Ejemplo n.º 1
0
void CardReader::openFile(char* name, bool read, bool replace_current/*=true*/) {
  if (!cardOK) return;
  if (file.isOpen()) { //replacing current file by new file, or subfile call
    if (!replace_current) {
     if (file_subcall_ctr > SD_PROCEDURE_DEPTH - 1) {
       SERIAL_ERROR_START;
       SERIAL_ERRORPGM("trying to call sub-gcode files with too many levels. MAX level is:");
       SERIAL_ERRORLN(SD_PROCEDURE_DEPTH);
       kill();
       return;
     }

     SERIAL_ECHO_START;
     SERIAL_ECHOPGM("SUBROUTINE CALL target:\"");
     SERIAL_ECHO(name);
     SERIAL_ECHOPGM("\" parent:\"");

     //store current filename and position
     getAbsFilename(filenames[file_subcall_ctr]);

     SERIAL_ECHO(filenames[file_subcall_ctr]);
     SERIAL_ECHOPGM("\" pos");
     SERIAL_ECHOLN(sdpos);
     filespos[file_subcall_ctr] = sdpos;
     file_subcall_ctr++;
    }
    else {
     SERIAL_ECHO_START;
     SERIAL_ECHOPGM("Now doing file: ");
     SERIAL_ECHOLN(name);
    }
    file.close();
  }
  else { //opening fresh file
    file_subcall_ctr = 0; //resetting procedure depth in case user cancels print while in procedure
    SERIAL_ECHO_START;
    SERIAL_ECHOPGM("Now fresh file: ");
    SERIAL_ECHOLN(name);
  }
  sdprinting = false;

  SdFile myDir;
  curDir = &root;
  char *fname = name;

  char *dirname_start, *dirname_end;
  if (name[0] == '/') {
    dirname_start = &name[1];
    while(dirname_start > 0) {
      dirname_end = strchr(dirname_start, '/');
      //SERIAL_ECHO("start:");SERIAL_ECHOLN((int)(dirname_start - name));
      //SERIAL_ECHO("end  :");SERIAL_ECHOLN((int)(dirname_end - name));
      if (dirname_end > 0 && dirname_end > dirname_start) {
        char subdirname[FILENAME_LENGTH];
        strncpy(subdirname, dirname_start, dirname_end - dirname_start);
        subdirname[dirname_end - dirname_start] = 0;
        SERIAL_ECHOLN(subdirname);
        if (!myDir.open(curDir, subdirname, O_READ)) {
          SERIAL_PROTOCOLPGM(MSG_SD_OPEN_FILE_FAIL);
          SERIAL_PROTOCOL(subdirname);
          SERIAL_PROTOCOLCHAR('.');
          return;
        }
        else {
          //SERIAL_ECHOLN("dive ok");
        }

        curDir = &myDir;
        dirname_start = dirname_end + 1;
      }
      else { // the remainder after all /fsa/fdsa/ is the filename
        fname = dirname_start;
        //SERIAL_ECHOLN("remainder");
        //SERIAL_ECHOLN(fname);
        break;
      }
    }
  }
  else { //relative path
    curDir = &workDir;
  }

  if (read) {
    if (file.open(curDir, fname, O_READ)) {
      filesize = file.fileSize();
      SERIAL_PROTOCOLPGM(MSG_SD_FILE_OPENED);
      SERIAL_PROTOCOL(fname);
      SERIAL_PROTOCOLPGM(MSG_SD_SIZE);
      SERIAL_PROTOCOLLN(filesize);
      sdpos = 0;

      SERIAL_PROTOCOLLNPGM(MSG_SD_FILE_SELECTED);
      getfilename(0, fname);
      lcd_setstatus(longFilename[0] ? longFilename : fname);
    }
    else {
      SERIAL_PROTOCOLPGM(MSG_SD_OPEN_FILE_FAIL);
      SERIAL_PROTOCOL(fname);
      SERIAL_PROTOCOLCHAR('.');
    }
  }
  else { //write
    if (!file.open(curDir, fname, O_CREAT | O_APPEND | O_WRITE | O_TRUNC)) {
      SERIAL_PROTOCOLPGM(MSG_SD_OPEN_FILE_FAIL);
      SERIAL_PROTOCOL(fname);
      SERIAL_PROTOCOLCHAR('.');
    }
    else {
      saving = true;
      SERIAL_PROTOCOLPGM(MSG_SD_WRITE_TO_FILE);
      SERIAL_PROTOCOLLN(name);
      lcd_setstatus(fname);
    }
  }
}
Ejemplo n.º 2
0
void plan_buffer_line(const float &x, const float &y, const float &z, const float &j, const float &e, float feed_rate, const uint8_t &extruder)
#endif  //ENABLE_AUTO_BED_LEVELING
{
  // Calculate the buffer head after we push this byte
  int next_buffer_head = next_block_index(block_buffer_head);
  // If the buffer is full: good! That means we are well ahead of the robot. 
  // Rest here until there is room in the buffer.
  while(block_buffer_tail == next_buffer_head)
  {
    manage_heater(); 
    manage_inactivity(); 
    lcd_update();
  }

#ifdef ENABLE_AUTO_BED_LEVELING
  apply_rotation_xyz(plan_bed_level_matrix, x, y, z);
#endif // ENABLE_AUTO_BED_LEVELING

  // The target position of the tool in absolute steps
  // Calculate target position in absolute steps
  //this should be done after the wait, because otherwise a M92 code within the gcode disrupts this calculation somehow
  long target[NUM_AXIS];
  target[X_AXIS] = lround(x*axis_steps_per_unit[X_AXIS]);
  target[Y_AXIS] = lround(y*axis_steps_per_unit[Y_AXIS]);
  target[Z_AXIS] = lround(z*axis_steps_per_unit[Z_AXIS]);
  target[J_AXIS] = lround(j*axis_steps_per_unit[J_AXIS]);
  target[E_AXIS] = lround(e*axis_steps_per_unit[E_AXIS]);

  #ifdef PREVENT_DANGEROUS_EXTRUDE
  if(target[E_AXIS]!=position[E_AXIS])
  {
    if(degHotend(active_extruder)<extrude_min_temp)
    {
      position[E_AXIS]=target[E_AXIS]; //behave as if the move really took place, but ignore E part
      SERIAL_ERRORPGM(MSG_ERR_COLD_EXTRUDE_STOP);
    }
    
    #ifdef PREVENT_LENGTHY_EXTRUDE
    if(labs(target[E_AXIS]-position[E_AXIS])>axis_steps_per_unit[E_AXIS]*EXTRUDE_MAXLENGTH)
    {
      position[E_AXIS]=target[E_AXIS]; //behave as if the move really took place, but ignore E part
      SERIAL_ERRORPGM(MSG_ERR_LONG_EXTRUDE_STOP);
    }
    #endif
  }
  #endif

  // Prepare to set up new block
  block_t *block = &block_buffer[block_buffer_head];

  // Mark block as not busy (Not executed by the stepper interrupt)
  block->busy = false;

  // Number of steps for each axis
  #ifndef COREXY
    // default non-h-bot planning
    block->steps_x = labs(target[X_AXIS]-position[X_AXIS]);
    block->steps_y = labs(target[Y_AXIS]-position[Y_AXIS]);
  #else
    // corexy planning
    // these equations follow the form of the dA and dB equations on http://www.corexy.com/theory.html
    block->steps_x = labs((target[X_AXIS]-position[X_AXIS]) + (target[Y_AXIS]-position[Y_AXIS]));
    block->steps_y = labs((target[X_AXIS]-position[X_AXIS]) - (target[Y_AXIS]-position[Y_AXIS]));
  #endif
  block->steps_z = labs(target[Z_AXIS]-position[Z_AXIS]);
  block->steps_j = labs(target[J_AXIS]-position[J_AXIS]);
  block->steps_e = labs(target[E_AXIS]-position[E_AXIS]);
  block->steps_e *= extrudemultiply;
  block->steps_e /= 100;
  block->step_event_count = max(block->steps_x, max(block->steps_y, max(block->steps_z, max(block->steps_j, block->steps_e))));
  // Bail if this is a zero-length block
  if (block->step_event_count <= dropsegments)
  { 
    return; 
  }

  block->fan_speed = fanSpeed;
  #ifdef BARICUDA
    block->valve_pressure = ValvePressure;
    block->e_to_p_pressure = EtoPPressure;
  #endif

  // Compute direction bits for this block 
  block->direction_bits = 0;
  #ifndef COREXY
    if (target[X_AXIS] < position[X_AXIS])
    {
      block->direction_bits |= (1<<X_AXIS); 
    }
    if (target[Y_AXIS] < position[Y_AXIS])
    {
      block->direction_bits |= (1<<Y_AXIS); 
    }
  #else
    if ((target[X_AXIS]-position[X_AXIS]) + (target[Y_AXIS]-position[Y_AXIS]) < 0)
    {
      block->direction_bits |= (1<<X_AXIS); 
    }
    if ((target[X_AXIS]-position[X_AXIS]) - (target[Y_AXIS]-position[Y_AXIS]) < 0)
    {
      block->direction_bits |= (1<<Y_AXIS); 
    }
  #endif
  if (target[Z_AXIS] < position[Z_AXIS])
  {
    block->direction_bits |= (1<<Z_AXIS); 
  }
  if (target[J_AXIS] < position[J_AXIS])
  {
    block->direction_bits |= (1<<J_AXIS); 
  }
  if (target[E_AXIS] < position[E_AXIS])
  {
    block->direction_bits |= (1<<E_AXIS); 
  }

  block->active_extruder = extruder;

  //enable active axes
  #ifdef COREXY
    if((block->steps_x != 0) || (block->steps_y != 0))
    {
      enable_x();
      enable_y();
    }
  #else
    if(block->steps_x != 0) enable_x();
    if(block->steps_y != 0) enable_y();
  #endif
  #ifndef Z_LATE_ENABLE
    if(block->steps_z != 0) enable_z();
  #endif
  if(block->steps_j != 0) enable_j();

  // Enable all
  if(block->steps_e != 0)
  {
    switch(extruder)
    {
      case 0:
        enable_e0();
        break;
       case 1:
        enable_e1();
        break;
      case 2:
        enable_e2();
        break;
    }
  }

  if (block->steps_e == 0)
  {
    if(feed_rate<mintravelfeedrate) feed_rate=mintravelfeedrate;
  }
  else
  {
    if(feed_rate<minimumfeedrate) feed_rate=minimumfeedrate;
  } 

  float delta_mm[NUM_AXIS];
  #ifndef COREXY
    delta_mm[X_AXIS] = (target[X_AXIS]-position[X_AXIS])/axis_steps_per_unit[X_AXIS];
    delta_mm[Y_AXIS] = (target[Y_AXIS]-position[Y_AXIS])/axis_steps_per_unit[Y_AXIS];
  #else
    delta_mm[X_AXIS] = ((target[X_AXIS]-position[X_AXIS]) + (target[Y_AXIS]-position[Y_AXIS]))/axis_steps_per_unit[X_AXIS];
    delta_mm[Y_AXIS] = ((target[X_AXIS]-position[X_AXIS]) - (target[Y_AXIS]-position[Y_AXIS]))/axis_steps_per_unit[Y_AXIS];
  #endif
  delta_mm[Z_AXIS] = (target[Z_AXIS]-position[Z_AXIS])/axis_steps_per_unit[Z_AXIS];
  delta_mm[J_AXIS] = (target[J_AXIS]-position[J_AXIS])/axis_steps_per_unit[J_AXIS];
  delta_mm[E_AXIS] = ((target[E_AXIS]-position[E_AXIS])/axis_steps_per_unit[E_AXIS])*extrudemultiply/100.0;
  if ( block->steps_x <=dropsegments && block->steps_y <=dropsegments && block->steps_z <=dropsegments )
  {
    if ( block->steps_j <= dropsegments )
    {
      block->millimeters = fabs(delta_mm[E_AXIS]);
    }
    else
    {
      block->millimeters = fabs(delta_mm[J_AXIS]);
    }
  } 
  else
  {
    block->millimeters = sqrt(square(delta_mm[X_AXIS]) + square(delta_mm[Y_AXIS]) + square(delta_mm[Z_AXIS]));
  }
  float inverse_millimeters = 1.0/block->millimeters;  // Inverse millimeters to remove multiple divides 

    // Calculate speed in mm/second for each axis. No divide by zero due to previous checks.
  float inverse_second = feed_rate * inverse_millimeters;

  int moves_queued=(block_buffer_head-block_buffer_tail + BLOCK_BUFFER_SIZE) & (BLOCK_BUFFER_SIZE - 1);

  // slow down when de buffer starts to empty, rather than wait at the corner for a buffer refill
#ifdef OLD_SLOWDOWN
  if(moves_queued < (BLOCK_BUFFER_SIZE * 0.5) && moves_queued > 1)
    feed_rate = feed_rate*moves_queued / (BLOCK_BUFFER_SIZE * 0.5); 
#endif

#ifdef SLOWDOWN
  //  segment time im micro seconds
  unsigned long segment_time = lround(1000000.0/inverse_second);
  if ((moves_queued > 1) && (moves_queued < (BLOCK_BUFFER_SIZE * 0.5)))
  {
    if (segment_time < minsegmenttime)
    { // buffer is draining, add extra time.  The amount of time added increases if the buffer is still emptied more.
      inverse_second=1000000.0/(segment_time+lround(2*(minsegmenttime-segment_time)/moves_queued));
      #ifdef XY_FREQUENCY_LIMIT
         segment_time = lround(1000000.0/inverse_second);
      #endif
    }
  }
#endif
  //  END OF SLOW DOWN SECTION    


  block->nominal_speed = block->millimeters * inverse_second; // (mm/sec) Always > 0
  block->nominal_rate = ceil(block->step_event_count * inverse_second); // (step/sec) Always > 0

  // Calculate and limit speed in mm/sec for each axis
  float current_speed[NUM_AXIS];
  float speed_factor = 1.0; //factor <=1 do decrease speed
  for(int i=0; i < NUM_AXIS; i++)
  {
    current_speed[i] = delta_mm[i] * inverse_second;
    if(fabs(current_speed[i]) > max_feedrate[i])
      speed_factor = min(speed_factor, max_feedrate[i] / fabs(current_speed[i]));
  }

  // Max segement time in us.
#ifdef XY_FREQUENCY_LIMIT
#define MAX_FREQ_TIME (1000000.0/XY_FREQUENCY_LIMIT)
  // Check and limit the xy direction change frequency
  unsigned char direction_change = block->direction_bits ^ old_direction_bits;
  old_direction_bits = block->direction_bits;
  segment_time = lround((float)segment_time / speed_factor);
  
  if((direction_change & (1<<X_AXIS)) == 0)
  {
    x_segment_time[0] += segment_time;
  }
  else
  {
    x_segment_time[2] = x_segment_time[1];
    x_segment_time[1] = x_segment_time[0];
    x_segment_time[0] = segment_time;
  }
  if((direction_change & (1<<Y_AXIS)) == 0)
  {
    y_segment_time[0] += segment_time;
  }
  else
  {
    y_segment_time[2] = y_segment_time[1];
    y_segment_time[1] = y_segment_time[0];
    y_segment_time[0] = segment_time;
  }
  long max_x_segment_time = max(x_segment_time[0], max(x_segment_time[1], x_segment_time[2]));
  long max_y_segment_time = max(y_segment_time[0], max(y_segment_time[1], y_segment_time[2]));
  long min_xy_segment_time =min(max_x_segment_time, max_y_segment_time);
  if(min_xy_segment_time < MAX_FREQ_TIME)
    speed_factor = min(speed_factor, speed_factor * (float)min_xy_segment_time / (float)MAX_FREQ_TIME);
#endif

  // Correct the speed  
  if( speed_factor < 1.0)
  {
    for(unsigned char i=0; i < NUM_AXIS; i++)
    {
      current_speed[i] *= speed_factor;
    }
    block->nominal_speed *= speed_factor;
    block->nominal_rate *= speed_factor;
  }

  // Compute and limit the acceleration rate for the trapezoid generator.  
  float steps_per_mm = block->step_event_count/block->millimeters;
  if(block->steps_x == 0 && block->steps_y == 0 && block->steps_z == 0)
  {
    if(block->steps_j == 0)
    {
      block->acceleration_st = ceil(retract_acceleration * steps_per_mm); // convert to: acceleration steps/sec^2
    }
    else
    {
      block->acceleration_st = axis_steps_per_sqr_second[J_AXIS];
    }
  }
  else
  {
    block->acceleration_st = ceil(acceleration * steps_per_mm); // convert to: acceleration steps/sec^2
    // Limit acceleration per axis
    if(((float)block->acceleration_st * (float)block->steps_x / (float)block->step_event_count) > axis_steps_per_sqr_second[X_AXIS])
      block->acceleration_st = axis_steps_per_sqr_second[X_AXIS];
    if(((float)block->acceleration_st * (float)block->steps_y / (float)block->step_event_count) > axis_steps_per_sqr_second[Y_AXIS])
      block->acceleration_st = axis_steps_per_sqr_second[Y_AXIS];
    if(((float)block->acceleration_st * (float)block->steps_z / (float)block->step_event_count ) > axis_steps_per_sqr_second[Z_AXIS])
      block->acceleration_st = axis_steps_per_sqr_second[Z_AXIS];
    if(((float)block->acceleration_st * (float)block->steps_e / (float)block->step_event_count) > axis_steps_per_sqr_second[E_AXIS])
      block->acceleration_st = axis_steps_per_sqr_second[E_AXIS];
  }
  block->acceleration = block->acceleration_st / steps_per_mm;
  block->acceleration_rate = (long)((float)block->acceleration_st * (16777216.0 / (F_CPU / 8.0)));

  #if 0  // Use old jerk for now
    // Compute path unit vector
    double unit_vec[3];
  
    unit_vec[X_AXIS] = delta_mm[X_AXIS]*inverse_millimeters;
    unit_vec[Y_AXIS] = delta_mm[Y_AXIS]*inverse_millimeters;
    unit_vec[Z_AXIS] = delta_mm[Z_AXIS]*inverse_millimeters;
  
    // Compute maximum allowable entry speed at junction by centripetal acceleration approximation.
    // Let a circle be tangent to both previous and current path line segments, where the junction
    // deviation is defined as the distance from the junction to the closest edge of the circle,
    // colinear with the circle center. The circular segment joining the two paths represents the
    // path of centripetal acceleration. Solve for max velocity based on max acceleration about the
    // radius of the circle, defined indirectly by junction deviation. This may be also viewed as
    // path width or max_jerk in the previous grbl version. This approach does not actually deviate
    // from path, but used as a robust way to compute cornering speeds, as it takes into account the
    // nonlinearities of both the junction angle and junction velocity.
    double vmax_junction = MINIMUM_PLANNER_SPEED; // Set default max junction speed
  
    // Skip first block or when previous_nominal_speed is used as a flag for homing and offset cycles.
    if ((block_buffer_head != block_buffer_tail) && (previous_nominal_speed > 0.0)) {
      // Compute cosine of angle between previous and current path. (prev_unit_vec is negative)
      // NOTE: Max junction velocity is computed without sin() or acos() by trig half angle identity.
      double cos_theta = - previous_unit_vec[X_AXIS] * unit_vec[X_AXIS]
        - previous_unit_vec[Y_AXIS] * unit_vec[Y_AXIS]
        - previous_unit_vec[Z_AXIS] * unit_vec[Z_AXIS] ;
  
      // Skip and use default max junction speed for 0 degree acute junction.
      if (cos_theta < 0.95) {
        vmax_junction = min(previous_nominal_speed,block->nominal_speed);
        // Skip and avoid divide by zero for straight junctions at 180 degrees. Limit to min() of nominal speeds.
        if (cos_theta > -0.95) {
          // Compute maximum junction velocity based on maximum acceleration and junction deviation
          double sin_theta_d2 = sqrt(0.5*(1.0-cos_theta)); // Trig half angle identity. Always positive.
          vmax_junction = min(vmax_junction,
          sqrt(block->acceleration * junction_deviation * sin_theta_d2/(1.0-sin_theta_d2)) );
        }
      }
    }
  #endif
  // Start with a safe speed
  float vmax_junction = max_xy_jerk/2; 
  float vmax_junction_factor = 1.0; 
  if(fabs(current_speed[Z_AXIS]) > max_z_jerk/2) 
    vmax_junction = min(vmax_junction, max_z_jerk/2);
  if(fabs(current_speed[E_AXIS]) > max_e_jerk/2) 
    vmax_junction = min(vmax_junction, max_e_jerk/2);
  vmax_junction = min(vmax_junction, block->nominal_speed);
  float safe_speed = vmax_junction;

  if ((moves_queued > 1) && (previous_nominal_speed > 0.0001)) {
    float jerk = sqrt(pow((current_speed[X_AXIS]-previous_speed[X_AXIS]), 2)+pow((current_speed[Y_AXIS]-previous_speed[Y_AXIS]), 2));
    //    if((fabs(previous_speed[X_AXIS]) > 0.0001) || (fabs(previous_speed[Y_AXIS]) > 0.0001)) {
    vmax_junction = block->nominal_speed;
    //    }
    if (jerk > max_xy_jerk) {
      vmax_junction_factor = (max_xy_jerk/jerk);
    } 
    if(fabs(current_speed[Z_AXIS] - previous_speed[Z_AXIS]) > max_z_jerk) {
      vmax_junction_factor= min(vmax_junction_factor, (max_z_jerk/fabs(current_speed[Z_AXIS] - previous_speed[Z_AXIS])));
    } 
    if(fabs(current_speed[J_AXIS] - previous_speed[J_AXIS]) > max_j_jerk) {
      vmax_junction_factor= min(vmax_junction_factor, (max_j_jerk/fabs(current_speed[J_AXIS] - previous_speed[J_AXIS])));
    } 
    if(fabs(current_speed[E_AXIS] - previous_speed[E_AXIS]) > max_e_jerk) {
      vmax_junction_factor = min(vmax_junction_factor, (max_e_jerk/fabs(current_speed[E_AXIS] - previous_speed[E_AXIS])));
    } 
    vmax_junction = min(previous_nominal_speed, vmax_junction * vmax_junction_factor); // Limit speed to max previous speed
  }
  block->max_entry_speed = vmax_junction;

  // Initialize block entry speed. Compute based on deceleration to user-defined MINIMUM_PLANNER_SPEED.
  double v_allowable = max_allowable_speed(-block->acceleration,MINIMUM_PLANNER_SPEED,block->millimeters);
  block->entry_speed = min(vmax_junction, v_allowable);

  // Initialize planner efficiency flags
  // Set flag if block will always reach maximum junction speed regardless of entry/exit speeds.
  // If a block can de/ac-celerate from nominal speed to zero within the length of the block, then
  // the current block and next block junction speeds are guaranteed to always be at their maximum
  // junction speeds in deceleration and acceleration, respectively. This is due to how the current
  // block nominal speed limits both the current and next maximum junction speeds. Hence, in both
  // the reverse and forward planners, the corresponding block junction speed will always be at the
  // the maximum junction speed and may always be ignored for any speed reduction checks.
  if (block->nominal_speed <= v_allowable) { 
    block->nominal_length_flag = true; 
  }
  else { 
    block->nominal_length_flag = false; 
  }
  block->recalculate_flag = true; // Always calculate trapezoid for new block

  // Update previous path unit_vector and nominal speed
  memcpy(previous_speed, current_speed, sizeof(previous_speed)); // previous_speed[] = current_speed[]
  previous_nominal_speed = block->nominal_speed;


#ifdef ADVANCE
  // Calculate advance rate
  if((block->steps_e == 0) || (block->steps_x == 0 && block->steps_y == 0 && block->steps_z == 0)) {
    block->advance_rate = 0;
    block->advance = 0;
  }
  else {
    long acc_dist = estimate_acceleration_distance(0, block->nominal_rate, block->acceleration_st);
    float advance = (STEPS_PER_CUBIC_MM_E * EXTRUDER_ADVANCE_K) * 
      (current_speed[E_AXIS] * current_speed[E_AXIS] * EXTRUTION_AREA * EXTRUTION_AREA)*256;
    block->advance = advance;
    if(acc_dist == 0) {
      block->advance_rate = 0;
    } 
    else {
      block->advance_rate = advance / (float)acc_dist;
    }
  }
#endif // ADVANCE

  calculate_trapezoid_for_block(block, block->entry_speed/block->nominal_speed,
  safe_speed/block->nominal_speed);

  // Move buffer head
  block_buffer_head = next_buffer_head;

  // Update position
  memcpy(position, target, sizeof(target)); // position[] = target[]

  planner_recalculate();

  st_wake_up();
}