static void ConnectLeftDegenerate( TESStesselator *tess, ActiveRegion *regUp, TESSvertex *vEvent ) /* * The event vertex lies exacty on an already-processed edge or vertex. * Adding the new vertex involves splicing it into the already-processed * part of the mesh. */ { TESShalfEdge *e, *eTopLeft, *eTopRight, *eLast; ActiveRegion *reg; e = regUp->eUp; if( VertEq( e->Org, vEvent )) { /* e->Org is an unprocessed vertex - just combine them, and wait * for e->Org to be pulled from the queue */ assert( TOLERANCE_NONZERO ); SpliceMergeVertices( tess, e, vEvent->anEdge ); return; } if( ! VertEq( e->Dst, vEvent )) { /* General case -- splice vEvent into edge e which passes through it */ if (tessMeshSplitEdge( tess->mesh, e->Sym ) == NULL) longjmp(tess->env,1); if( regUp->fixUpperEdge ) { /* This edge was fixable -- delete unused portion of original edge */ if ( !tessMeshDelete( tess->mesh, e->Onext ) ) longjmp(tess->env,1); regUp->fixUpperEdge = FALSE; } if ( !tessMeshSplice( tess->mesh, vEvent->anEdge, e ) ) longjmp(tess->env,1); SweepEvent( tess, vEvent ); /* recurse */ return; } /* vEvent coincides with e->Dst, which has already been processed. * Splice in the additional right-going edges. */ assert( TOLERANCE_NONZERO ); regUp = TopRightRegion( regUp ); reg = RegionBelow( regUp ); eTopRight = reg->eUp->Sym; eTopLeft = eLast = eTopRight->Onext; if( reg->fixUpperEdge ) { /* Here e->Dst has only a single fixable edge going right. * We can delete it since now we have some real right-going edges. */ assert( eTopLeft != eTopRight ); /* there are some left edges too */ DeleteRegion( tess, reg ); if ( !tessMeshDelete( tess->mesh, eTopRight ) ) longjmp(tess->env,1); eTopRight = eTopLeft->Oprev; } if ( !tessMeshSplice( tess->mesh, vEvent->anEdge, eTopRight ) ) longjmp(tess->env,1); if( ! EdgeGoesLeft( eTopLeft )) { /* e->Dst had no left-going edges -- indicate this to AddRightEdges() */ eTopLeft = NULL; } AddRightEdges( tess, regUp, eTopRight->Onext, eLast, eTopLeft, TRUE ); }
static void RemoveDegenerateEdges( TESStesselator *tess ) /* * Remove zero-length edges, and contours with fewer than 3 vertices. */ { TESShalfEdge *e, *eNext, *eLnext; TESShalfEdge *eHead = &tess->mesh->eHead; /*LINTED*/ for( e = eHead->next; e != eHead; e = eNext ) { eNext = e->next; eLnext = e->Lnext; if( VertEq( e->Org, e->Dst ) && e->Lnext->Lnext != e ) { /* Zero-length edge, contour has at least 3 edges */ SpliceMergeVertices( tess, eLnext, e ); /* deletes e->Org */ if ( !tessMeshDelete( tess->mesh, e ) ) longjmp(tess->env,1); /* e is a self-loop */ e = eLnext; eLnext = e->Lnext; } if( eLnext->Lnext == e ) { /* Degenerate contour (one or two edges) */ if( eLnext != e ) { if( eLnext == eNext || eLnext == eNext->Sym ) { eNext = eNext->next; } if ( !tessMeshDelete( tess->mesh, eLnext ) ) longjmp(tess->env,1); } if( e == eNext || e == eNext->Sym ) { eNext = eNext->next; } if ( !tessMeshDelete( tess->mesh, e ) ) longjmp(tess->env,1); } } }
static int CheckForRightSplice( GLUtesselator *tess, ActiveRegion *regUp ) /* * Check the upper and lower edge of "regUp", to make sure that the * eUp->Org is above eLo, or eLo->Org is below eUp (depending on which * origin is leftmost). * * The main purpose is to splice right-going edges with the same * dest vertex and nearly identical slopes (ie. we can't distinguish * the slopes numerically). However the splicing can also help us * to recover from numerical errors. For example, suppose at one * point we checked eUp and eLo, and decided that eUp->Org is barely * above eLo. Then later, we split eLo into two edges (eg. from * a splice operation like this one). This can change the result of * our test so that now eUp->Org is incident to eLo, or barely below it. * We must correct this condition to maintain the dictionary invariants. * * One possibility is to check these edges for intersection again * (ie. CheckForIntersect). This is what we do if possible. However * CheckForIntersect requires that tess->event lies between eUp and eLo, * so that it has something to fall back on when the intersection * calculation gives us an unusable answer. So, for those cases where * we can't check for intersection, this routine fixes the problem * by just splicing the offending vertex into the other edge. * This is a guaranteed solution, no matter how degenerate things get. * Basically this is a combinatorial solution to a numerical problem. */ { ActiveRegion *regLo = RegionBelow(regUp); GLUhalfEdge *eUp = regUp->eUp; GLUhalfEdge *eLo = regLo->eUp; if( VertLeq( eUp->Org, eLo->Org )) { if( EdgeSign( eLo->Dst, eUp->Org, eLo->Org ) > 0 ) return FALSE; /* eUp->Org appears to be below eLo */ if( ! VertEq( eUp->Org, eLo->Org )) { /* Splice eUp->Org into eLo */ if ( __gl_meshSplitEdge( eLo->Sym ) == NULL) longjmp(tess->env,1); if ( !__gl_meshSplice( eUp, eLo->Oprev ) ) longjmp(tess->env,1); regUp->dirty = regLo->dirty = TRUE; } else if( eUp->Org != eLo->Org ) { /* merge the two vertices, discarding eUp->Org */ pqDelete( tess->pq, eUp->Org->pqHandle ); /* __gl_pqSortDelete */ SpliceMergeVertices( tess, eLo->Oprev, eUp ); } } else { if( EdgeSign( eUp->Dst, eLo->Org, eUp->Org ) < 0 ) return FALSE; /* eLo->Org appears to be above eUp, so splice eLo->Org into eUp */ regUp->dirty = TRUE; void* valid_ptr_check = RegionAbove(regUp);//->dirty if ( valid_ptr_check ) { RegionAbove(regUp)->dirty = TRUE; } if (__gl_meshSplitEdge( eUp->Sym ) == NULL) longjmp(tess->env,1); if ( !__gl_meshSplice( eLo->Oprev, eUp ) ) longjmp(tess->env,1); } return TRUE; }
int tessComputeInterior( TESStesselator *tess ) /* * tessComputeInterior( tess ) computes the planar arrangement specified * by the given contours, and further subdivides this arrangement * into regions. Each region is marked "inside" if it belongs * to the polygon, according to the rule given by tess->windingRule. * Each interior region is guaranteed be monotone. */ { TESSvertex *v, *vNext; /* Each vertex defines an event for our sweep line. Start by inserting * all the vertices in a priority queue. Events are processed in * lexicographic order, ie. * * e1 < e2 iff e1.x < e2.x || (e1.x == e2.x && e1.y < e2.y) */ RemoveDegenerateEdges( tess ); if ( !InitPriorityQ( tess ) ) return 0; /* if error */ InitEdgeDict( tess ); while( (v = (TESSvertex *)pqExtractMin( tess->pq )) != NULL ) { for( ;; ) { vNext = (TESSvertex *)pqMinimum( tess->pq ); if( vNext == NULL || ! VertEq( vNext, v )) break; /* Merge together all vertices at exactly the same location. * This is more efficient than processing them one at a time, * simplifies the code (see ConnectLeftDegenerate), and is also * important for correct handling of certain degenerate cases. * For example, suppose there are two identical edges A and B * that belong to different contours (so without this code they would * be processed by separate sweep events). Suppose another edge C * crosses A and B from above. When A is processed, we split it * at its intersection point with C. However this also splits C, * so when we insert B we may compute a slightly different * intersection point. This might leave two edges with a small * gap between them. This kind of error is especially obvious * when using boundary extraction (TESS_BOUNDARY_ONLY). */ vNext = (TESSvertex *)pqExtractMin( tess->pq ); SpliceMergeVertices( tess, v->anEdge, vNext->anEdge ); } SweepEvent( tess, v ); } /* Set tess->event for debugging purposes */ tess->event = ((ActiveRegion *) dictKey( dictMin( tess->dict )))->eUp->Org; DebugEvent( tess ); DoneEdgeDict( tess ); DonePriorityQ( tess ); if ( !RemoveDegenerateFaces( tess, tess->mesh ) ) return 0; tessMeshCheckMesh( tess->mesh ); return 1; }
static int CheckForLeftSplice( GLUtesselator *tess, ActiveRegion *regUp ) /* * Check the upper and lower edge of "regUp", to make sure that the * eUp->Dst is above eLo, or eLo->Dst is below eUp (depending on which * destination is rightmost). * * Theoretically, this should always be true. However, splitting an edge * into two pieces can change the results of previous tests. For example, * suppose at one point we checked eUp and eLo, and decided that eUp->Dst * is barely above eLo. Then later, we split eLo into two edges (eg. from * a splice operation like this one). This can change the result of * the test so that now eUp->Dst is incident to eLo, or barely below it. * We must correct this condition to maintain the dictionary invariants * (otherwise new edges might get inserted in the wrong place in the * dictionary, and bad stuff will happen). * * We fix the problem by just splicing the offending vertex into the * other edge. */ { ActiveRegion *regLo = RegionBelow(regUp); GLUhalfEdge *eUp = regUp->eUp; GLUhalfEdge *eLo = regLo->eUp; GLUhalfEdge *e; assert( ! VertEq( eUp->Dst, eLo->Dst )); if( VertLeq( eUp->Dst, eLo->Dst )) { if( EdgeSign( eUp->Dst, eLo->Dst, eUp->Org ) < 0 ) return FALSE; /* eLo->Dst is above eUp, so splice eLo->Dst into eUp */ if ( RegionAbove(regUp) ) { RegionAbove(regUp)->dirty = TRUE; } regUp->dirty = TRUE; e = __gl_meshSplitEdge( eUp ); if (e == NULL) longjmp(tess->env,1); if ( !__gl_meshSplice( eLo->Sym, e ) ) longjmp(tess->env,1); e->Lface->inside = regUp->inside; } else { if( EdgeSign( eLo->Dst, eUp->Dst, eLo->Org ) > 0 ) return FALSE; /* eUp->Dst is below eLo, so splice eUp->Dst into eLo */ regUp->dirty = regLo->dirty = TRUE; e = __gl_meshSplitEdge( eLo ); if (e == NULL) longjmp(tess->env,1); if ( !__gl_meshSplice( eUp->Lnext, eLo->Sym ) ) longjmp(tess->env,1); e->Rface->inside = regUp->inside; } return TRUE; }
static void ConnectRightVertex( TESStesselator *tess, ActiveRegion *regUp, TESShalfEdge *eBottomLeft ) /* * Purpose: connect a "right" vertex vEvent (one where all edges go left) * to the unprocessed portion of the mesh. Since there are no right-going * edges, two regions (one above vEvent and one below) are being merged * into one. "regUp" is the upper of these two regions. * * There are two reasons for doing this (adding a right-going edge): * - if the two regions being merged are "inside", we must add an edge * to keep them separated (the combined region would not be monotone). * - in any case, we must leave some record of vEvent in the dictionary, * so that we can merge vEvent with features that we have not seen yet. * For example, maybe there is a vertical edge which passes just to * the right of vEvent; we would like to splice vEvent into this edge. * * However, we don't want to connect vEvent to just any vertex. We don''t * want the new edge to cross any other edges; otherwise we will create * intersection vertices even when the input data had no self-intersections. * (This is a bad thing; if the user's input data has no intersections, * we don't want to generate any false intersections ourselves.) * * Our eventual goal is to connect vEvent to the leftmost unprocessed * vertex of the combined region (the union of regUp and regLo). * But because of unseen vertices with all right-going edges, and also * new vertices which may be created by edge intersections, we don''t * know where that leftmost unprocessed vertex is. In the meantime, we * connect vEvent to the closest vertex of either chain, and mark the region * as "fixUpperEdge". This flag says to delete and reconnect this edge * to the next processed vertex on the boundary of the combined region. * Quite possibly the vertex we connected to will turn out to be the * closest one, in which case we won''t need to make any changes. */ { TESShalfEdge *eNew; TESShalfEdge *eTopLeft = eBottomLeft->Onext; ActiveRegion *regLo = RegionBelow(regUp); TESShalfEdge *eUp = regUp->eUp; TESShalfEdge *eLo = regLo->eUp; int degenerate = FALSE; if( eUp->Dst != eLo->Dst ) { (void) CheckForIntersect( tess, regUp ); } /* Possible new degeneracies: upper or lower edge of regUp may pass * through vEvent, or may coincide with new intersection vertex */ if( VertEq( eUp->Org, tess->event )) { if ( !tessMeshSplice( tess->mesh, eTopLeft->Oprev, eUp ) ) longjmp(tess->env,1); regUp = TopLeftRegion( tess, regUp ); if (regUp == NULL) longjmp(tess->env,1); eTopLeft = RegionBelow( regUp )->eUp; FinishLeftRegions( tess, RegionBelow(regUp), regLo ); degenerate = TRUE; } if( VertEq( eLo->Org, tess->event )) { if ( !tessMeshSplice( tess->mesh, eBottomLeft, eLo->Oprev ) ) longjmp(tess->env,1); eBottomLeft = FinishLeftRegions( tess, regLo, NULL ); degenerate = TRUE; } if( degenerate ) { AddRightEdges( tess, regUp, eBottomLeft->Onext, eTopLeft, eTopLeft, TRUE ); return; } /* Non-degenerate situation -- need to add a temporary, fixable edge. * Connect to the closer of eLo->Org, eUp->Org. */ if( VertLeq( eLo->Org, eUp->Org )) { eNew = eLo->Oprev; } else { eNew = eUp; } eNew = tessMeshConnect( tess->mesh, eBottomLeft->Lprev, eNew ); if (eNew == NULL) longjmp(tess->env,1); /* Prevent cleanup, otherwise eNew might disappear before we've even * had a chance to mark it as a temporary edge. */ AddRightEdges( tess, regUp, eNew, eNew->Onext, eNew->Onext, FALSE ); eNew->Sym->activeRegion->fixUpperEdge = TRUE; WalkDirtyRegions( tess, regUp ); }
static int CheckForIntersect( TESStesselator *tess, ActiveRegion *regUp ) /* * Check the upper and lower edges of the given region to see if * they intersect. If so, create the intersection and add it * to the data structures. * * Returns TRUE if adding the new intersection resulted in a recursive * call to AddRightEdges(); in this case all "dirty" regions have been * checked for intersections, and possibly regUp has been deleted. */ { ActiveRegion *regLo = RegionBelow(regUp); TESShalfEdge *eUp = regUp->eUp; TESShalfEdge *eLo = regLo->eUp; TESSvertex *orgUp = eUp->Org; TESSvertex *orgLo = eLo->Org; TESSvertex *dstUp = eUp->Dst; TESSvertex *dstLo = eLo->Dst; TESSreal tMinUp, tMaxLo; TESSvertex isect, *orgMin; TESShalfEdge *e; assert( ! VertEq( dstLo, dstUp )); assert( EdgeSign( dstUp, tess->event, orgUp ) <= 0 ); assert( EdgeSign( dstLo, tess->event, orgLo ) >= 0 ); assert( orgUp != tess->event && orgLo != tess->event ); assert( ! regUp->fixUpperEdge && ! regLo->fixUpperEdge ); if( orgUp == orgLo ) return FALSE; /* right endpoints are the same */ tMinUp = MIN( orgUp->t, dstUp->t ); tMaxLo = MAX( orgLo->t, dstLo->t ); if( tMinUp > tMaxLo ) return FALSE; /* t ranges do not overlap */ if( VertLeq( orgUp, orgLo )) { if( EdgeSign( dstLo, orgUp, orgLo ) > 0 ) return FALSE; } else { if( EdgeSign( dstUp, orgLo, orgUp ) < 0 ) return FALSE; } /* At this point the edges intersect, at least marginally */ DebugEvent( tess ); tesedgeIntersect( dstUp, orgUp, dstLo, orgLo, &isect ); /* The following properties are guaranteed: */ assert( MIN( orgUp->t, dstUp->t ) <= isect.t ); assert( isect.t <= MAX( orgLo->t, dstLo->t )); assert( MIN( dstLo->s, dstUp->s ) <= isect.s ); assert( isect.s <= MAX( orgLo->s, orgUp->s )); if( VertLeq( &isect, tess->event )) { /* The intersection point lies slightly to the left of the sweep line, * so move it until it''s slightly to the right of the sweep line. * (If we had perfect numerical precision, this would never happen * in the first place). The easiest and safest thing to do is * replace the intersection by tess->event. */ isect.s = tess->event->s; isect.t = tess->event->t; } /* Similarly, if the computed intersection lies to the right of the * rightmost origin (which should rarely happen), it can cause * unbelievable inefficiency on sufficiently degenerate inputs. * (If you have the test program, try running test54.d with the * "X zoom" option turned on). */ orgMin = VertLeq( orgUp, orgLo ) ? orgUp : orgLo; if( VertLeq( orgMin, &isect )) { isect.s = orgMin->s; isect.t = orgMin->t; } if( VertEq( &isect, orgUp ) || VertEq( &isect, orgLo )) { /* Easy case -- intersection at one of the right endpoints */ (void) CheckForRightSplice( tess, regUp ); return FALSE; } if( (! VertEq( dstUp, tess->event ) && EdgeSign( dstUp, tess->event, &isect ) >= 0) || (! VertEq( dstLo, tess->event ) && EdgeSign( dstLo, tess->event, &isect ) <= 0 )) { /* Very unusual -- the new upper or lower edge would pass on the * wrong side of the sweep event, or through it. This can happen * due to very small numerical errors in the intersection calculation. */ if( dstLo == tess->event ) { /* Splice dstLo into eUp, and process the new region(s) */ if (tessMeshSplitEdge( tess->mesh, eUp->Sym ) == NULL) longjmp(tess->env,1); if ( !tessMeshSplice( tess->mesh, eLo->Sym, eUp ) ) longjmp(tess->env,1); regUp = TopLeftRegion( tess, regUp ); if (regUp == NULL) longjmp(tess->env,1); eUp = RegionBelow(regUp)->eUp; FinishLeftRegions( tess, RegionBelow(regUp), regLo ); AddRightEdges( tess, regUp, eUp->Oprev, eUp, eUp, TRUE ); return TRUE; } if( dstUp == tess->event ) { /* Splice dstUp into eLo, and process the new region(s) */ if (tessMeshSplitEdge( tess->mesh, eLo->Sym ) == NULL) longjmp(tess->env,1); if ( !tessMeshSplice( tess->mesh, eUp->Lnext, eLo->Oprev ) ) longjmp(tess->env,1); regLo = regUp; regUp = TopRightRegion( regUp ); e = RegionBelow(regUp)->eUp->Rprev; regLo->eUp = eLo->Oprev; eLo = FinishLeftRegions( tess, regLo, NULL ); AddRightEdges( tess, regUp, eLo->Onext, eUp->Rprev, e, TRUE ); return TRUE; } /* Special case: called from ConnectRightVertex. If either * edge passes on the wrong side of tess->event, split it * (and wait for ConnectRightVertex to splice it appropriately). */ if( EdgeSign( dstUp, tess->event, &isect ) >= 0 ) { RegionAbove(regUp)->dirty = regUp->dirty = TRUE; if (tessMeshSplitEdge( tess->mesh, eUp->Sym ) == NULL) longjmp(tess->env,1); eUp->Org->s = tess->event->s; eUp->Org->t = tess->event->t; } if( EdgeSign( dstLo, tess->event, &isect ) <= 0 ) { regUp->dirty = regLo->dirty = TRUE; if (tessMeshSplitEdge( tess->mesh, eLo->Sym ) == NULL) longjmp(tess->env,1); eLo->Org->s = tess->event->s; eLo->Org->t = tess->event->t; } /* leave the rest for ConnectRightVertex */ return FALSE; } /* General case -- split both edges, splice into new vertex. * When we do the splice operation, the order of the arguments is * arbitrary as far as correctness goes. However, when the operation * creates a new face, the work done is proportional to the size of * the new face. We expect the faces in the processed part of * the mesh (ie. eUp->Lface) to be smaller than the faces in the * unprocessed original contours (which will be eLo->Oprev->Lface). */ if (tessMeshSplitEdge( tess->mesh, eUp->Sym ) == NULL) longjmp(tess->env,1); if (tessMeshSplitEdge( tess->mesh, eLo->Sym ) == NULL) longjmp(tess->env,1); if ( !tessMeshSplice( tess->mesh, eLo->Oprev, eUp ) ) longjmp(tess->env,1); eUp->Org->s = isect.s; eUp->Org->t = isect.t; eUp->Org->pqHandle = pqInsert( &tess->alloc, tess->pq, eUp->Org ); if (eUp->Org->pqHandle == INV_HANDLE) { pqDeletePriorityQ( &tess->alloc, tess->pq ); tess->pq = NULL; longjmp(tess->env,1); } GetIntersectData( tess, eUp->Org, orgUp, dstUp, orgLo, dstLo ); RegionAbove(regUp)->dirty = regUp->dirty = regLo->dirty = TRUE; return FALSE; }