BS3_DECL(void) Bs3SlabInit(PBS3SLABCTL pSlabCtl, size_t cbSlabCtl, uint32_t uFlatSlabPtr, uint32_t cbSlab, uint16_t cbChunk) { uint16_t cBits; BS3_ASSERT(RT_IS_POWER_OF_TWO(cbChunk)); BS3_ASSERT(cbSlab >= cbChunk * 4); BS3_ASSERT(!(uFlatSlabPtr & (cbChunk - 1))); BS3_XPTR_SET_FLAT(BS3SLABCTL, pSlabCtl->pNext, 0); BS3_XPTR_SET_FLAT(BS3SLABCTL, pSlabCtl->pHead, 0); BS3_XPTR_SET_FLAT(BS3SLABCTL, pSlabCtl->pbStart, uFlatSlabPtr); pSlabCtl->cbChunk = cbChunk; pSlabCtl->cChunkShift = ASMBitFirstSetU16(cbChunk) - 1; pSlabCtl->cChunks = cbSlab >> pSlabCtl->cChunkShift; pSlabCtl->cFreeChunks = pSlabCtl->cChunks; cBits = RT_ALIGN_T(pSlabCtl->cChunks, 32, uint16_t); BS3_ASSERT(cbSlabCtl >= RT_OFFSETOF(BS3SLABCTL, bmAllocated[cBits >> 3])); Bs3MemZero(&pSlabCtl->bmAllocated, cBits >> 3); /* Mark excess bitmap padding bits as allocated. */ if (cBits != pSlabCtl->cChunks) { uint16_t iBit; for (iBit = pSlabCtl->cChunks; iBit < cBits; iBit++) ASMBitSet(pSlabCtl->bmAllocated, iBit); } }
/** * @callback_method_impl{FNBS3STRFORMATOUTPUT, * Used by Bs3TestFailedV and Bs3TestSkippedV.} */ BS3_DECL_CALLBACK(size_t) bs3TestFailedStrOutput(char ch, void BS3_FAR *pvUser) { PBS3TESTFAILEDBUF pBuf = (PBS3TESTFAILEDBUF)pvUser; /* * VMMDev first. We postpone newline processing here so we can strip one * trailing newline. */ if (g_fbBs3VMMDevTesting) { if (pBuf->fNewLine && ch != '\0') ASMOutU8(VMMDEV_TESTING_IOPORT_DATA, '\n'); pBuf->fNewLine = ch == '\n'; if (ch != '\n') ASMOutU8(VMMDEV_TESTING_IOPORT_DATA, ch); } /* * Console next. */ if (ch != '\0') { BS3_ASSERT(pBuf->cchBuf < RT_ELEMENTS(pBuf->achBuf)); pBuf->achBuf[pBuf->cchBuf++] = ch; /* Whether to flush the buffer. We do line flushing here to avoid dropping too much info when the formatter crashes on bad input. */ if ( pBuf->cchBuf < RT_ELEMENTS(pBuf->achBuf) && ch != '\n') { pBuf->fNewLine = false; return 1; } pBuf->fNewLine = '\n'; } /* Try fit missing newline into the buffer. */ else if (!pBuf->fNewLine && pBuf->cchBuf < RT_ELEMENTS(pBuf->achBuf)) { pBuf->fNewLine = true; pBuf->achBuf[pBuf->cchBuf++] = '\n'; } BS3_ASSERT(pBuf->cchBuf <= RT_ELEMENTS(pBuf->achBuf)); Bs3PrintStrN(&pBuf->achBuf[0], pBuf->cchBuf); pBuf->cchBuf = 0; /* In case we failed to add trailing new line, print one separately. */ if (!pBuf->fNewLine) Bs3PrintChr('\n'); return ch != '\0'; }
BS3_DECL(uint16_t) Bs3SlabFree(PBS3SLABCTL pSlabCtl, uint32_t uFlatChunkPtr, uint16_t cChunks) { uint16_t cFreed = 0; BS3_ASSERT(cChunks > 0); if (cChunks > 0) { uint16_t iChunk = (uint16_t)((uFlatChunkPtr - BS3_XPTR_GET_FLAT(uint8_t, pSlabCtl->pbStart)) >> pSlabCtl->cChunkShift); BS3_ASSERT(iChunk < pSlabCtl->cChunks); BS3_ASSERT(iChunk + cChunks <= pSlabCtl->cChunks); do { if (ASMBitTestAndClear(&pSlabCtl->bmAllocated, iChunk)) cFreed++; else BS3_ASSERT(0); iChunk++; } while (--cChunks > 0); pSlabCtl->cFreeChunks += cFreed; }
BS3_DECL(int) Bs3PagingInitRootForLM(void) { X86PML4 BS3_FAR *pPml4; BS3_ASSERT(BS3_DATA_NM(g_PhysPagingRootLM) == UINT32_MAX); /* * The default is an identity mapping of the first 4GB repeated for the * whole 48-bit virtual address space. So, we need one level more than PAE. */ pPml4 = (X86PML4 BS3_FAR *)Bs3MemAlloc(BS3MEMKIND_TILED, _4K); if (pPml4) { X86PDPT BS3_FAR *pPdPtr = (X86PDPT BS3_FAR *)Bs3MemAlloc(BS3MEMKIND_TILED, _4K); BS3_ASSERT((uintptr_t)pPdPtr != (uintptr_t)pPml4); if (pPdPtr) { X86PDPAE BS3_FAR *paPgDirs = (X86PDPAE BS3_FAR *)Bs3MemAlloc(BS3MEMKIND_TILED, _4K * 4U); BS3_ASSERT((uintptr_t)paPgDirs != (uintptr_t)pPml4); if (paPgDirs) { unsigned i; BS3_XPTR_AUTO(X86PML4, XPtrPml4); BS3_XPTR_AUTO(X86PDPT, XPtrPdPtr); BS3_XPTR_AUTO(X86PDPAE, XPtrPgDirs); /* Set up the 2048 2MB pages first. */ for (i = 0; i < RT_ELEMENTS(paPgDirs->a) * 4U; i++) paPgDirs->a[i].u = ((uint32_t)i << X86_PD_PAE_SHIFT) | X86_PDE4M_P | X86_PDE4M_RW | X86_PDE4M_US | X86_PDE4M_PS | X86_PDE4M_A | X86_PDE4M_D; /* Set up the page directory pointer table next (4GB replicated, remember). */ BS3_XPTR_SET(X86PDPAE, XPtrPgDirs, paPgDirs); pPdPtr->a[0].u = BS3_XPTR_GET_FLAT(X86PDPAE, XPtrPgDirs) | X86_PDPE_P | X86_PDPE_RW | X86_PDPE_US | X86_PDPE_A; pPdPtr->a[1].u = pPdPtr->a[0].u + _4K; pPdPtr->a[2].u = pPdPtr->a[1].u + _4K; pPdPtr->a[3].u = pPdPtr->a[2].u + _4K; for (i = 4; i < RT_ELEMENTS(pPdPtr->a); i += 4) { pPdPtr->a[i + 0].u = pPdPtr->a[0].u; pPdPtr->a[i + 1].u = pPdPtr->a[1].u; pPdPtr->a[i + 2].u = pPdPtr->a[2].u; pPdPtr->a[i + 3].u = pPdPtr->a[3].u; } /* Set up the page map level 4 (all entries are the same). */ BS3_XPTR_SET(X86PDPT, XPtrPdPtr, pPdPtr); pPml4->a[0].u = BS3_XPTR_GET_FLAT(X86PDPT, XPtrPdPtr) | X86_PML4E_P | X86_PML4E_RW | X86_PML4E_US | X86_PML4E_A; for (i = 1; i < RT_ELEMENTS(pPml4->a); i++) pPml4->a[i].u = pPml4->a[0].u; /* Set the global root pointer and we're done. */ BS3_XPTR_SET(X86PML4, XPtrPml4, pPml4); BS3_DATA_NM(g_PhysPagingRootLM) = BS3_XPTR_GET_FLAT(X86PML4, XPtrPml4); return VINF_SUCCESS; } Bs3MemFree(pPdPtr, _4K); } Bs3MemFree(pPml4, _4K); } return VERR_NO_MEMORY; }