isCallable ";
            if(o.isDict()) t += "isDict ";
            if(o.isList()) t += "isList ";
            if(o.isMapping()) t += "isMapping ";
            if(o.isNumeric()) t += "isNumeric ";
            if(o.isSequence()) t += "isSequence ";
            if(o.isTrue()) t += "isTrue ";
            if(o.isInstance()) t += "isInstance ";
            qrossdebug( QString("PythonObject::PythonObject() method '%1' (%2)").arg( (*i).str().as_string().c_str() ).arg(t) );
        #endif

        if(o.isCallable())
            d->m_calls.append( (*i).str().as_string().c_str() );
    }
}
Beispiel #2
0
QMap<QString, CallTip> CallTipsList::extractTips(const QString& context) const
{
    Base::PyGILStateLocker lock;
    QMap<QString, CallTip> tips;
    if (context.isEmpty())
        return tips;

    try {
        Py::Module module("__main__");
        Py::Dict dict = module.getDict();
#if 0
        QStringList items = context.split(QLatin1Char('.'));
        QString modname = items.front();
        items.pop_front();
        if (!dict.hasKey(std::string(modname.toLatin1())))
            return tips; // unknown object

        // get the Python object we need
        Py::Object obj = dict.getItem(std::string(modname.toLatin1()));
        while (!items.isEmpty()) {
            QByteArray name = items.front().toLatin1();
            std::string attr = name.constData();
            items.pop_front();
            if (obj.hasAttr(attr))
                obj = obj.getAttr(attr);
            else
                return tips;
        }
#else
        // Don't use hasattr & getattr because if a property is bound to a method this will be executed twice.
        PyObject* code = Py_CompileString(static_cast<const char*>(context.toLatin1()), "<CallTipsList>", Py_eval_input);
        if (!code) {
            PyErr_Clear();
            return tips;
        }

        PyObject* eval = 0;
        if (PyCode_Check(code)) {
            eval = PyEval_EvalCode(reinterpret_cast<PyCodeObject*>(code), dict.ptr(), dict.ptr());
        }
        Py_DECREF(code);
        if (!eval) {
            PyErr_Clear();
            return tips;
        }
        Py::Object obj(eval, true);
#endif

        // Checks whether the type is a subclass of PyObjectBase because to get the doc string
        // of a member we must get it by its type instead of its instance otherwise we get the
        // wrong string, namely that of the type of the member. 
        // Note: 3rd party libraries may use their own type object classes so that we cannot 
        // reliably use Py::Type. To be on the safe side we should use Py::Object to assign
        // the used type object to.
        //Py::Object type = obj.type();
        Py::Object type(PyObject_Type(obj.ptr()), true);
        Py::Object inst = obj; // the object instance 
        union PyType_Object typeobj = {&Base::PyObjectBase::Type};
        union PyType_Object typedoc = {&App::DocumentObjectPy::Type};
        union PyType_Object basetype = {&PyBaseObject_Type};

        if (PyObject_IsSubclass(type.ptr(), typedoc.o) == 1) {
            // From the template Python object we don't query its type object because there we keep
            // a list of additional methods that we won't see otherwise. But to get the correct doc
            // strings we query the type's dict in the class itself.
            // To see if we have a template Python object we check for the existence of supportedProperties
            if (!type.hasAttr("supportedProperties")) {
                obj = type;
            }
        }
        else if (PyObject_IsSubclass(type.ptr(), typeobj.o) == 1) {
            obj = type;
        }
        else if (PyInstance_Check(obj.ptr())) {
            // instances of old style classes
            PyInstanceObject* inst = reinterpret_cast<PyInstanceObject*>(obj.ptr());
            PyObject* classobj = reinterpret_cast<PyObject*>(inst->in_class);
            obj = Py::Object(classobj);
        }
        else if (PyObject_IsInstance(obj.ptr(), basetype.o) == 1) {
            // New style class which can be a module, type, list, tuple, int, float, ...
            // Make sure it's not a type objec
            union PyType_Object typetype = {&PyType_Type};
            if (PyObject_IsInstance(obj.ptr(), typetype.o) != 1) {
                // this should be now a user-defined Python class
                // http://stackoverflow.com/questions/12233103/in-python-at-runtime-determine-if-an-object-is-a-class-old-and-new-type-instan
                if (Py_TYPE(obj.ptr())->tp_flags & Py_TPFLAGS_HEAPTYPE) {
                    obj = type;
                }
            }
        }

        // If we have an instance of PyObjectBase then determine whether it's valid or not
        if (PyObject_IsInstance(inst.ptr(), typeobj.o) == 1) {
            Base::PyObjectBase* baseobj = static_cast<Base::PyObjectBase*>(inst.ptr());
            const_cast<CallTipsList*>(this)->validObject = baseobj->isValid();
        }
        else {
            // PyObject_IsInstance might set an exception
            PyErr_Clear();
        }

        Py::List list(obj.dir());

        // If we derive from PropertyContainerPy we can search for the properties in the
        // C++ twin class.
        union PyType_Object proptypeobj = {&App::PropertyContainerPy::Type};
        if (PyObject_IsSubclass(type.ptr(), proptypeobj.o) == 1) {
            // These are the attributes of the instance itself which are NOT accessible by
            // its type object
            extractTipsFromProperties(inst, tips);
        }

        // If we derive from App::DocumentPy we have direct access to the objects by their internal
        // names. So, we add these names to the list, too.
        union PyType_Object appdoctypeobj = {&App::DocumentPy::Type};
        if (PyObject_IsSubclass(type.ptr(), appdoctypeobj.o) == 1) {
            App::DocumentPy* docpy = (App::DocumentPy*)(inst.ptr());
            App::Document* document = docpy->getDocumentPtr();
            // Make sure that the C++ object is alive
            if (document) {
                std::vector<App::DocumentObject*> objects = document->getObjects();
                Py::List list;
                for (std::vector<App::DocumentObject*>::iterator it = objects.begin(); it != objects.end(); ++it)
                    list.append(Py::String((*it)->getNameInDocument()));
                extractTipsFromObject(inst, list, tips);
            }
        }

        // If we derive from Gui::DocumentPy we have direct access to the objects by their internal
        // names. So, we add these names to the list, too.
        union PyType_Object guidoctypeobj = {&Gui::DocumentPy::Type};
        if (PyObject_IsSubclass(type.ptr(), guidoctypeobj.o) == 1) {
            Gui::DocumentPy* docpy = (Gui::DocumentPy*)(inst.ptr());
            if (docpy->getDocumentPtr()) {
                App::Document* document = docpy->getDocumentPtr()->getDocument();
                // Make sure that the C++ object is alive
                if (document) {
                    std::vector<App::DocumentObject*> objects = document->getObjects();
                    Py::List list;
                    for (std::vector<App::DocumentObject*>::iterator it = objects.begin(); it != objects.end(); ++it)
                        list.append(Py::String((*it)->getNameInDocument()));
                    extractTipsFromObject(inst, list, tips);
                }
            }
        }

        // These are the attributes from the type object
        extractTipsFromObject(obj, list, tips);
    }
    catch (Py::Exception& e) {
        // Just clear the Python exception
        e.clear();
    }

    return tips;
}