Ejemplo n.º 1
0
int main(int argc, char *argv[])
{
  void *cvode_mem;
  UserData data;
  realtype t, tout;
  N_Vector y;
  int iout, flag;

  realtype pbar[NS];
  int is; 
  N_Vector *yS;
  booleantype sensi, err_con;
  int sensi_meth;

  cvode_mem = NULL;
  data      = NULL;
  y         =  NULL;
  yS        = NULL;

  /* Process arguments */
  ProcessArgs(argc, argv, &sensi, &sensi_meth, &err_con);

  /* User data structure */
  data = (UserData) malloc(sizeof *data);
  if (check_flag((void *)data, "malloc", 2)) return(1);
  data->p[0] = RCONST(0.04);
  data->p[1] = RCONST(1.0e4);
  data->p[2] = RCONST(3.0e7);

  /* Initial conditions */
  y = N_VNew_Serial(NEQ);
  if (check_flag((void *)y, "N_VNew_Serial", 0)) return(1);

  Ith(y,1) = Y1;
  Ith(y,2) = Y2;
  Ith(y,3) = Y3;

  /* Create CVODES object */
  cvode_mem = CVodeCreate(CV_BDF, CV_NEWTON);
  if (check_flag((void *)cvode_mem, "CVodeCreate", 0)) return(1);

  /* Allocate space for CVODES */
  flag = CVodeMalloc(cvode_mem, f, T0, y, CV_WF, 0.0, NULL);
  if (check_flag(&flag, "CVodeMalloc", 1)) return(1);

  /* Use private function to compute error weights */
  flag = CVodeSetEwtFn(cvode_mem, ewt, NULL);
  if (check_flag(&flag, "CVodeSetEwtFn", 1)) return(1);

  /* Attach user data */
  flag = CVodeSetFdata(cvode_mem, data);
  if (check_flag(&flag, "CVodeSetFdata", 1)) return(1);

  /* Attach linear solver */
  flag = CVDense(cvode_mem, NEQ);
  if (check_flag(&flag, "CVDense", 1)) return(1);

  flag = CVDenseSetJacFn(cvode_mem, Jac, data);
  if (check_flag(&flag, "CVDenseSetJacFn", 1)) return(1);

  printf("\n3-species chemical kinetics problem\n");

  /* Sensitivity-related settings */
  if (sensi) {

    pbar[0] = data->p[0];
    pbar[1] = data->p[1];
    pbar[2] = data->p[2];

    yS = N_VNewVectorArray_Serial(NS, NEQ);
    if (check_flag((void *)yS, "N_VNewVectorArray_Serial", 0)) return(1);
    for (is=0;is<NS;is++) N_VConst(ZERO, yS[is]);

    flag = CVodeSensMalloc(cvode_mem, NS, sensi_meth, yS);
    if(check_flag(&flag, "CVodeSensMalloc", 1)) return(1);

    flag = CVodeSetSensRhs1Fn(cvode_mem, fS);
    if (check_flag(&flag, "CVodeSetSensRhs1Fn", 1)) return(1);
    flag = CVodeSetSensErrCon(cvode_mem, err_con);
    if (check_flag(&flag, "CVodeSetSensFdata", 1)) return(1);
    flag = CVodeSetSensFdata(cvode_mem, data);
    if (check_flag(&flag, "CVodeSetSensFdata", 1)) return(1);
    flag = CVodeSetSensParams(cvode_mem, NULL, pbar, NULL);
    if (check_flag(&flag, "CVodeSetSensParams", 1)) return(1);

    printf("Sensitivity: YES ");
    if(sensi_meth == CV_SIMULTANEOUS)   
      printf("( SIMULTANEOUS +");
    else 
      if(sensi_meth == CV_STAGGERED) printf("( STAGGERED +");
      else                           printf("( STAGGERED1 +");   
    if(err_con) printf(" FULL ERROR CONTROL )");
    else        printf(" PARTIAL ERROR CONTROL )");

  } else {

    printf("Sensitivity: NO ");

  }
  
  /* In loop over output points, call CVode, print results, test for error */
  
  printf("\n\n");
  printf("===================================================");
  printf("============================\n");
  printf("     T     Q       H      NST                    y1");
  printf("           y2           y3    \n");
  printf("===================================================");
  printf("============================\n");

  for (iout=1, tout=T1; iout <= NOUT; iout++, tout *= TMULT) {

    flag = CVode(cvode_mem, tout, y, &t, CV_NORMAL);
    if (check_flag(&flag, "CVode", 1)) break;

    PrintOutput(cvode_mem, t, y);

    if (sensi) {
      flag = CVodeGetSens(cvode_mem, t, yS);
      if (check_flag(&flag, "CVodeGetSens", 1)) break;
      PrintOutputS(yS);
    } 
    printf("-------------------------------------------------");
    printf("------------------------------\n");

  }

  /* Print final statistics */
  PrintFinalStats(cvode_mem, sensi);

  /* Free memory */

  N_VDestroy_Serial(y);                    /* Free y vector */
  if (sensi) {
    N_VDestroyVectorArray_Serial(yS, NS);  /* Free yS vector */
  }
  free(data);                              /* Free user data */
  CVodeFree(cvode_mem);                    /* Free CVODES memory */

  return(0);
}
Ejemplo n.º 2
0
int main()
{
  realtype t, tout;
  N_Vector y;
  void *cvode_mem;
  int flag, flagr, iout;
  int rootsfound[2];

  y = NULL;
  cvode_mem = NULL;

  /* Create serial vector of length NEQ for I.C. */
  y = N_VNew_Serial(NEQ);
  if (check_flag((void *)y, "N_VNew_Serial", 0)) return(1);

  /* Initialize y */
  Ith(y,1) = Y1;
  Ith(y,2) = Y2;
  Ith(y,3) = Y3;

  /* 
     Call CVodeCreate to create the solver memory:
     
     CV_BDF     specifies the Backward Differentiation Formula
     CV_NEWTON  specifies a Newton iteration

     A pointer to the integrator problem memory is returned and stored in cvode_mem.
  */

  cvode_mem = CVodeCreate(CV_BDF, CV_NEWTON);
  if (check_flag((void *)cvode_mem, "CVodeCreate", 0)) return(1);
  
  /* 
     Call CVodeMalloc to initialize the integrator memory: 
     
     cvode_mem is the pointer to the integrator memory returned by CVodeCreate
     f         is the user's right hand side function in y'=f(t,y)
     T0        is the initial time
     y         is the initial dependent variable vector
     CV_WF     specifies scalar relative and vector absolute tolerances
     reltol    not needed (pass 0.0)
     abstol    not needed (pass NULL)
  */

  flag = CVodeMalloc(cvode_mem, f, T0, y, CV_WF, 0.0, NULL);
  if (check_flag(&flag, "CVodeMalloc", 1)) return(1);

  /* Use private function to compute error weights */
  flag = CVodeSetEwtFn(cvode_mem, ewt, NULL);
  if (check_flag(&flag, "CVodeSetEwtFn", 1)) return(1);

  /* Call CVodeRootInit to specify the root function g with 2 components */
  flag = CVodeRootInit(cvode_mem, 2, g, NULL);
  if (check_flag(&flag, "CVodeRootInit", 1)) return(1);

  /* Call CVDense to specify the CVDENSE dense linear solver */
  flag = CVDense(cvode_mem, NEQ);
  if (check_flag(&flag, "CVDense", 1)) return(1);

  /* Set the Jacobian routine to Jac (user-supplied) */
  flag = CVDenseSetJacFn(cvode_mem, Jac, NULL);
  if (check_flag(&flag, "CVDenseSetJacFn", 1)) return(1);

  /* In loop, call CVode, print results, and test for error.
     Break out of loop when NOUT preset output times have been reached.  */
  printf(" \n3-species kinetics problem\n\n");

  iout = 0;  tout = T1;
  while(1) {
    flag = CVode(cvode_mem, tout, y, &t, CV_NORMAL);
    PrintOutput(t, Ith(y,1), Ith(y,2), Ith(y,3));

    if (flag == CV_ROOT_RETURN) {
      flagr = CVodeGetRootInfo(cvode_mem, rootsfound);
      check_flag(&flagr, "CVodeGetRootInfo", 1);
      PrintRootInfo(rootsfound[0],rootsfound[1]);
    }

    if (check_flag(&flag, "CVode", 1)) break;
    if (flag == CV_SUCCESS) {
      iout++;
      tout *= TMULT;
    }

    if (iout == NOUT) break;
  }

  /* Print some final statistics */
  PrintFinalStats(cvode_mem);

  /* Free y vector */
  N_VDestroy_Serial(y);

  /* Free integrator memory */
  CVodeFree(&cvode_mem);

  return(0);
}