void CardReader::openFile(char* name, bool read, bool replace_current/*=true*/) { if (!cardOK) return; if (file.isOpen()) { //replacing current file by new file, or subfile call if (!replace_current) { if (file_subcall_ctr > SD_PROCEDURE_DEPTH - 1) { SERIAL_ERROR_START; SERIAL_ERRORPGM("trying to call sub-gcode files with too many levels. MAX level is:"); SERIAL_ERRORLN(SD_PROCEDURE_DEPTH); kill(); return; } SERIAL_ECHO_START; SERIAL_ECHOPGM("SUBROUTINE CALL target:\""); SERIAL_ECHO(name); SERIAL_ECHOPGM("\" parent:\""); //store current filename and position getAbsFilename(filenames[file_subcall_ctr]); SERIAL_ECHO(filenames[file_subcall_ctr]); SERIAL_ECHOPGM("\" pos"); SERIAL_ECHOLN(sdpos); filespos[file_subcall_ctr] = sdpos; file_subcall_ctr++; } else { SERIAL_ECHO_START; SERIAL_ECHOPGM("Now doing file: "); SERIAL_ECHOLN(name); } file.close(); } else { //opening fresh file file_subcall_ctr = 0; //resetting procedure depth in case user cancels print while in procedure SERIAL_ECHO_START; SERIAL_ECHOPGM("Now fresh file: "); SERIAL_ECHOLN(name); } sdprinting = false; SdFile myDir; curDir = &root; char *fname = name; char *dirname_start, *dirname_end; if (name[0] == '/') { dirname_start = &name[1]; while(dirname_start > 0) { dirname_end = strchr(dirname_start, '/'); //SERIAL_ECHO("start:");SERIAL_ECHOLN((int)(dirname_start - name)); //SERIAL_ECHO("end :");SERIAL_ECHOLN((int)(dirname_end - name)); if (dirname_end > 0 && dirname_end > dirname_start) { char subdirname[FILENAME_LENGTH]; strncpy(subdirname, dirname_start, dirname_end - dirname_start); subdirname[dirname_end - dirname_start] = 0; SERIAL_ECHOLN(subdirname); if (!myDir.open(curDir, subdirname, O_READ)) { SERIAL_PROTOCOLPGM(MSG_SD_OPEN_FILE_FAIL); SERIAL_PROTOCOL(subdirname); SERIAL_PROTOCOLCHAR('.'); return; } else { //SERIAL_ECHOLN("dive ok"); } curDir = &myDir; dirname_start = dirname_end + 1; } else { // the remainder after all /fsa/fdsa/ is the filename fname = dirname_start; //SERIAL_ECHOLN("remainder"); //SERIAL_ECHOLN(fname); break; } } } else { //relative path curDir = &workDir; } if (read) { if (file.open(curDir, fname, O_READ)) { filesize = file.fileSize(); SERIAL_PROTOCOLPGM(MSG_SD_FILE_OPENED); SERIAL_PROTOCOL(fname); SERIAL_PROTOCOLPGM(MSG_SD_SIZE); SERIAL_PROTOCOLLN(filesize); sdpos = 0; SERIAL_PROTOCOLLNPGM(MSG_SD_FILE_SELECTED); getfilename(0, fname); lcd_setstatus(longFilename[0] ? longFilename : fname); } else { SERIAL_PROTOCOLPGM(MSG_SD_OPEN_FILE_FAIL); SERIAL_PROTOCOL(fname); SERIAL_PROTOCOLCHAR('.'); } } else { //write if (!file.open(curDir, fname, O_CREAT | O_APPEND | O_WRITE | O_TRUNC)) { SERIAL_PROTOCOLPGM(MSG_SD_OPEN_FILE_FAIL); SERIAL_PROTOCOL(fname); SERIAL_PROTOCOLCHAR('.'); } else { saving = true; SERIAL_PROTOCOLPGM(MSG_SD_WRITE_TO_FILE); SERIAL_PROTOCOLLN(name); lcd_setstatus(fname); } } }
void plan_buffer_line(const float &x, const float &y, const float &z, const float &j, const float &e, float feed_rate, const uint8_t &extruder) #endif //ENABLE_AUTO_BED_LEVELING { // Calculate the buffer head after we push this byte int next_buffer_head = next_block_index(block_buffer_head); // If the buffer is full: good! That means we are well ahead of the robot. // Rest here until there is room in the buffer. while(block_buffer_tail == next_buffer_head) { manage_heater(); manage_inactivity(); lcd_update(); } #ifdef ENABLE_AUTO_BED_LEVELING apply_rotation_xyz(plan_bed_level_matrix, x, y, z); #endif // ENABLE_AUTO_BED_LEVELING // The target position of the tool in absolute steps // Calculate target position in absolute steps //this should be done after the wait, because otherwise a M92 code within the gcode disrupts this calculation somehow long target[NUM_AXIS]; target[X_AXIS] = lround(x*axis_steps_per_unit[X_AXIS]); target[Y_AXIS] = lround(y*axis_steps_per_unit[Y_AXIS]); target[Z_AXIS] = lround(z*axis_steps_per_unit[Z_AXIS]); target[J_AXIS] = lround(j*axis_steps_per_unit[J_AXIS]); target[E_AXIS] = lround(e*axis_steps_per_unit[E_AXIS]); #ifdef PREVENT_DANGEROUS_EXTRUDE if(target[E_AXIS]!=position[E_AXIS]) { if(degHotend(active_extruder)<extrude_min_temp) { position[E_AXIS]=target[E_AXIS]; //behave as if the move really took place, but ignore E part SERIAL_ERRORPGM(MSG_ERR_COLD_EXTRUDE_STOP); } #ifdef PREVENT_LENGTHY_EXTRUDE if(labs(target[E_AXIS]-position[E_AXIS])>axis_steps_per_unit[E_AXIS]*EXTRUDE_MAXLENGTH) { position[E_AXIS]=target[E_AXIS]; //behave as if the move really took place, but ignore E part SERIAL_ERRORPGM(MSG_ERR_LONG_EXTRUDE_STOP); } #endif } #endif // Prepare to set up new block block_t *block = &block_buffer[block_buffer_head]; // Mark block as not busy (Not executed by the stepper interrupt) block->busy = false; // Number of steps for each axis #ifndef COREXY // default non-h-bot planning block->steps_x = labs(target[X_AXIS]-position[X_AXIS]); block->steps_y = labs(target[Y_AXIS]-position[Y_AXIS]); #else // corexy planning // these equations follow the form of the dA and dB equations on http://www.corexy.com/theory.html block->steps_x = labs((target[X_AXIS]-position[X_AXIS]) + (target[Y_AXIS]-position[Y_AXIS])); block->steps_y = labs((target[X_AXIS]-position[X_AXIS]) - (target[Y_AXIS]-position[Y_AXIS])); #endif block->steps_z = labs(target[Z_AXIS]-position[Z_AXIS]); block->steps_j = labs(target[J_AXIS]-position[J_AXIS]); block->steps_e = labs(target[E_AXIS]-position[E_AXIS]); block->steps_e *= extrudemultiply; block->steps_e /= 100; block->step_event_count = max(block->steps_x, max(block->steps_y, max(block->steps_z, max(block->steps_j, block->steps_e)))); // Bail if this is a zero-length block if (block->step_event_count <= dropsegments) { return; } block->fan_speed = fanSpeed; #ifdef BARICUDA block->valve_pressure = ValvePressure; block->e_to_p_pressure = EtoPPressure; #endif // Compute direction bits for this block block->direction_bits = 0; #ifndef COREXY if (target[X_AXIS] < position[X_AXIS]) { block->direction_bits |= (1<<X_AXIS); } if (target[Y_AXIS] < position[Y_AXIS]) { block->direction_bits |= (1<<Y_AXIS); } #else if ((target[X_AXIS]-position[X_AXIS]) + (target[Y_AXIS]-position[Y_AXIS]) < 0) { block->direction_bits |= (1<<X_AXIS); } if ((target[X_AXIS]-position[X_AXIS]) - (target[Y_AXIS]-position[Y_AXIS]) < 0) { block->direction_bits |= (1<<Y_AXIS); } #endif if (target[Z_AXIS] < position[Z_AXIS]) { block->direction_bits |= (1<<Z_AXIS); } if (target[J_AXIS] < position[J_AXIS]) { block->direction_bits |= (1<<J_AXIS); } if (target[E_AXIS] < position[E_AXIS]) { block->direction_bits |= (1<<E_AXIS); } block->active_extruder = extruder; //enable active axes #ifdef COREXY if((block->steps_x != 0) || (block->steps_y != 0)) { enable_x(); enable_y(); } #else if(block->steps_x != 0) enable_x(); if(block->steps_y != 0) enable_y(); #endif #ifndef Z_LATE_ENABLE if(block->steps_z != 0) enable_z(); #endif if(block->steps_j != 0) enable_j(); // Enable all if(block->steps_e != 0) { switch(extruder) { case 0: enable_e0(); break; case 1: enable_e1(); break; case 2: enable_e2(); break; } } if (block->steps_e == 0) { if(feed_rate<mintravelfeedrate) feed_rate=mintravelfeedrate; } else { if(feed_rate<minimumfeedrate) feed_rate=minimumfeedrate; } float delta_mm[NUM_AXIS]; #ifndef COREXY delta_mm[X_AXIS] = (target[X_AXIS]-position[X_AXIS])/axis_steps_per_unit[X_AXIS]; delta_mm[Y_AXIS] = (target[Y_AXIS]-position[Y_AXIS])/axis_steps_per_unit[Y_AXIS]; #else delta_mm[X_AXIS] = ((target[X_AXIS]-position[X_AXIS]) + (target[Y_AXIS]-position[Y_AXIS]))/axis_steps_per_unit[X_AXIS]; delta_mm[Y_AXIS] = ((target[X_AXIS]-position[X_AXIS]) - (target[Y_AXIS]-position[Y_AXIS]))/axis_steps_per_unit[Y_AXIS]; #endif delta_mm[Z_AXIS] = (target[Z_AXIS]-position[Z_AXIS])/axis_steps_per_unit[Z_AXIS]; delta_mm[J_AXIS] = (target[J_AXIS]-position[J_AXIS])/axis_steps_per_unit[J_AXIS]; delta_mm[E_AXIS] = ((target[E_AXIS]-position[E_AXIS])/axis_steps_per_unit[E_AXIS])*extrudemultiply/100.0; if ( block->steps_x <=dropsegments && block->steps_y <=dropsegments && block->steps_z <=dropsegments ) { if ( block->steps_j <= dropsegments ) { block->millimeters = fabs(delta_mm[E_AXIS]); } else { block->millimeters = fabs(delta_mm[J_AXIS]); } } else { block->millimeters = sqrt(square(delta_mm[X_AXIS]) + square(delta_mm[Y_AXIS]) + square(delta_mm[Z_AXIS])); } float inverse_millimeters = 1.0/block->millimeters; // Inverse millimeters to remove multiple divides // Calculate speed in mm/second for each axis. No divide by zero due to previous checks. float inverse_second = feed_rate * inverse_millimeters; int moves_queued=(block_buffer_head-block_buffer_tail + BLOCK_BUFFER_SIZE) & (BLOCK_BUFFER_SIZE - 1); // slow down when de buffer starts to empty, rather than wait at the corner for a buffer refill #ifdef OLD_SLOWDOWN if(moves_queued < (BLOCK_BUFFER_SIZE * 0.5) && moves_queued > 1) feed_rate = feed_rate*moves_queued / (BLOCK_BUFFER_SIZE * 0.5); #endif #ifdef SLOWDOWN // segment time im micro seconds unsigned long segment_time = lround(1000000.0/inverse_second); if ((moves_queued > 1) && (moves_queued < (BLOCK_BUFFER_SIZE * 0.5))) { if (segment_time < minsegmenttime) { // buffer is draining, add extra time. The amount of time added increases if the buffer is still emptied more. inverse_second=1000000.0/(segment_time+lround(2*(minsegmenttime-segment_time)/moves_queued)); #ifdef XY_FREQUENCY_LIMIT segment_time = lround(1000000.0/inverse_second); #endif } } #endif // END OF SLOW DOWN SECTION block->nominal_speed = block->millimeters * inverse_second; // (mm/sec) Always > 0 block->nominal_rate = ceil(block->step_event_count * inverse_second); // (step/sec) Always > 0 // Calculate and limit speed in mm/sec for each axis float current_speed[NUM_AXIS]; float speed_factor = 1.0; //factor <=1 do decrease speed for(int i=0; i < NUM_AXIS; i++) { current_speed[i] = delta_mm[i] * inverse_second; if(fabs(current_speed[i]) > max_feedrate[i]) speed_factor = min(speed_factor, max_feedrate[i] / fabs(current_speed[i])); } // Max segement time in us. #ifdef XY_FREQUENCY_LIMIT #define MAX_FREQ_TIME (1000000.0/XY_FREQUENCY_LIMIT) // Check and limit the xy direction change frequency unsigned char direction_change = block->direction_bits ^ old_direction_bits; old_direction_bits = block->direction_bits; segment_time = lround((float)segment_time / speed_factor); if((direction_change & (1<<X_AXIS)) == 0) { x_segment_time[0] += segment_time; } else { x_segment_time[2] = x_segment_time[1]; x_segment_time[1] = x_segment_time[0]; x_segment_time[0] = segment_time; } if((direction_change & (1<<Y_AXIS)) == 0) { y_segment_time[0] += segment_time; } else { y_segment_time[2] = y_segment_time[1]; y_segment_time[1] = y_segment_time[0]; y_segment_time[0] = segment_time; } long max_x_segment_time = max(x_segment_time[0], max(x_segment_time[1], x_segment_time[2])); long max_y_segment_time = max(y_segment_time[0], max(y_segment_time[1], y_segment_time[2])); long min_xy_segment_time =min(max_x_segment_time, max_y_segment_time); if(min_xy_segment_time < MAX_FREQ_TIME) speed_factor = min(speed_factor, speed_factor * (float)min_xy_segment_time / (float)MAX_FREQ_TIME); #endif // Correct the speed if( speed_factor < 1.0) { for(unsigned char i=0; i < NUM_AXIS; i++) { current_speed[i] *= speed_factor; } block->nominal_speed *= speed_factor; block->nominal_rate *= speed_factor; } // Compute and limit the acceleration rate for the trapezoid generator. float steps_per_mm = block->step_event_count/block->millimeters; if(block->steps_x == 0 && block->steps_y == 0 && block->steps_z == 0) { if(block->steps_j == 0) { block->acceleration_st = ceil(retract_acceleration * steps_per_mm); // convert to: acceleration steps/sec^2 } else { block->acceleration_st = axis_steps_per_sqr_second[J_AXIS]; } } else { block->acceleration_st = ceil(acceleration * steps_per_mm); // convert to: acceleration steps/sec^2 // Limit acceleration per axis if(((float)block->acceleration_st * (float)block->steps_x / (float)block->step_event_count) > axis_steps_per_sqr_second[X_AXIS]) block->acceleration_st = axis_steps_per_sqr_second[X_AXIS]; if(((float)block->acceleration_st * (float)block->steps_y / (float)block->step_event_count) > axis_steps_per_sqr_second[Y_AXIS]) block->acceleration_st = axis_steps_per_sqr_second[Y_AXIS]; if(((float)block->acceleration_st * (float)block->steps_z / (float)block->step_event_count ) > axis_steps_per_sqr_second[Z_AXIS]) block->acceleration_st = axis_steps_per_sqr_second[Z_AXIS]; if(((float)block->acceleration_st * (float)block->steps_e / (float)block->step_event_count) > axis_steps_per_sqr_second[E_AXIS]) block->acceleration_st = axis_steps_per_sqr_second[E_AXIS]; } block->acceleration = block->acceleration_st / steps_per_mm; block->acceleration_rate = (long)((float)block->acceleration_st * (16777216.0 / (F_CPU / 8.0))); #if 0 // Use old jerk for now // Compute path unit vector double unit_vec[3]; unit_vec[X_AXIS] = delta_mm[X_AXIS]*inverse_millimeters; unit_vec[Y_AXIS] = delta_mm[Y_AXIS]*inverse_millimeters; unit_vec[Z_AXIS] = delta_mm[Z_AXIS]*inverse_millimeters; // Compute maximum allowable entry speed at junction by centripetal acceleration approximation. // Let a circle be tangent to both previous and current path line segments, where the junction // deviation is defined as the distance from the junction to the closest edge of the circle, // colinear with the circle center. The circular segment joining the two paths represents the // path of centripetal acceleration. Solve for max velocity based on max acceleration about the // radius of the circle, defined indirectly by junction deviation. This may be also viewed as // path width or max_jerk in the previous grbl version. This approach does not actually deviate // from path, but used as a robust way to compute cornering speeds, as it takes into account the // nonlinearities of both the junction angle and junction velocity. double vmax_junction = MINIMUM_PLANNER_SPEED; // Set default max junction speed // Skip first block or when previous_nominal_speed is used as a flag for homing and offset cycles. if ((block_buffer_head != block_buffer_tail) && (previous_nominal_speed > 0.0)) { // Compute cosine of angle between previous and current path. (prev_unit_vec is negative) // NOTE: Max junction velocity is computed without sin() or acos() by trig half angle identity. double cos_theta = - previous_unit_vec[X_AXIS] * unit_vec[X_AXIS] - previous_unit_vec[Y_AXIS] * unit_vec[Y_AXIS] - previous_unit_vec[Z_AXIS] * unit_vec[Z_AXIS] ; // Skip and use default max junction speed for 0 degree acute junction. if (cos_theta < 0.95) { vmax_junction = min(previous_nominal_speed,block->nominal_speed); // Skip and avoid divide by zero for straight junctions at 180 degrees. Limit to min() of nominal speeds. if (cos_theta > -0.95) { // Compute maximum junction velocity based on maximum acceleration and junction deviation double sin_theta_d2 = sqrt(0.5*(1.0-cos_theta)); // Trig half angle identity. Always positive. vmax_junction = min(vmax_junction, sqrt(block->acceleration * junction_deviation * sin_theta_d2/(1.0-sin_theta_d2)) ); } } } #endif // Start with a safe speed float vmax_junction = max_xy_jerk/2; float vmax_junction_factor = 1.0; if(fabs(current_speed[Z_AXIS]) > max_z_jerk/2) vmax_junction = min(vmax_junction, max_z_jerk/2); if(fabs(current_speed[E_AXIS]) > max_e_jerk/2) vmax_junction = min(vmax_junction, max_e_jerk/2); vmax_junction = min(vmax_junction, block->nominal_speed); float safe_speed = vmax_junction; if ((moves_queued > 1) && (previous_nominal_speed > 0.0001)) { float jerk = sqrt(pow((current_speed[X_AXIS]-previous_speed[X_AXIS]), 2)+pow((current_speed[Y_AXIS]-previous_speed[Y_AXIS]), 2)); // if((fabs(previous_speed[X_AXIS]) > 0.0001) || (fabs(previous_speed[Y_AXIS]) > 0.0001)) { vmax_junction = block->nominal_speed; // } if (jerk > max_xy_jerk) { vmax_junction_factor = (max_xy_jerk/jerk); } if(fabs(current_speed[Z_AXIS] - previous_speed[Z_AXIS]) > max_z_jerk) { vmax_junction_factor= min(vmax_junction_factor, (max_z_jerk/fabs(current_speed[Z_AXIS] - previous_speed[Z_AXIS]))); } if(fabs(current_speed[J_AXIS] - previous_speed[J_AXIS]) > max_j_jerk) { vmax_junction_factor= min(vmax_junction_factor, (max_j_jerk/fabs(current_speed[J_AXIS] - previous_speed[J_AXIS]))); } if(fabs(current_speed[E_AXIS] - previous_speed[E_AXIS]) > max_e_jerk) { vmax_junction_factor = min(vmax_junction_factor, (max_e_jerk/fabs(current_speed[E_AXIS] - previous_speed[E_AXIS]))); } vmax_junction = min(previous_nominal_speed, vmax_junction * vmax_junction_factor); // Limit speed to max previous speed } block->max_entry_speed = vmax_junction; // Initialize block entry speed. Compute based on deceleration to user-defined MINIMUM_PLANNER_SPEED. double v_allowable = max_allowable_speed(-block->acceleration,MINIMUM_PLANNER_SPEED,block->millimeters); block->entry_speed = min(vmax_junction, v_allowable); // Initialize planner efficiency flags // Set flag if block will always reach maximum junction speed regardless of entry/exit speeds. // If a block can de/ac-celerate from nominal speed to zero within the length of the block, then // the current block and next block junction speeds are guaranteed to always be at their maximum // junction speeds in deceleration and acceleration, respectively. This is due to how the current // block nominal speed limits both the current and next maximum junction speeds. Hence, in both // the reverse and forward planners, the corresponding block junction speed will always be at the // the maximum junction speed and may always be ignored for any speed reduction checks. if (block->nominal_speed <= v_allowable) { block->nominal_length_flag = true; } else { block->nominal_length_flag = false; } block->recalculate_flag = true; // Always calculate trapezoid for new block // Update previous path unit_vector and nominal speed memcpy(previous_speed, current_speed, sizeof(previous_speed)); // previous_speed[] = current_speed[] previous_nominal_speed = block->nominal_speed; #ifdef ADVANCE // Calculate advance rate if((block->steps_e == 0) || (block->steps_x == 0 && block->steps_y == 0 && block->steps_z == 0)) { block->advance_rate = 0; block->advance = 0; } else { long acc_dist = estimate_acceleration_distance(0, block->nominal_rate, block->acceleration_st); float advance = (STEPS_PER_CUBIC_MM_E * EXTRUDER_ADVANCE_K) * (current_speed[E_AXIS] * current_speed[E_AXIS] * EXTRUTION_AREA * EXTRUTION_AREA)*256; block->advance = advance; if(acc_dist == 0) { block->advance_rate = 0; } else { block->advance_rate = advance / (float)acc_dist; } } #endif // ADVANCE calculate_trapezoid_for_block(block, block->entry_speed/block->nominal_speed, safe_speed/block->nominal_speed); // Move buffer head block_buffer_head = next_buffer_head; // Update position memcpy(position, target, sizeof(target)); // position[] = target[] planner_recalculate(); st_wake_up(); }