Ejemplo n.º 1
0
/**************************************************************************************************
 * @fn          MRFI_Init
 *
 * @brief       Initialize MRFI.
 *
 * @param       none
 *
 * @return      none
 **************************************************************************************************
 */
void MRFI_Init(void)
{
  /* Configure Output lines */
  MRFI_CONFIG_RESETN_PIN_AS_OUTPUT();
  MRFI_CONFIG_VREG_EN_PIN_AS_OUTPUT();

  /* Configure Input lines */
  MRFI_CONFIG_TX_FRAME_DONE_AS_INPUT();
  MRFI_CONFIG_FIFO_AS_INPUT();
  MRFI_CONFIG_FIFOP_AS_INPUT();

  /* Initialize SPI */
  mrfiSpiInit();

  /* Power up the radio chip */
  Mrfi_TurnOnRadioPower();

  /* Confirm that we are talking to the right hardware */
  MRFI_ASSERT(mrfiSpiReadReg(CHIPID) == MRFI_RADIO_PARTNUM);


  /* Random Number Generator:
   * The seed value for the randon number generator logic
   * is derived from the radio.
   */

  /* Set radio in rx mode, but with symbol search disabled. Used for RSSI
   * measurments or when we don't care about the received frames.
   */
  mrfiSpiWriteReg(FRMCTRL0, FRMCTRL0_RESET_VALUE | RX_MODE_RSSI_ONLY);

  /* Turn on the receiver */
  mrfiSpiCmdStrobe(SRXON);

  /*
   *  Wait for RSSI to be valid. RANDOM command strobe can be used
   *  to generate random number only after this.
   */
  MRFI_RSSI_VALID_WAIT();


  /* Get random byte from the radio */
  mrfiRndSeed = mrfiSpiRandomByte();

 /*
  *  The seed value must not be zero.  If it is, the pseudo random sequence
  *  will be always be zero. There is an extremely small chance this seed could
  *  randomly be zero (more likely some type of hardware problem would cause
  *  this). If it is zero, initialize it to something.
  */
  if(mrfiRndSeed == 0)
  {
      mrfiRndSeed = 0x80;
  }

  /* Random number initialization is done. Turn the radio off */
  Mrfi_TurnOffRadioPower();

  /* Initial radio state is - OFF state */
  mrfiRadioState = MRFI_RADIO_STATE_OFF;

  /**********************************************************************************
   *                            Compute reply delay scalar
   *
   * The IEEE radio has a fixed data rate of 250 Kbps. Data rate inference
   * from radio regsiters is not necessary for this radio.
   *
   * The maximum delay needed depends on the MAX_APP_PAYLOAD parameter. Figure
   * out how many bits that will be when overhead is included. Bits/bits-per-second
   * is seconds to transmit (or receive) the maximum frame. We multiply this number
   * by 1000 to find the time in milliseconds. We then additionally multiply by
   * 10 so we can add 5 and divide by 10 later, thus rounding up to the number of
   * milliseconds. This last won't matter for slow transmissions but for faster ones
   * we want to err on the side of being conservative and making sure the radio is on
   * to receive the reply. The semaphore monitor will shut it down. The delay adds in
   * a fudge factor that includes processing time on peer plus lags in Rx and processing
   * time on receiver's side.
   *
   * **********************************************************************************
   */
#define   PLATFORM_FACTOR_CONSTANT    2
#define   PHY_PREAMBLE_SYNC_BYTES     8

  {
    uint32_t bits, dataRate = 250000;

    bits = ((uint32_t)((PHY_PREAMBLE_SYNC_BYTES + MRFI_MAX_FRAME_SIZE)*8))*10000;

    /* processing on the peer + the Tx/Rx time plus more */
    sReplyDelayScalar = PLATFORM_FACTOR_CONSTANT + (((bits/dataRate)+5)/10);
  }

  /* Random delay: This prevents devices on the same power source from repeated
   *  transmit collisions on power up.
   */
  Mrfi_RandomBackoffDelay();

  BSP_ENABLE_INTERRUPTS();
}
Ejemplo n.º 2
0
/**************************************************************************************************
 * @fn          MRFI_Init
 *
 * @brief       Initialize MRFI.
 *
 * @param       none
 *
 * @return      none
 **************************************************************************************************
 */
void MRFI_Init(void)
{
  /* ------------------------------------------------------------------
   *    Run-time integrity checks
   *   ---------------------------
   */
  memset(&mrfiIncomingPacket, 0x0, sizeof(mrfiIncomingPacket));

  /* verify the correct radio is installed */
  MRFI_ASSERT( CHIPID == MRFI_RADIO_PARTNUM );      /* wrong radio */
  MRFI_ASSERT( CHVER  >= MRFI_RADIO_MIN_VERSION );  /* obsolete radio version */

  /* ------------------------------------------------------------------
   *    Configure IO ports
   *   ---------------------------
   */

#if defined(MRFI_PA_LNA_ENABLED) && defined(BSP_BOARD_SRF04EB)
  MRFI_BOARD_PA_LNA_CONFIG_PORTS();
  MRFI_BOARD_PA_LNA_HGM();
#endif


  /* ------------------------------------------------------------------
   *    Configure clock to use XOSC
   *   -----------------------------
   */
  SLEEPCMD &= ~OSC_PD;                       /* turn on 16MHz RC and 32MHz XOSC */
  while (!(SLEEPSTA & XOSC_STB));            /* wait for 32MHz XOSC stable */
  asm("NOP");                             /* chip bug workaround */
  {
    uint16_t i;

    /* Require 63us delay for all revs */
    for (i=0; i<504; i++)
    {
      asm("NOP");
    }
  }
  CLKCONCMD = (0x00 | OSC_32KHZ);            /* 32MHz XOSC */
  while (CLKCONSTA != (0x00 | OSC_32KHZ));
  SLEEPCMD |= OSC_PD;                        /* turn off 16MHz RC */


  /* Configure radio registers that should be different from reset values. */
  Mrfi_RadioRegConfig();

  /* ------------------------------------------------------------------
   *    Variable Initialization
   *   -------------------------
   */

#ifdef MRFI_ASSERTS_ARE_ON
  PAN_ID0 = 0xFF;
  PAN_ID1 = 0xFF;
#endif



  /* ------------------------------------------------------------------
   *    Initialize Random Seed Value
   *   -------------------------------
   */


  /*
   *  Set radio for infinite reception.  Once radio reaches this state,
   *  it will stay in receive mode regardless RF activity.
   */
  FRMCTRL0 = (FRMCTRL0 & ~RX_MODE_MASK) | RX_MODE_INFINITE_RX;

  /* turn on the receiver */
  RFST = ISRXON;

  /* Wait for RSSI to be valid. Once valid, radio is stable and random bits
   * can be read.
   */
  MRFI_RSSI_VALID_WAIT();

  /* put 16 random bits into the seed value */
  {
    uint16_t rndSeed;
    uint8_t  i;

    rndSeed = 0;

    for(i=0; i<16; i++)
    {
      /* read random bit to populate the random seed */
      rndSeed = (rndSeed << 1) | (RFRND & 0x01);
    }

    /*
     *  The seed value must not be zero.  If it is, the pseudo random sequence will be always be zero.
     *  There is an extremely small chance this seed could randomly be zero (more likely some type of
     *  hardware problem would cause this).  To solve this, a single bit is forced to be one.  This
     *  slightly reduces the randomness but guarantees a good seed value.
     */
    rndSeed |= 0x0080;

    /*
     *  Two writes to RNDL will set the random seed.  A write to RNDL copies current contents
     *  of RNDL to RNDH before writing new the value to RNDL.
     */
    RNDL = rndSeed & 0xFF;
    RNDL = rndSeed >> 8;
  }

  /* turn off the receiver, flush RX FIFO just in case something got in there */
  RFST = ISRFOFF;

  /* flush the rx buffer */
  MRFI_RADIO_FLUSH_RX_BUFFER();

  /* take receiver out of infinite reception mode; set back to normal operation */
  FRMCTRL0 = (FRMCTRL0 & ~RX_MODE_MASK) | RX_MODE_NORMAL;


  /* Initial radio state is OFF state */
  mrfiRadioState = MRFI_RADIO_STATE_OFF;

  /* ------------------------------------------------------------------
   *    Configure Radio Registers
   *   ---------------------------
   */

  /* disable address filtering */
  FRMFILT0 &= ~FRAME_FILTER_EN;

  /* reject beacon/ack/cmd frames and accept only data frames,
   * when filtering is enabled.
   */
  FRMFILT1 &= ~(ACCEPT_BEACON | ACCEPT_ACK | ACCEPT_CMD);

  /* don't enable rx after tx is done. */
  FRMCTRL1 &= ~RX_ENABLE_ON_TX;

  /* set FIFOP threshold to maximum */
  FIFOPCTRL = 127;

  /* set default channel */
  MRFI_SetLogicalChannel( 0 );

  /* set default output power level */
  MRFI_SetRFPwr(MRFI_NUM_POWER_SETTINGS - 1);

  /* enable general RF interrupts */
  IEN2 |= RFIE;


  /* ------------------------------------------------------------------
   *    Final Initialization
   *   -----------------------
   */


  /**********************************************************************************
   *                            Compute reply delay scalar
   *
   * The IEEE radio has a fixed data rate of 250 Kbps. Data rate inference
   * from radio regsiters is not necessary for this radio.
   *
   * The maximum delay needed depends on the MAX_APP_PAYLOAD parameter. Figure
   * out how many bits that will be when overhead is included. Bits/bits-per-second
   * is seconds to transmit (or receive) the maximum frame. We multiply this number
   * by 1000 to find the time in milliseconds. We then additionally multiply by
   * 10 so we can add 5 and divide by 10 later, thus rounding up to the number of
   * milliseconds. This last won't matter for slow transmissions but for faster ones
   * we want to err on the side of being conservative and making sure the radio is on
   * to receive the reply. The semaphore monitor will shut it down. The delay adds in
   * a platform fudge factor that includes processing time on peer plus lags in Rx and
   * processing time on receiver's side. Also includes round trip delays from CCA
   * retries. This portion is included in PLATFORM_FACTOR_CONSTANT defined in mrfi.h.
   *
   * **********************************************************************************
   */

#define   PHY_PREAMBLE_SYNC_BYTES    8

  {
    uint32_t bits, dataRate = 250000;

    bits = ((uint32_t)((PHY_PREAMBLE_SYNC_BYTES + MRFI_MAX_FRAME_SIZE)*8))*10000;

    /* processing on the peer + the Tx/Rx time plus more */
    sReplyDelayScalar = PLATFORM_FACTOR_CONSTANT + (((bits/dataRate)+5)/10);
  }

  /*
   *  Random delay - This prevents devices on the same power source from repeated
   *  transmit collisions on power up.
   */
  Mrfi_RandomBackoffDelay();

  /* enable global interrupts */
  BSP_ENABLE_INTERRUPTS();
}
Ejemplo n.º 3
0
/**************************************************************************************************
 * @fn          MRFI_Init
 *
 * @brief       Initialize MRFI.
 *
 * @param       none
 *
 * @return      none
 **************************************************************************************************
 */
void MRFI_Init(void)
{
  /* ------------------------------------------------------------------
   *    Run-time integrity checks
   *   ---------------------------
   */

  /* verify the correct radio is installed */
  MRFI_ASSERT( CHIPID == MRFI_RADIO_PARTNUM );      /* wrong radio */
  MRFI_ASSERT( CHVER  >= MRFI_RADIO_MIN_VERSION );  /* obsolete radio version */

  /* ------------------------------------------------------------------
   *    Configure IO ports
   *   ---------------------------
   */

#if defined(MRFI_PA_LNA_ENABLED) && defined(BSP_BOARD_SRF04EB)
  MRFI_BOARD_PA_LNA_CONFIG_PORTS();
  MRFI_BOARD_PA_LNA_HGM();
#endif


  /* ------------------------------------------------------------------
   *    Configure clock to use XOSC
   *   -----------------------------
   */
  SLEEP &= ~OSC_PD;                       /* turn on 16MHz RC and 32MHz XOSC */
  while (!(SLEEP & XOSC_STB));            /* wait for 32MHz XOSC stable */
  asm("NOP");                             /* chip bug workaround */
  {
    uint16_t i;

    /* Require 63us delay for all revs */
    for (i=0; i<504; i++)
    {
      asm("NOP");
    }
  }
  CLKCON = (0x00 | OSC_32KHZ);            /* 32MHz XOSC */
  while (CLKCON != (0x00 | OSC_32KHZ));
  SLEEP |= OSC_PD;                        /* turn off 16MHz RC */


  /* ------------------------------------------------------------------
   *    Variable Initialization
   *   -------------------------
   */

#ifdef MRFI_ASSERTS_ARE_ON
  PANIDL = 0xFF;
  PANIDH = 0xFF;
#endif


  /* ------------------------------------------------------------------
   *    Initialize Random Seed Value
   *   -------------------------------
   */

  /* turn on radio power, pend for the power-up delay */
  RFPWR &= ~RREG_RADIO_PD;
  while((RFPWR & ADI_RADIO_PD));

  /*
   *  Set radio for infinite reception.  Once radio reaches this state,
   *  it will stay in receive mode regardless RF activity.
   */
  MDMCTRL1L = MDMCTRL1L_RESET_VALUE | RX_MODE_INFINITE_RECEPTION;

  /* turn on the receiver */
  RFST = ISRXON;

  /*
   *  Wait for radio to reach infinite reception state.  Once it does,
   *  The least significant bit of ADTSTH should be pretty random.
   */
  while (FSMSTATE != FSM_FFCTRL_STATE_RX_INF)

  /* put 16 random bits into the seed value */
  {
    uint16_t rndSeed;
    uint8_t  i;

    rndSeed = 0;

    for(i=0; i<16; i++)
    {
      /* use most random bit of analog to digital receive conversion to populate the random seed */
      rndSeed = (rndSeed << 1) | (ADCTSTH & 0x01);
    }

    /*
     *  The seed value must not be zero.  If it is, the pseudo random sequence will be always be zero.
     *  There is an extremely small chance this seed could randomly be zero (more likely some type of
     *  hardware problem would cause this).  To solve this, a single bit is forced to be one.  This
     *  slightly reduces the randomness but guarantees a good seed value.
     */
    rndSeed |= 0x0080;

    /*
     *  Two writes to RNDL will set the random seed.  A write to RNDL copies current contents
     *  of RNDL to RNDH before writing new the value to RNDL.
     */
    RNDL = rndSeed & 0xFF;
    RNDL = rndSeed >> 8;
  }

  /* turn off the receiver, flush RX FIFO just in case something got in there */
  RFST = ISRFOFF;

  /* flush the rx buffer */
  MRFI_RADIO_FLUSH_RX_BUFFER();

  /* take receiver out of infinite reception mode; set back to normal operation */
  MDMCTRL1L = MDMCTRL1L_RESET_VALUE | RX_MODE_NORMAL_OPERATION;

  /* turn radio back off */
  RFPWR |= RREG_RADIO_PD;

  /* Initial radio state is OFF state */
  mrfiRadioState = MRFI_RADIO_STATE_OFF;
  /* ------------------------------------------------------------------
   *    Configure Radio Registers
   *   ---------------------------
   */

  /* tuning adjustments for optimal radio performance; details available in datasheet */
  RXCTRL0H = 0x32;
  RXCTRL0L = 0xF5;

  /* disable address filtering */
  MDMCTRL0H &= ~ADDR_DECODE;

  /* set FIFOP threshold to maximum */
  IOCFG0 = 127;

  /* set default channel */
  MRFI_SetLogicalChannel( 0 );

  /* enable general RF interrupts */
  IEN2 |= RFIE;


  /* ------------------------------------------------------------------
   *    Final Initialization
   *   -----------------------
   */


  /**********************************************************************************
   *                            Compute reply delay scalar
   *
   * The IEEE radio has a fixed data rate of 250 Kbps. Data rate inference
   * from radio regsiters is not necessary for this radio.
   *
   * The maximum delay needed depends on the MAX_APP_PAYLOAD parameter. Figure
   * out how many bits that will be when overhead is included. Bits/bits-per-second
   * is seconds to transmit (or receive) the maximum frame. We multiply this number
   * by 1000 to find the time in milliseconds. We then additionally multiply by
   * 10 so we can add 5 and divide by 10 later, thus rounding up to the number of
   * milliseconds. This last won't matter for slow transmissions but for faster ones
   * we want to err on the side of being conservative and making sure the radio is on
   * to receive the reply. The semaphore monitor will shut it down. The delay adds in
   * a fudge factor that includes processing time on peer plus lags in Rx and processing
   * time on receiver's side.
   *
   * **********************************************************************************
   */
#define   PLATFORM_FACTOR_CONSTANT    2
#define   PHY_PREAMBLE_SYNC_BYTES     8

  {
    uint32_t bits, dataRate = 250000;

    bits = ((uint32_t)((PHY_PREAMBLE_SYNC_BYTES + MRFI_MAX_FRAME_SIZE)*8))*10000;

    /* processing on the peer + the Tx/Rx time plus more */
    sReplyDelayScalar = PLATFORM_FACTOR_CONSTANT + (((bits/dataRate)+5)/10);
  }

  /*
   *  Random delay - This prevents devices on the same power source from repeated
   *  transmit collisions on power up.
   */
  Mrfi_RandomBackoffDelay();

  /* enable global interrupts */
  BSP_ENABLE_INTERRUPTS();
}
Ejemplo n.º 4
0
// *************************************************************************************************
// @fn          wbsl_config
// @brief       Configures the Radio Settings for WBSL
// @param       none
// @return      none
// *************************************************************************************************
void wbsl_config(void)
{

    if (!sInitWbslDone)
	{
	   /* ------------------------------------------------------------------
		*    Initialization
		*   -----------------
		*/

		/* initialize GPIO pins */
	    WBSL_CONFIG_GDO0_PIN_AS_INPUT();

		/* initialize SPI */
		wbsl_SpiInit();

		/* ------------------------------------------------------------------
		 *    Radio power-up reset
		 * ----------------------
		 */
	    WBSL_SPI_ASSERT(WBSL_SPI_CSN_IS_HIGH());

		/* pulse CSn low then high */
		WBSL_SPI_DRIVE_CSN_LOW();
		wbsl_DelayUsec(10);
		WBSL_SPI_DRIVE_CSN_HIGH();

		/* hold CSn high for at least 40 microseconds */
		wbsl_DelayUsec(40);

	    /* pull CSn low and wait for SO to go low */
		WBSL_SPI_DRIVE_CSN_LOW();
		while (WBSL_SPI_SO_IS_HIGH());

		/* return CSn pin to its default high level */
		WBSL_SPI_DRIVE_CSN_HIGH();

	    /* ------------------------------------------------------------------
		 *    Run-time integrity checks
		 * ---------------------------
		 */

	    /* verify that SPI is working, PKTLEN is an arbitrary read/write register used for testing */
		#ifdef WBSL_ASSERTS_ARE_ON
		#define TEST_VALUE 0xA5
		    wbsl_SpiWriteReg( PKTLEN, TEST_VALUE );
		    WBSL_SPI_ASSERT( mrfiSpiReadReg( PKTLEN ) == TEST_VALUE ); /* SPI is not responding */
		#endif

		  /* verify the correct radio is installed */
	    WBSL_SPI_ASSERT( wbsl_SpiReadReg( PARTNUM ) == WBSL_RADIO_PARTNUM );      /* incorrect radio specified */
		WBSL_SPI_ASSERT( wbsl_SpiReadReg( VERSION ) >= WBSL_RADIO_MIN_VERSION );  /* obsolete radio specified  */

		  /* ------------------------------------------------------------------
		   *    Configure radio
		   *   -----------------
		   */

		  /* initialize radio registers */
		{
		    u8 i;

		  	for (i=0; i<(sizeof(wbslRadioCfg)/sizeof(wbslRadioCfg[0])); i++)
		  	{
		       wbsl_SpiWriteReg(wbslRadioCfg[i][0], wbslRadioCfg[i][1]);
		  	}
		}


		  /* ------------------------------------------------------------------
		   *    Configure interrupts
		   *   ----------------------
		   */

		  /*
		   *  Configure and enable the SYNC signal interrupt.
		   *
		   *  This interrupt is used to indicate receive.  The SYNC signal goes
		   *  high when a receive OR a transmit begins.  It goes high once the
		   *  sync word is received or transmitted and then goes low again once
		   *  the packet completes.
		   */

		 WBSL_CONFIG_GDO0_AS_SYNC_SIGNAL();
		 WBSL_CONFIG_SYNC_PIN_FALLING_EDGE_INT();
		 WBSL_CLEAR_SYNC_PIN_INT_FLAG();

		  /* enable global interrupts */
		  BSP_ENABLE_INTERRUPTS();
	}

    sInitWbslDone=1;

}
Ejemplo n.º 5
0
/**************************************************************************************************
 * @fn          MRFI_Init
 *
 * @brief       Initialize MRFI.
 *
 * @param       none
 *
 * @return      none
 **************************************************************************************************
 */
void MRFI_Init(void)
{
  /* ------------------------------------------------------------------
   *    Initialization
   *   -----------------
   */

  /* initialize radio state variables */
  mrfiRxFilterEnabled = 0;
  mrfiRadioIsSleeping = 0;
  mrfiTxActive = 0;
  mrfiRxActive = 0;
  
  /* initialize GPIO pins */
  MRFI_CONFIG_GDO0_PIN_AS_INPUT();
  MRFI_CONFIG_GDO2_PIN_AS_INPUT();
  
  /* initialize SPI */
  mrfiSpiInit();
  
  /* ------------------------------------------------------------------
   *    Radio power-up reset
   *   ----------------------
   */
  MRFI_ASSERT(MRFI_SPI_CSN_IS_HIGH());
  
  /* pulse CSn low then high */
  MRFI_SPI_DRIVE_CSN_LOW();
  MRFI_DELAY(10);
  MRFI_SPI_DRIVE_CSN_HIGH();

  /* hold CSn high for at least 40 microseconds */
  MRFI_DELAY(100);
  
  /* pull CSn low and wait for SO to go low */
  MRFI_SPI_DRIVE_CSN_LOW();
  while (MRFI_SPI_SO_IS_HIGH());

  /* directly send strobe command - cannot use function as it affects CSn pin */
  MRFI_SPI_WRITE_BYTE(MRFI_CC2500_SPI_STROBE_SRES);
  MRFI_SPI_WAIT_DONE();

  /* wait for SO to go low again, reset is complete at that point */
  while (MRFI_SPI_SO_IS_HIGH());

  /* return CSn pin to its default high level */
  MRFI_SPI_DRIVE_CSN_HIGH();

  /* ------------------------------------------------------------------
   *    Run-time integrity checks
   *   ---------------------------
   */
  
  /* verify that SPI is working */
#ifdef MRFI_ASSERTS_ARE_ON
#define TEST_VALUE 0xA5
  mrfiSpiWriteReg( MRFI_CC2500_SPI_REG_PKTLEN, TEST_VALUE );
  MRFI_ASSERT( mrfiSpiReadReg( MRFI_CC2500_SPI_REG_PKTLEN ) == TEST_VALUE ); /* SPI is not responding */
#endif

  /* verify the correct radio is installed */
  MRFI_ASSERT( mrfiSpiReadReg( MRFI_CC2500_SPI_REG_PARTNUM ) == MRFI_RADIO_PARTNUM);      /* incorrect radio specified */
  MRFI_ASSERT( mrfiSpiReadReg( MRFI_CC2500_SPI_REG_VERSION ) >= MRFI_RADIO_MIN_VERSION);  /* obsolete radio specified  */
  
  /* ------------------------------------------------------------------
   *    Configure radio
   *   -----------------
   */

  /* initialize radio registers */
  {
    uint8_t i;
    
    for (i=0; i<(sizeof(mrfiRadioCfg)/sizeof(mrfiRadioCfg[0])); i++)
    {
      mrfiSpiWriteReg(mrfiRadioCfg[i][0], mrfiRadioCfg[i][1]);
    }
  }

  /* send strobe to turn on receiver */
  mrfiSpiCmdStrobe(MRFI_CC2500_SPI_STROBE_SRX);
  
  /* ------------------------------------------------------------------
   *    Configure interrupts
   *   ----------------------
   */

  /*
   *  Configure and enable the SYNC signal interrupt.
   *
   *  This interrupt is used to indicate receive.  The SYNC signal goes
   *  high when a receive OR a transmit begins.  It goes high once the
   *  sync word is received or transmitted and then goes low again once
   *  the packet completes.
   */
  MRFI_CONFIG_SYNC_PIN_FALLING_EDGE_INT();
  MRFI_CLEAR_SYNC_PIN_INT_FLAG();
  MRFI_ENABLE_SYNC_PIN_INT();
  
  /* configure PA_PD signal interrupt */
  MRFI_CONFIG_PAPD_FALLING_EDGE_INT();
  
  /* enable global interrupts */
  BSP_ENABLE_INTERRUPTS();
}