Ejemplo n.º 1
0
static inline int
SCREENabs (cairo_t *cr, double dist)
{
  double dummy = 0;
  cairo_user_to_device_distance (cr, &dist, &dummy);
  return rint (dist);
}
Ejemplo n.º 2
0
gfxSize
gfxContext::UserToDevice(const gfxSize& size) const
{
    gfxSize ret = size;
    cairo_user_to_device_distance(mCairo, &ret.width, &ret.height);
    return ret;
}
Ejemplo n.º 3
0
gfxRect gfxContext::UserToDevice(gfxRect rect) const
{
    gfxRect ret = rect;
    cairo_user_to_device(mCairo, &ret.pos.x, &ret.pos.y);
    cairo_user_to_device_distance(mCairo, &ret.size.width, &ret.size.height);
    return ret;
}
Ejemplo n.º 4
0
static int
cr_user_to_device_distance (lua_State *L) {
    cairo_t **obj = luaL_checkudata(L, 1, OOCAIRO_MT_NAME_CONTEXT);
    double x = luaL_checknumber(L, 2), y = luaL_checknumber(L, 3);
    cairo_user_to_device_distance(*obj, &x, &y);
    lua_pushnumber(L, x);
    lua_pushnumber(L, y);
    return 2;
}
Ejemplo n.º 5
0
static void
compute_hinting_scale (cairo_t *cr,
		       double x, double y,
		       double *scale, double *inv)
{
    cairo_user_to_device_distance (cr, &x, &y);
    *scale = x == 0 ? y : y == 0 ? x :sqrt (x*x + y*y);
    *inv = 1 / *scale;
}
Ejemplo n.º 6
0
void rala_glyph_set_arrow_cb_night(void* v, affine_t t) {
	struct cl* cl = (struct cl*)(((set_cell_cb_t*)v)->cl);
	cairo_t *cr = cl->cr;
  static cairo_pattern_t* memoized_pattern[ARROW_TYPE_MAX];
  static int cell_width, cell_height; //in pixels
  static cairo_matrix_t scale_matrix;

  //Make sure width and height are the same as before
  double temp_width = 1.0, temp_height = 1.0;
  cairo_user_to_device_distance(cr, &temp_width, &temp_height);
  if((int)temp_width != cell_width || (int)temp_height != cell_height) {
    cell_width = (int)temp_width;
    cell_height = (int)temp_height;
    memset(memoized_pattern, 0, sizeof(cairo_pattern_t*)*ARROW_TYPE_MAX);
    cairo_matrix_init_scale(&scale_matrix, temp_width, temp_height);
  }

	//Mark dirty
	if(cl->w == 0) {
		cl->x = 2*t.wx-1;
		cl->y = -(2*t.wy)-1;
		cl->w = 3;
		cl->h = 3;
	} else {
		cl->w = -1;
	}

	cairo_save(cr);
	cairo_translate(cr,2*t.wx, -2*t.wy);
	setup_arrow(cr,arrow_rotate(t, ((set_arrow_cb_t*)v)->arrow_dir));
  arrow_type_t arrow_type = ((set_arrow_cb_t*)v)->arrow_type;
  if(!memoized_pattern[arrow_type]) {
    cairo_surface_t* memoizer_surface = cairo_image_surface_create(CAIRO_FORMAT_ARGB32, cell_width, cell_height);
    cairo_t* m_cr = cairo_create(memoizer_surface);
    cairo_scale(m_cr, cell_width, cell_height);
    switch(arrow_type) {
      case ARROW_TYPE_NONE:
        arrow_none_glyph_night(m_cr);
        break;
      case ARROW_TYPE_X:
        arrow_x_glyph_night(m_cr);
        break;
      case ARROW_TYPE_0:
        arrow_0_glyph_night(m_cr);
        break;
      case ARROW_TYPE_1:
        arrow_1_glyph_night(m_cr);
        break;
    }
    memoized_pattern[arrow_type] = cairo_pattern_create_for_surface(memoizer_surface);
    cairo_pattern_set_matrix(memoized_pattern[arrow_type], &scale_matrix);
  }
  cairo_set_source(cr, memoized_pattern[arrow_type]);
  cairo_paint(cr);
	cairo_restore(cr);
}
Ejemplo n.º 7
0
CAMLprim value
ml_cairo_user_to_device_distance (value cr, value p)
{
  double x, y;
  x = Double_field (p, 0);
  y = Double_field (p, 1);
  cairo_user_to_device_distance (cairo_t_val (cr), &x, &y);
  check_cairo_status (cr);
  return ml_cairo_point (x, y);
}
Ejemplo n.º 8
0
static inline int
screen_width (cairo_t *cr, double width)
{
  double dummy = 0;
  cairo_user_to_device_distance (cr, &width, &dummy);
  if (width < 1)
    width = 1;

  return rint (width);
}
Ejemplo n.º 9
0
static VALUE
cr_user_to_device_distance (VALUE self, VALUE dx, VALUE dy)
{
  double pair[2];
  pair[0] = NUM2DBL (dx);
  pair[1] = NUM2DBL (dy);
  cairo_user_to_device_distance (_SELF, pair, pair + 1);
  cr_check_status (_SELF);
  return rb_cairo__float_array (pair, 2);
}
Ejemplo n.º 10
0
static PyObject *
pycairo_user_to_device_distance (PycairoContext *o, PyObject *args) {
  double dx, dy;

  if (!PyArg_ParseTuple (args, "dd:Context.user_to_device_distance",
			 &dx, &dy))
    return NULL;

  cairo_user_to_device_distance (o->ctx, &dx, &dy);
  RETURN_NULL_IF_CAIRO_CONTEXT_ERROR(o->ctx);
  return Py_BuildValue("(dd)", dx, dy);
}
Ejemplo n.º 11
0
static void 
_rounded_rect (DiaRenderer *self,
               Point *topleft, Point *bottomright,
               Color *color, real radius,
               gboolean fill)
{
  DiaCairoRenderer *renderer = DIA_CAIRO_RENDERER (self);
  double rv[2];

  radius = MIN(radius, (bottomright->x - topleft->x)/2);
  radius = MIN(radius, (bottomright->y - topleft->y)/2);
  
  /* ignore radius if it is smaller than the device unit, avoids anti-aliasing artifacts */
  rv[0] = radius;
  rv[1] = 0.0;
  cairo_user_to_device_distance (renderer->cr, &rv[0], &rv[1]);
  if (rv[0] < 1.0 && rv[1] < 1.0) {
    _rect (self, topleft, bottomright, color, fill);
    return;  
  }

  DIAG_NOTE(g_message("%s_rounded_rect %f,%f -> %f,%f, %f", 
            fill ? "fill" : "draw",
            topleft->x, topleft->y, bottomright->x, bottomright->y, radius));

  cairo_set_source_rgba (renderer->cr, color->red, color->green, color->blue, 1.0);

  cairo_new_path (renderer->cr);
  cairo_move_to (renderer->cr, /* north-west */
                 topleft->x + radius, topleft->y);

  cairo_line_to  (renderer->cr, /* north-east */
                  bottomright->x - radius, topleft->y);
  cairo_arc (renderer->cr,
             bottomright->x - radius, topleft->y + radius, radius, -G_PI_2, 0);
  cairo_line_to  (renderer->cr, /* south-east */
                  bottomright->x, bottomright->y - radius);
  cairo_arc (renderer->cr,
             bottomright->x - radius, bottomright->y - radius, radius, 0, G_PI_2);
  cairo_line_to  (renderer->cr, /* south-west */
                  topleft->x + radius, bottomright->y);
  cairo_arc (renderer->cr,
             topleft->x + radius, bottomright->y - radius, radius, G_PI_2, G_PI);
  cairo_line_to  (renderer->cr, /* north-west */
                  topleft->x, topleft->y + radius); 
  cairo_arc (renderer->cr,
             topleft->x + radius, topleft->y + radius, radius, G_PI, -G_PI_2);
  if (fill)
    cairo_fill (renderer->cr);
  else
    cairo_stroke (renderer->cr);
  DIAG_STATE(renderer->cr)
}
static PyObject *
pycairo_user_to_device_distance (PycairoContext *o, PyObject *args)
{
    double dx, dy;

    if (!PyArg_ParseTuple (args, "dd:Context.user_to_device_distance",
		 	  &dx, &dy))
	return NULL;

    cairo_user_to_device_distance (o->ctx, &dx, &dy);
    if (Pycairo_Check_Status (cairo_status (o->ctx)))
	return NULL;
    return Py_BuildValue("(dd)", dx, dy);
}
Ejemplo n.º 13
0
/** Draw the rectangle _centered_ at current Cairo coordinates.
  @param width	Width of the rectangle.
  @param height	Height of the rectangle.
  @param pixelOutput	Round width and height to pixels.
 */
static void
gerbv_draw_rectangle(cairo_t *cairoTarget, gdouble width, gdouble height,
			gboolean pixelOutput)
{
	if (pixelOutput) {
		cairo_user_to_device_distance (cairoTarget, &width, &height);
		width  -= (int)round(width)  % 2;
		height -= (int)round(height) % 2;
		cairo_device_to_user_distance (cairoTarget, &width, &height);
	}

	cairo_rectangle (cairoTarget, -width/2.0, -height/2.0, width, height);

	return;
}
Ejemplo n.º 14
0
void
lsm_cairo_box_user_to_device (cairo_t *cairo, LsmBox *to, const LsmBox *from)
{
	if (to == NULL)
		return;

	if (from == NULL || cairo == NULL) {
		to->x = 0;
		to->y = 0;
		to->width = 0;
		to->height = 0;
	}

	*to = *from;

	cairo_user_to_device (cairo, &to->x, &to->y);
	cairo_user_to_device_distance (cairo, &to->width, &to->height);
}
Ejemplo n.º 15
0
FloatRect GraphicsContext::roundToDevicePixels(const FloatRect& frect)
{
    FloatRect result;
    double x = frect.x();
    double y = frect.y();
    cairo_t* cr = m_data->cr;
    cairo_user_to_device(cr, &x, &y);
    x = round(x);
    y = round(y);
    cairo_device_to_user(cr, &x, &y);
    result.setX(static_cast<float>(x));
    result.setY(static_cast<float>(y));
    x = frect.width();
    y = frect.height();
    cairo_user_to_device_distance(cr, &x, &y);
    x = round(x);
    y = round(y);
    cairo_device_to_user_distance(cr, &x, &y);
    result.setWidth(static_cast<float>(x));
    result.setHeight(static_cast<float>(y));
    return result;
}
Ejemplo n.º 16
0
FloatRect GraphicsContext::roundToDevicePixels(const FloatRect& frect, RoundingMode)
{
    FloatRect result;
    double x = frect.x();
    double y = frect.y();
    cairo_t* cr = platformContext()->cr();
    cairo_user_to_device(cr, &x, &y);
    x = round(x);
    y = round(y);
    cairo_device_to_user(cr, &x, &y);
    result.setX(narrowPrecisionToFloat(x));
    result.setY(narrowPrecisionToFloat(y));

    // We must ensure width and height are at least 1 (or -1) when
    // we're given float values in the range between 0 and 1 (or -1 and 0).
    double width = frect.width();
    double height = frect.height();
    cairo_user_to_device_distance(cr, &width, &height);
    if (width > -1 && width < 0)
        width = -1;
    else if (width > 0 && width < 1)
        width = 1;
    else
        width = round(width);
    if (height > -1 && width < 0)
        height = -1;
    else if (height > 0 && height < 1)
        height = 1;
    else
        height = round(height);
    cairo_device_to_user_distance(cr, &width, &height);
    result.setWidth(narrowPrecisionToFloat(width));
    result.setHeight(narrowPrecisionToFloat(height));

    return result;
}
Ejemplo n.º 17
0
int
draw_image_to_cairo_target (cairo_t *cairoTarget, gerbv_image_t *image,
		gdouble pixelWidth, enum draw_mode drawMode,
		gerbv_selection_info_t *selectionInfo,
		gerbv_render_info_t *renderInfo, gboolean allowOptimization,
		gerbv_user_transformation_t transform, gboolean pixelOutput)
{
	const int hole_cross_inc_px = 8;
	struct gerbv_net *net, *polygonStartNet=NULL;
	double x1, y1, x2, y2, cp_x=0, cp_y=0;
	gdouble *p, p0, p1, dx, dy, lineWidth, r;
	gerbv_netstate_t *oldState;
	gerbv_layer_t *oldLayer;
	cairo_operator_t drawOperatorClear, drawOperatorDark;
	gboolean invertPolarity = FALSE, oddWidth = FALSE;
	gdouble minX=0, minY=0, maxX=0, maxY=0;
	gdouble criticalRadius;
	gdouble scaleX = transform.scaleX;
	gdouble scaleY = transform.scaleY;
	gboolean limitLineWidth = TRUE;
	gboolean displayPixel = TRUE;

	/* If we are scaling the image at all, ignore the line width checks
	 * since scaled up lines can still be visible */
	if ((scaleX != 1)||(scaleY != 1)){
		limitLineWidth = FALSE;
	}

	if (transform.mirrorAroundX)
		scaleY *= -1;
	if (transform.mirrorAroundY)
		scaleX *= -1;

	cairo_translate (cairoTarget, transform.translateX, transform.translateY);
	cairo_scale (cairoTarget, scaleX, scaleY);
	cairo_rotate (cairoTarget, transform.rotation);

	gboolean useOptimizations = allowOptimization;

	/* If the user is using any transformations for this layer, then don't
	 * bother using rendering optimizations */
	if ((fabs(transform.translateX) > 0.00001) ||
			(fabs(transform.translateY) > 0.00001) ||
			(fabs(transform.scaleX - 1) > 0.00001) ||
			(fabs(transform.scaleY - 1) > 0.00001) ||
			(fabs(transform.rotation) > 0.00001) ||
			transform.mirrorAroundX || transform.mirrorAroundY)
		useOptimizations = FALSE;

	if (useOptimizations && pixelOutput) {
		minX = renderInfo->lowerLeftX;
		minY = renderInfo->lowerLeftY;
		maxX = renderInfo->lowerLeftX + (renderInfo->displayWidth /
					renderInfo->scaleFactorX);
		maxY = renderInfo->lowerLeftY + (renderInfo->displayHeight /
					renderInfo->scaleFactorY);
	}

	/* do initial justify */
	cairo_translate (cairoTarget, image->info->imageJustifyOffsetActualA,
		 image->info->imageJustifyOffsetActualB);

	/* set the fill rule so aperture holes are cleared correctly */
	cairo_set_fill_rule (cairoTarget, CAIRO_FILL_RULE_EVEN_ODD);
	/* offset image */
	cairo_translate (cairoTarget, image->info->offsetA, image->info->offsetB);
	/* do image rotation */
	cairo_rotate (cairoTarget, image->info->imageRotation);

	/* load in polarity operators depending on the image polarity */
	invertPolarity = transform.inverted;
	if (image->info->polarity == GERBV_POLARITY_NEGATIVE)
		invertPolarity = !invertPolarity;
	if (drawMode == DRAW_SELECTIONS)
		invertPolarity = FALSE;

	if (invertPolarity) {
		drawOperatorClear = CAIRO_OPERATOR_OVER;
		drawOperatorDark = CAIRO_OPERATOR_CLEAR;
		cairo_set_operator (cairoTarget, CAIRO_OPERATOR_OVER);
		cairo_paint (cairoTarget);
		cairo_set_operator (cairoTarget, CAIRO_OPERATOR_CLEAR);
	} else {
		drawOperatorClear = CAIRO_OPERATOR_CLEAR;
		drawOperatorDark = CAIRO_OPERATOR_OVER;
	}

	/* next, push two cairo states to simulate the first layer and netstate
	   translations (these will be popped when another layer or netstate is
	   started */
	cairo_save (cairoTarget);
	cairo_save (cairoTarget);

	/* store the current layer and netstate so we know when they change */
	oldLayer = image->layers;
	oldState = image->states;

	for (net = image->netlist->next; net != NULL;
			net = gerbv_image_return_next_renderable_object(net)) {

		/* check if this is a new layer */
		if (net->layer != oldLayer){
			/* it's a new layer, so recalculate the new transformation matrix
			   for it */
			cairo_restore (cairoTarget);
			cairo_restore (cairoTarget);
			cairo_save (cairoTarget);
			/* do any rotations */
			cairo_rotate (cairoTarget, net->layer->rotation);
			/* handle the layer polarity */
			if ((net->layer->polarity == GERBV_POLARITY_CLEAR)^invertPolarity) {
				cairo_set_operator (cairoTarget, CAIRO_OPERATOR_CLEAR);
				drawOperatorClear = CAIRO_OPERATOR_OVER;
				drawOperatorDark = CAIRO_OPERATOR_CLEAR;
			}
			else {
				cairo_set_operator (cairoTarget, CAIRO_OPERATOR_OVER);
				drawOperatorClear = CAIRO_OPERATOR_CLEAR;
				drawOperatorDark = CAIRO_OPERATOR_OVER;
			}

			/* Draw any knockout areas */
			gerbv_knockout_t *ko = &net->layer->knockout;
			if (ko->firstInstance == TRUE) {
				cairo_operator_t oldOperator = cairo_get_operator (cairoTarget);

				if (ko->polarity == GERBV_POLARITY_CLEAR) {
					cairo_set_operator (cairoTarget, drawOperatorClear);
				} else {
					cairo_set_operator (cairoTarget, drawOperatorDark);
				}
				cairo_new_path (cairoTarget);
				cairo_rectangle (cairoTarget,
						ko->lowerLeftX - ko->border,
						ko->lowerLeftY - ko->border,
						ko->width + 2*ko->border,
						ko->height + 2*ko->border);
				draw_fill (cairoTarget, drawMode, selectionInfo, image, net);
				cairo_set_operator (cairoTarget, oldOperator);
			}

			/* Finally, reapply old netstate transformation */
			cairo_save (cairoTarget);
			draw_apply_netstate_transformation (cairoTarget, net->state);
			oldLayer = net->layer;
		}

		/* check if this is a new netstate */
		if (net->state != oldState){
			/* pop the transformation matrix back to the "pre-state" state and
			   resave it */
			cairo_restore (cairoTarget);
			cairo_save (cairoTarget);
			/* it's a new state, so recalculate the new transformation matrix
			   for it */
			draw_apply_netstate_transformation (cairoTarget, net->state);
			oldState = net->state;
		}

		/* if we are only drawing from the selection buffer, search if this net is
		   in the buffer */
		if (drawMode == DRAW_SELECTIONS) {
			/* this flag makes sure we don't draw any unintentional polygons...
			   if we've successfully entered a polygon (the first net matches, and
			   we don't want to check the nets inside the polygon) then
			   polygonStartNet will be set */
			if (!polygonStartNet) {
				if (!draw_net_is_in_selection_buffer_remove (net,
							selectionInfo, FALSE))
					continue;
			}
		}

		/* step and repeat */
		gerbv_step_and_repeat_t *sr = &net->layer->stepAndRepeat;
		int ix, iy;
		for (ix = 0; ix < sr->X; ix++) {
			for (iy = 0; iy < sr->Y; iy++) {
				double sr_x = ix * sr->dist_X;
				double sr_y = iy * sr->dist_Y;

				if (useOptimizations && pixelOutput
				&& ((net->boundingBox.right+sr_x < minX)
				 || (net->boundingBox.left+sr_x > maxX)
				 || (net->boundingBox.top+sr_y < minY)
				 || (net->boundingBox.bottom+sr_y > maxY))) {
					continue;
				}

				x1 = net->start_x + sr_x;
				y1 = net->start_y + sr_y;
				x2 = net->stop_x + sr_x;
				y2 = net->stop_y + sr_y;

				/* translate circular x,y data as well */
				if (net->cirseg) {
					cp_x = net->cirseg->cp_x + sr_x;
					cp_y = net->cirseg->cp_y + sr_y;
				}

				/* render any labels attached to this net */
				/* NOTE: this is currently only used on PNP files, so we may
				   make some assumptions here... */
				if (net->label) {
					cairo_set_font_size (cairoTarget, 0.05);
					cairo_save (cairoTarget);

					cairo_move_to (cairoTarget, x1, y1);
					cairo_scale (cairoTarget, 1, -1);
					cairo_show_text (cairoTarget, net->label->str);
					cairo_restore (cairoTarget);
				}

				/* Polygon area fill routines */
				switch (net->interpolation) {
				case GERBV_INTERPOLATION_PAREA_START :
					draw_render_polygon_object (net, cairoTarget,
							sr_x, sr_y, image, drawMode,
							selectionInfo, pixelOutput);
					continue;
				case GERBV_INTERPOLATION_DELETED:
					continue;
				default :
					break;
				}

				/*
				 * If aperture state is off we allow use of undefined apertures.
				 * This happens when gerber files starts, but hasn't decided on 
				 * which aperture to use.
				 */
				if (image->aperture[net->aperture] == NULL)
					continue;

				switch (net->aperture_state) {
				case GERBV_APERTURE_STATE_ON :
					/* if the aperture width is truly 0, then render as a 1 pixel width
					   line.  0 diameter apertures are used by some programs to draw labels,
					   etc, and they are rendered by other programs as 1 pixel wide */
					/* NOTE: also, make sure all lines are at least 1 pixel wide, so they
					   always show up at low zoom levels */

					if (limitLineWidth&&((image->aperture[net->aperture]->parameter[0] < pixelWidth)&&
							(pixelOutput)))
						criticalRadius = pixelWidth/2.0;
					else
						criticalRadius = image->aperture[net->aperture]->parameter[0]/2.0;
					lineWidth = criticalRadius*2.0;
					// convert to a pixel integer
					cairo_user_to_device_distance (cairoTarget, &lineWidth, &x1);
					if (pixelOutput) {
						lineWidth = round(lineWidth);
						if ((int)lineWidth % 2) {
							oddWidth = TRUE;
						}
						else {
							oddWidth = FALSE;
						}
					}
					cairo_device_to_user_distance (cairoTarget, &lineWidth, &x1);
					cairo_set_line_width (cairoTarget, lineWidth);

					switch (net->interpolation) {
					case GERBV_INTERPOLATION_x10 :
					case GERBV_INTERPOLATION_LINEARx01 :
					case GERBV_INTERPOLATION_LINEARx001 :
					case GERBV_INTERPOLATION_LINEARx1 :
						cairo_set_line_cap (cairoTarget, CAIRO_LINE_CAP_ROUND);

						/* weed out any lines that are
						 * obviously not going to
						 * render on the visible screen */
						switch (image->aperture[net->aperture]->type) {
						case GERBV_APTYPE_CIRCLE :
							if (renderInfo->show_cross_on_drill_holes
							&&  image->layertype == GERBV_LAYERTYPE_DRILL) {
								/* Draw center crosses on slot hole */
								cairo_set_line_width (cairoTarget, pixelWidth);
								cairo_set_line_cap (cairoTarget, CAIRO_LINE_CAP_SQUARE);
								r = image->aperture[net->aperture]->parameter[0]/2.0 +
									hole_cross_inc_px*pixelWidth;
								draw_cairo_cross (cairoTarget, x1, y1, r);
								draw_cairo_cross (cairoTarget, x2, y2, r);
								cairo_set_line_cap (cairoTarget, CAIRO_LINE_CAP_ROUND);
								cairo_set_line_width (cairoTarget, lineWidth);
							}

							draw_cairo_move_to (cairoTarget, x1, y1, oddWidth, pixelOutput);
							draw_cairo_line_to (cairoTarget, x2, y2, oddWidth, pixelOutput);
							draw_stroke (cairoTarget, drawMode, selectionInfo, image, net);
							break;
						case GERBV_APTYPE_RECTANGLE :
							dx = image->aperture[net->aperture]->parameter[0]/2;
							dy = image->aperture[net->aperture]->parameter[1]/2;
							if(x1 > x2)
								dx = -dx;
							if(y1 > y2)
								dy = -dy;
							cairo_new_path(cairoTarget);
							draw_cairo_move_to (cairoTarget, x1 - dx, y1 - dy, FALSE, pixelOutput);
							draw_cairo_line_to (cairoTarget, x1 - dx, y1 + dy, FALSE, pixelOutput);
							draw_cairo_line_to (cairoTarget, x2 - dx, y2 + dy, FALSE, pixelOutput);
							draw_cairo_line_to (cairoTarget, x2 + dx, y2 + dy, FALSE, pixelOutput);
							draw_cairo_line_to (cairoTarget, x2 + dx, y2 - dy, FALSE, pixelOutput);
							draw_cairo_line_to (cairoTarget, x1 + dx, y1 - dy, FALSE, pixelOutput);
							draw_fill (cairoTarget, drawMode, selectionInfo, image, net);
							break;
						/* TODO: for now, just render ovals or polygons like a circle */
						case GERBV_APTYPE_OVAL :
						case GERBV_APTYPE_POLYGON :
							draw_cairo_move_to (cairoTarget, x1,y1, oddWidth, pixelOutput);
							draw_cairo_line_to (cairoTarget, x2,y2, oddWidth, pixelOutput);
							draw_stroke (cairoTarget, drawMode, selectionInfo, image, net);
							break;
						/* macros can only be flashed, so ignore any that might be here */
						default:
							GERB_COMPILE_WARNING(_("Skipped aperture type \"%s\""),
								_(aperture_names[image->aperture[net->aperture]->type]));
							break;
						}
						break;
					case GERBV_INTERPOLATION_CW_CIRCULAR :
					case GERBV_INTERPOLATION_CCW_CIRCULAR :
						/* cairo doesn't have a function to draw oval arcs, so we must
						 * draw an arc and stretch it by scaling different x and y values
						 */
						cairo_new_path(cairoTarget);
						if (image->aperture[net->aperture]->type == GERBV_APTYPE_RECTANGLE) {
							cairo_set_line_cap (cairoTarget, CAIRO_LINE_CAP_SQUARE);
						}
						else {
							cairo_set_line_cap (cairoTarget, CAIRO_LINE_CAP_ROUND);
						}
						cairo_save (cairoTarget);
						cairo_translate(cairoTarget, cp_x, cp_y);
						cairo_scale (cairoTarget, net->cirseg->width, net->cirseg->height);
						if (net->cirseg->angle2 > net->cirseg->angle1) {
							cairo_arc (cairoTarget, 0.0, 0.0, 0.5,
								DEG2RAD(net->cirseg->angle1),
								DEG2RAD(net->cirseg->angle2));
						}
						else {
							cairo_arc_negative (cairoTarget, 0.0, 0.0, 0.5,
								DEG2RAD(net->cirseg->angle1),
								DEG2RAD(net->cirseg->angle2));
						}
						cairo_restore (cairoTarget);
						draw_stroke (cairoTarget, drawMode, selectionInfo, image, net);
						break;
					default :
						GERB_COMPILE_WARNING(_("Skipped interpolation type %d"),
								net->interpolation);
						break;
					}
					break;
				case GERBV_APERTURE_STATE_OFF :
					break;
				case GERBV_APERTURE_STATE_FLASH :
					p = image->aperture[net->aperture]->parameter;

					cairo_save (cairoTarget);
					draw_cairo_translate_adjust(cairoTarget, x2, y2, pixelOutput);

					switch (image->aperture[net->aperture]->type) {
					case GERBV_APTYPE_CIRCLE :
						if (renderInfo->show_cross_on_drill_holes
						&& image->layertype == GERBV_LAYERTYPE_DRILL) {
							/* Draw center cross on drill hole */
							cairo_set_line_width (cairoTarget, pixelWidth);
							cairo_set_line_cap (cairoTarget, CAIRO_LINE_CAP_SQUARE);
							r = p[0]/2.0 + hole_cross_inc_px*pixelWidth;
							draw_cairo_cross (cairoTarget, 0, 0, r);
							cairo_set_line_width (cairoTarget, lineWidth);
							cairo_set_line_cap (cairoTarget, CAIRO_LINE_CAP_ROUND);
						}

						gerbv_draw_circle(cairoTarget, p[0]);
						gerbv_draw_aperture_hole (cairoTarget, p[1], p[2], pixelOutput);
						break;
					case GERBV_APTYPE_RECTANGLE :
						// some CAD programs use very thin flashed rectangles to compose
						//	logos/images, so we must make sure those display here
						displayPixel = pixelOutput;
						p0 = p[0];
						p1 = p[1];
						if (limitLineWidth && (p[0] < pixelWidth) && pixelOutput) {
							p0 = pixelWidth;
							displayPixel = FALSE;
						}
						if (limitLineWidth && (p[1] < pixelWidth) && pixelOutput) {
							p1 = pixelWidth;
							displayPixel = FALSE;
						}
						gerbv_draw_rectangle(cairoTarget, p0, p1, displayPixel);
						gerbv_draw_aperture_hole (cairoTarget, p[2], p[3], displayPixel);
						break;
					case GERBV_APTYPE_OVAL :
						gerbv_draw_oblong(cairoTarget, p[0], p[1]);
						gerbv_draw_aperture_hole (cairoTarget, p[2], p[3], pixelOutput);
						break;
					case GERBV_APTYPE_POLYGON :
						gerbv_draw_polygon(cairoTarget, p[0], p[1], p[2]);
						gerbv_draw_aperture_hole (cairoTarget, p[3], p[4], pixelOutput);
						break;
					case GERBV_APTYPE_MACRO :
						gerbv_draw_amacro(cairoTarget, drawOperatorClear, drawOperatorDark,
							image->aperture[net->aperture]->simplified,
							(gint)p[0], pixelWidth,
							drawMode, selectionInfo, image, net);
						break;
					default :
						GERB_MESSAGE(_("Unknown aperture type"));
						return 0;
					}
					/* and finally fill the path */
					draw_fill (cairoTarget, drawMode, selectionInfo, image, net);
					cairo_restore (cairoTarget);
					break;
				default:
					GERB_MESSAGE(_("Unknown aperture state"));
					return 0;
				}
			}
		}
	}

	/* restore the initial two state saves (one for layer, one for netstate)*/
	cairo_restore (cairoTarget);
	cairo_restore (cairoTarget);

	return 1;
}
Ejemplo n.º 18
0
void LcCairoPainter::user_to_device_distance(double* dx, double* dy) {
    cairo_user_to_device_distance(_cr, dx, dy);
}
Ejemplo n.º 19
0
void Context::userToDeviceDistance( double *dx, double *dy )
{
	cairo_user_to_device_distance( mCairo, dx, dy );
}
Ejemplo n.º 20
0
void rala_glyph_set_cell_cb_day(void* v, affine_t t) {
	struct cl* cl = (struct cl*)(((set_cell_cb_t*)v)->cl);
	cairo_t *cr = cl->cr;
  static cairo_pattern_t* memoized_pattern[CELL_TYPE_MAX];
  static int cell_width, cell_height; //in pixels
  static cairo_matrix_t scale_matrix;

  //Make sure width and height are the same as before
  double temp_width = 1.0, temp_height = 1.0;
  cairo_user_to_device_distance(cr, &temp_width, &temp_height);
  if((int)temp_width != cell_width || (int)temp_height != cell_height) {
    cell_width = (int)temp_width;
    cell_height = (int)temp_height;
    memset(memoized_pattern, 0, sizeof(cairo_pattern_t*)*CELL_TYPE_MAX);
    cairo_matrix_init_scale(&scale_matrix, temp_width, temp_height);
  }

	//Mark dirty
	if(cl->w == 0) {
		cl->x = 2*t.wx-1;
		cl->y = -(2*t.wy)-1;
		cl->w = 3;
		cl->h = 3;
	} else {
		cl->w = -1;
	}

	cairo_save(cr);
	cairo_translate(cr,2*t.wx, -2*t.wy);
  cell_type_t cell_type = ((set_cell_cb_t*)v)->cell_type;
  if(!memoized_pattern[cell_type]) {
    cairo_surface_t* memoizer_surface = cairo_image_surface_create(CAIRO_FORMAT_ARGB32, cell_width, cell_height);
    cairo_t* m_cr = cairo_create(memoizer_surface);
    cairo_scale(m_cr, cell_width, cell_height);
    switch(cell_type) {
      case CELL_TYPE_BLANK:
        break;
      case CELL_TYPE_STEM:
        stem_cell_glyph_day(m_cr);
        break;
      case CELL_TYPE_AND:
        and_gate_glyph_day(m_cr);
        break;
      case CELL_TYPE_OR:
        or_gate_glyph_day(m_cr);
        break;
      case CELL_TYPE_XOR:
        xor_gate_glyph_day(m_cr);
        break;
      case CELL_TYPE_NAND:
        nand_gate_glyph_day(m_cr);
        break;
      case CELL_TYPE_WIRE:
        wire_cell_glyph_day(m_cr);
        break;
      case CELL_TYPE_CROSSOVER:
        crossover_cell_glyph_day(m_cr);
        break;
      case CELL_TYPE_COPY_E:
        copy_cell_glyph_day(m_cr,2);
        break;
      case CELL_TYPE_COPY_N:
        copy_cell_glyph_day(m_cr,3);
        break;
      case CELL_TYPE_COPY_W:
        copy_cell_glyph_day(m_cr,0);
        break;
      case CELL_TYPE_COPY_S:
        copy_cell_glyph_day(m_cr,1);
        break;
      case CELL_TYPE_DELETE_E:
        delete_cell_glyph_day(m_cr,2);
        break;
      case CELL_TYPE_DELETE_N:
        delete_cell_glyph_day(m_cr,3);
        break;
      case CELL_TYPE_DELETE_W:
        delete_cell_glyph_day(m_cr,0);
        break;
      case CELL_TYPE_DELETE_S:
        delete_cell_glyph_day(m_cr,1);
        break;
    }
    memoized_pattern[cell_type] = cairo_pattern_create_for_surface(memoizer_surface);
    cairo_pattern_set_matrix(memoized_pattern[cell_type], &scale_matrix);
  }
  cairo_set_source(cr, memoized_pattern[cell_type]);
  cairo_paint(cr);
	cairo_restore(cr);
}
Ejemplo n.º 21
0
void MediaPlayerPrivateEA::paint(GraphicsContext* context, const IntRect& r)
{
    if (!context)
        return;

    // Can get a NULL platform context so need to verify.  Seems that UpdateControlTints does what is called a "fake" paint
    // with a null platform context just to get an invalidate.
    PlatformContextCairo* pPlatformContext = context->platformContext();
    if (!pPlatformContext)
        return;

    cairo_t* cr = context->platformContext()->cr();
    if (!cr)
        return;

    MediaUpdateInfo& info = GetMediaUpdateInfo();
    const FrameView* pFV = mpWebCorePlayer->frameView();
    if (!pFV)
        return;

    // Convert and store movie rect to device coords using the graphic context.
    double x = (double) r.x();
    double y = (double) r.y();
    double w = (double) r.width();
    double h = (double) r.height();
    cairo_user_to_device (cr, &x, &y);
    cairo_user_to_device_distance(cr, &w, &h);  
    const IntRect rect((int) x, (int) y, (int) w, (int) h);
   
    // The intersection of frameView contents and the movie is used as clip rect for we just want to know what part of the movie is visible.
    IntRect clip = pFV->windowClipRect(true);
    clip.intersect(rect);
    
    // Find controls intersection
    HTMLMediaElement* element = static_cast<HTMLMediaElement*>(mpWebCorePlayer->mediaPlayerClient());
    if(element && element->controls())
    {
        MediaControls* pControls = element->mediaControls();    
        bool hideControls = pControls->shouldHideControls(); 
        if (!hideControls)
        {
            const int kControlHeight = 16;  // EAWebKitTODO: Consider finding a way to extract this info directly from the controls or pass as a theme param.
            
            IntRect boundingRect = pControls->getRect();
            x = (double) boundingRect.x();
            y = (double) boundingRect.y();
            w = (double) boundingRect.width();
            h = (double) (boundingRect.height() - kControlHeight);
            cairo_user_to_device (cr, &x, &y);
            cairo_user_to_device_distance(cr, &w, &h);  
            const IntRect ctrlRect((int) x, (int) y, (int) w, (int) h);
            clip.intersect(ctrlRect);
        }
    }

    if ((rect != mMovieRect) || (clip != mWindowRect))
    {
        mMovieRect = rect;      // Store copy locally to detect changes.
        mWindowRect = clip;

        info.mMovieRect = rect;
        info.mWindowRect = clip;
        ClientUpdate(MediaUpdateInfo::kWindowSize);
    }    
 
    ClientUpdate(MediaUpdateInfo::kPaint);
    if (info.mReturnData)
    {
        // Draw surface to view
#ifndef NDEBUG
        static bool sAssertChecked = false;
        if(!sAssertChecked)
        {
            EAW_ASSERT(!info.mReturnData);   
            sAssertChecked = true;
        }
#endif
        context->save(); 
        RefPtr<cairo_surface_t> cairoSurface = adoptRef(cairo_image_surface_create_for_data((unsigned char*) info.mReturnData, CAIRO_FORMAT_ARGB32, w, h, w * sizeof(uint32_t)));
        EAW_ASSERT(cairo_surface_status(cairoSurface.get()) == CAIRO_STATUS_SUCCESS);
        cairo_set_source_surface(cr, cairoSurface.get(), rect.x(), rect.y()); 
        cairo_paint(cr);
        context->restore(); 
    }
    else
    {
        // Draw a default black background.
        context->save(); 
        context->setStrokeStyle(NoStroke);
        context->setFillColor(Color::black, ColorSpaceDeviceRGB);
        context->drawRect(r);    
        context->restore();
    }
}