Ejemplo n.º 1
0
static char* test_cbuffer_transfer_data(void) {
  CircularBuffer* src = cbuffer_new();
  CircularBuffer* dst = cbuffer_new();

  for (int i = 0; i < 200; ++i) {
    cbuffer_push_back(src, i);
  }
  mu_assert_eq("Src buffer size", cbuffer_size(src), 200);
  mu_assert_eq("Dst buffer size", cbuffer_size(dst), 0);

  // transfer data from src -> dst
  cbuffer_transfer_data(src, dst);

  mu_assert_eq("Src buffer size post transfer",
      cbuffer_size(src), 0);
  mu_assert_eq("Dst buffer size post transfer",
      cbuffer_size(dst), 200);

  // check content
  for (int i = 0; i < 200; ++i) {
    mu_assert_eq("Dst content",
        cbuffer_pop_front(dst), i);
  }

  cbuffer_free(src);
  cbuffer_free(dst);

  return 0;
}
Ejemplo n.º 2
0
static char* test_ram2()
{
    // --------------
    // Setup
    // --------------
    CircularBuffer* pc_input    = cbuffer_new();
    CircularBuffer* pc_output   = cbuffer_new();
    CircularBuffer* orsc_input  = cbuffer_new();
    CircularBuffer* orsc_output = cbuffer_new();

    VMEStream *pc_stream = vmestream_initialize_heap(pc_input, pc_output, 2);

    VMEStream *orsc_stream = malloc(sizeof(VMEStream));
    orsc_stream->input              = orsc_input;
    orsc_stream->output             = orsc_output;
    orsc_stream->local_send_size    = pc_stream->remote_send_size;
    orsc_stream->local_recv_size    = pc_stream->remote_recv_size;
    orsc_stream->remote_send_size   = pc_stream->local_send_size;
    orsc_stream->remote_recv_size   = pc_stream->local_recv_size;
    orsc_stream->recv_data          = pc_stream->send_data;
    orsc_stream->send_data          = pc_stream->recv_data;
    orsc_stream->MAXRAM             = pc_stream->MAXRAM;


    cbuffer_push_back(pc_input, 0xDEADBEEF);
    cbuffer_push_back(orsc_input, 0xBEEFCAFE);

    vmestream_transfer_data(pc_stream);

    vmestream_transfer_data(orsc_stream);
    vmestream_transfer_data(pc_stream);

    mu_assert("Error: pc_input not empty", cbuffer_size(pc_input) == 0);
    mu_assert("Error: orsc_input not empty", cbuffer_size(orsc_input) == 0);

    mu_assert("Error: orsc_output.pop != DEADBEEF", cbuffer_pop_front(orsc_output));
    mu_assert("Error: pc_output.pop != BEEFCAFE", cbuffer_pop_front(pc_output));

    mu_assert("Error: pc_output not empty", cbuffer_size(pc_output) == 0);
    mu_assert("Error: orsc_output not empty", cbuffer_size(orsc_output) == 0);

    // --------------
    // Tear-Down
    // --------------
    vmestream_destroy_heap(pc_stream);
    free(orsc_stream);
    cbuffer_free(pc_input);
    cbuffer_free(orsc_input);
    cbuffer_free(pc_output);
    cbuffer_free(orsc_output);

    return 0;
}
Ejemplo n.º 3
0
/**
 * Push less data to the buffers than we have RAM available
 */
static char *test_ram2()
{
    // local application buffers
    CircularBuffer *tx1 = cbuffer_new();
    CircularBuffer *rx1 = cbuffer_new();
    CircularBuffer *tx2 = cbuffer_new();
    CircularBuffer *rx2 = cbuffer_new();

    VMEStream *test1 = vmestream_initialize(tx1, rx1, 2);
    VMEStream *test2 = malloc(sizeof(VMEStream));
    test2->input = tx2;
    test2->output = rx2;

    test2->rx_size = test1->tx_size;
    test2->tx_size = test1->rx_size;
    test2->rx_data = test1->tx_data;
    test2->tx_data = test1->rx_data;
    test2->MAXRAM  = test1->MAXRAM;

    // place only one word on the buffers
    cbuffer_push_back(tx1, 0xDEADBEEF);
    // put some output data on host #2
    cbuffer_push_back(tx2, 0xBEEFCAFE);

    vmestream_transfer_data(test1);
    vmestream_transfer_data(test2);
    vmestream_transfer_data(test1);

    mu_assert("Error: tx1 not empty", 0 == cbuffer_size(tx1));
    mu_assert("Error: tx2 not empty", 0 == cbuffer_size(tx2));

    mu_assert("Error: 0xDEADBEEF != rx2.pop", 0xDEADBEEF == cbuffer_pop_front(rx2));
    mu_assert("Error: 0xBEEFCAFE != rx1.pop", 0xBEEFCAFE == cbuffer_pop_front(rx1));

    mu_assert("Error: rx2 not empty", 0 == cbuffer_size(rx2));
    mu_assert("Error: rx1 not empty", 0 == cbuffer_size(rx1));


    // free memory
    vmestream_destroy(test1);
    free(test2);
    cbuffer_free(tx1);
    cbuffer_free(rx1);
    cbuffer_free(tx2);
    cbuffer_free(rx2);

    return 0;
}
Ejemplo n.º 4
0
static char* test_cbuffer_append_wraps(void) {
  CircularBuffer* mybuf = cbuffer_new();
  // put us at the end of the buffer
  mybuf->pos = IO_BUFFER_SIZE - 5;
  mybuf->tail = IO_BUFFER_SIZE - 5;
  uint32_t test_data[11] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10};
  cbuffer_append(mybuf, test_data, 11);

  mu_assert_eq("pos", mybuf->pos, IO_BUFFER_SIZE - 5);
  mu_assert_eq("size", cbuffer_size(mybuf), 11);
  mu_assert_eq("tail content", memcmp(
        &(mybuf->data[mybuf->pos]),
        test_data, 
        5 * sizeof(uint32_t)), 0);

  // make sure we aren't trashing the memory after the buffer.
  //mu_assert_eq("tail content sanity", mybuf->data[IO_BUFFER_SIZE-1], 4);

  mu_assert_eq("head content", memcmp(
        mybuf->data, 
        test_data + 5, 
        6 * sizeof(uint32_t)), 0);

  uint32_t test_data2[3] = {11, 12, 13};
  cbuffer_append(mybuf, test_data2, 3);
  mu_assert_eq("size", cbuffer_size(mybuf), 14);
  mu_assert_eq("content", memcmp(&(mybuf->data[6]), test_data2, 3), 0);

  cbuffer_free(mybuf);

  return 0;
}
Ejemplo n.º 5
0
static char* test_cbuffer_pop(void) {
  CircularBuffer* mybuf = cbuffer_new();
  // put us at the end of the buffer
  mybuf->pos = IO_BUFFER_SIZE - 5;
  mybuf->tail = IO_BUFFER_SIZE - 5;
  uint32_t test_data[11] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10};
  cbuffer_append(mybuf, test_data, 11);

  Buffer* bucky = cbuffer_pop(mybuf, 5);
  mu_assert_eq("size", cbuffer_size(mybuf), 6);
  mu_assert_eq("content", memcmp(bucky->data, test_data, 
        5*sizeof(uint32_t)), 0);

  Buffer* badger = cbuffer_pop(mybuf, 6);
  mu_assert_eq("size2", cbuffer_size(mybuf), 0);
  mu_assert_eq("content2", 
      memcmp(badger->data, test_data + 5, 6), 0);

  // if we pop an empty collection, we get nothing.
  Buffer* empty = cbuffer_pop(mybuf, 10);
  mu_assert_eq("size3", empty->size, 0);

  cbuffer_free(mybuf);
  buffer_free(bucky);
  buffer_free(badger);
  buffer_free(empty);

  return 0;
}
Ejemplo n.º 6
0
/* TODO: handle disconnecting */
void ircsock_free(IRCSock *ircsock) { /*{{{*/
	if(!ircsock)
		return;
	cbuffer_free(ircsock->cbuf);
	free(ircsock->host);
	free(ircsock->nick);
	free(ircsock->chan);
	free(ircsock);
} /*}}}*/
Ejemplo n.º 7
0
static char* test_cbuffer_copy(void) {
  CircularBuffer* mybuf = cbuffer_new();
  mu_assert_eq("size", cbuffer_size(mybuf), 0);
  mu_assert_eq("pos", mybuf->pos, 0);
  mu_assert_eq("tail", mybuf->tail, 0);
  for (uint32_t i = 0; i < IO_BUFFER_SIZE - 2; ++i) {
    cbuffer_push_back(mybuf, i);
  }
  mu_assert_eq("tail", mybuf->tail, IO_BUFFER_SIZE - 2);
  CircularBuffer* copy = cbuffer_copy(mybuf);
  mu_assert_eq("content", memcmp(mybuf->data, copy->data, 
        IO_BUFFER_SIZE * sizeof(uint32_t)), 0);
  mu_assert_eq("pos copy", mybuf->pos, copy->pos);
  mu_assert_eq("tail copy", mybuf->tail, copy->tail);

  cbuffer_free(mybuf);
  cbuffer_free(copy);

  return 0;
}
Ejemplo n.º 8
0
static char* test_cbuffer_new(void) {
  CircularBuffer* mybuf = cbuffer_new();
  mu_assert_eq("size", cbuffer_size(mybuf), 0);
  mu_assert_eq("pos", mybuf->pos, 0);
  mu_assert_eq("freespace", cbuffer_freespace(mybuf), IO_BUFFER_SIZE - 1);
  mu_assert_eq("init is zero", (mybuf->data[0]), 0);

  cbuffer_free(mybuf);

  return 0;
}
Ejemplo n.º 9
0
static char* test_cbuffer_size(void) {
  CircularBuffer* mybuf = cbuffer_new();
  mybuf->pos = IO_BUFFER_SIZE - 5;
  mybuf->tail = IO_BUFFER_SIZE - 5;
  mu_assert_eq("size0", cbuffer_size(mybuf), 0);
  for (int i = 0; i < 15; ++i) {
    cbuffer_push_back(mybuf, i);
    mu_assert_eq("size", cbuffer_size(mybuf), i + 1);
  }

  cbuffer_free(mybuf);

  return 0;
}
Ejemplo n.º 10
0
static char* test_cbuffer_contiguous_data_size(void) {
  CircularBuffer* mybuf = cbuffer_new();
  mybuf->pos = IO_BUFFER_SIZE - 5;
  mybuf->tail = IO_BUFFER_SIZE - 5;
  mu_assert_eq("size0", cbuffer_contiguous_data_size(mybuf), 0);
  mybuf->tail = 10;
  mu_assert_eq("size5", cbuffer_contiguous_data_size(mybuf), 5);
  mybuf->pos = 3;
  mu_assert_eq("size7", cbuffer_contiguous_data_size(mybuf), 7);

  cbuffer_free(mybuf);

  return 0;
}
Ejemplo n.º 11
0
static char* test_cbuffer_freespace(void) {
  CircularBuffer* mybuf = cbuffer_new();
  mybuf->tail = IO_BUFFER_SIZE - 5;
  mu_assert_eq("freespace", cbuffer_freespace(mybuf), 4);
  mu_assert_eq("size", cbuffer_size(mybuf), IO_BUFFER_SIZE - 5);
  for (int i = 1; i < 5; ++i) {
    cbuffer_push_back(mybuf, i);
    mu_assert_eq("freespace", cbuffer_freespace(mybuf), 4 - i);
  }

  cbuffer_free(mybuf);

  return 0;
}
Ejemplo n.º 12
0
static char* test_cbuffer_net_features(void) {
  CircularBuffer* mybuf = cbuffer_new();
  // put us at the end of the buffer
  cbuffer_push_back_net(mybuf, 0xDEADBEEF);
  cbuffer_push_back_net(mybuf, 0xBEEFFACE);
  cbuffer_push_back_net(mybuf, 0xDEADFACE);

  mu_assert_eq("item0", cbuffer_value_at_net(mybuf, 0), 0xDEADBEEF);
  mu_assert_eq("item1", cbuffer_value_at_net(mybuf, 1), 0xBEEFFACE);
  mu_assert_eq("item2", cbuffer_value_at_net(mybuf, 2), 0xDEADFACE);

  cbuffer_free(mybuf);

  return 0;
}
Ejemplo n.º 13
0
static char* test_cbuffer_value_at_wraps(void) {
  CircularBuffer* mybuf = cbuffer_new();
  // put us at the end of the buffer
  mybuf->pos = IO_BUFFER_SIZE - 5;
  mybuf->tail = IO_BUFFER_SIZE - 5;
  uint32_t test_data[11] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10};
  cbuffer_append(mybuf, test_data, 11);
  for (int i = 0; i < 11; ++i) {
    mu_assert_eq("read at", cbuffer_value_at(mybuf, i), test_data[i]);
  }

  cbuffer_free(mybuf);

  return 0;
}
Ejemplo n.º 14
0
static char* test_cbuffer_fd_full(void) {
  // make sure we can stop reading if our read buffer is full
  // make pipes 
  int pipefd[2];
  pipe(pipefd);

  // make txpipe nonblocking, so we can check if it's empty.
  fcntl(pipefd[0], F_SETFL, fcntl(pipefd[0], F_GETFL) | O_NONBLOCK);

  int in = pipefd[1];
  int out = pipefd[0];

  CircularBuffer* frombuf = cbuffer_new();
  for (int i = 0; i < 200; ++i) {
    cbuffer_push_back(frombuf, i);
  }
  mu_assert_eq("from size", cbuffer_size(frombuf), 200);

  CircularBuffer* tobuf = cbuffer_new();
  tobuf->pos = IO_BUFFER_SIZE - 100;
  tobuf->tail = IO_BUFFER_SIZE - 100;

  ssize_t written = cbuffer_write_fd(frombuf, in, 200);
  mu_assert_eq("wrote to pipe", written, 200);
  mu_assert_eq("from size after", cbuffer_size(frombuf), 0);
  tobuf->tail += IO_BUFFER_SIZE - 100;
  mu_assert_eq("to freespace", cbuffer_freespace(tobuf), 99);
  ssize_t read = cbuffer_read_fd(tobuf, out, 200);
  ssize_t exp = 99;
  mu_assert_eq("read from pipe", (int)read, (int)exp);

  cbuffer_free(frombuf);
  cbuffer_free(tobuf);

  return 0;
}
Ejemplo n.º 15
0
static char* test_cbuffer_fd_features(void) {
  // make pipes 
  int pipefd[2];
  pipe(pipefd);

  // make txpipe nonblocking, so we can check if it's empty.
  fcntl(pipefd[0], F_SETFL, fcntl(pipefd[0], F_GETFL) | O_NONBLOCK);

  int in = pipefd[1];
  int out = pipefd[0];

  CircularBuffer* frombuf = cbuffer_new();
  for (int i = 0; i < 200; ++i) {
    cbuffer_push_back(frombuf, i);
  }
  mu_assert_eq("from size", cbuffer_size(frombuf), 200);

  CircularBuffer* tobuf = cbuffer_new();
  tobuf->pos = IO_BUFFER_SIZE - 100;
  tobuf->tail = IO_BUFFER_SIZE - 100;

  ssize_t written = cbuffer_write_fd(frombuf, in, 200);
  mu_assert_eq("wrote to pipe", written, 200);
  mu_assert_eq("from size after", cbuffer_size(frombuf), 0);
  ssize_t read = cbuffer_read_fd(tobuf, out, 200);
  mu_assert_eq("read from pipe", read, 200);

  for (int i = 0; i < 200; ++i) {
    mu_assert_eq("fd closure value", cbuffer_value_at(tobuf, i), i);
  }

  cbuffer_free(frombuf);
  cbuffer_free(tobuf);

  return 0;
}
Ejemplo n.º 16
0
static char* test_cbuffer_read_wraps(void) {
  CircularBuffer* mybuf = cbuffer_new();
  // put us at the end of the buffer
  mybuf->pos = IO_BUFFER_SIZE - 5;
  mybuf->tail = IO_BUFFER_SIZE - 5;
  uint32_t test_data[11] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10};
  cbuffer_append(mybuf, test_data, 11);
  Buffer* readout = buffer_new(NULL, 11);
  cbuffer_read(mybuf, readout->data, 11);
  mu_assert_eq("size", readout->size, 11);
  mu_assert_eq("content", memcmp(readout->data, test_data, 11 * sizeof(uint32_t)), 0);

  cbuffer_free(mybuf);
  buffer_free(readout);

  return 0;
}
Ejemplo n.º 17
0
static char* test_cbuffer_read(void) {
  CircularBuffer* mybuf = cbuffer_new();
  Buffer* readout = buffer_new(NULL, 11);
  uint32_t test_data[11] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10};
  cbuffer_append(mybuf, test_data, 11);
  cbuffer_read(mybuf, readout->data, 11);
  mu_assert_eq("size", readout->size, 11);
  mu_assert_eq("content", memcmp(readout->data, test_data, 11 * sizeof(uint32_t)), 0);
  // if we ask for too much it cbuffer gives us what it has.
  Buffer* readout2 = buffer_new(NULL, 30);
  int actually_read = cbuffer_read(mybuf, readout2->data, 30);
  mu_assert_eq("size2", actually_read, 11);
  mu_assert_eq("content2", memcmp(readout2->data, test_data, 11 * sizeof(uint32_t)), 0);

  cbuffer_free(mybuf);
  buffer_free(readout);
  buffer_free(readout2);

  return 0;
}
Ejemplo n.º 18
0
static char* test_cbuffer_push_back(void) {
  CircularBuffer* mybuf = cbuffer_new();
  // put us at the end of the buffer
  mybuf->pos = IO_BUFFER_SIZE - 2;
  mybuf->tail = IO_BUFFER_SIZE - 2;
  cbuffer_push_back(mybuf, 0xDEADBEEF);
  cbuffer_push_back(mybuf, 0xBEEFFACE);
  cbuffer_push_back(mybuf, 0xDEADFACE);

  mu_assert_eq("size", cbuffer_size(mybuf), 3);
  mu_assert_eq("pos", mybuf->pos, IO_BUFFER_SIZE-2);

  mu_assert_eq("item0", mybuf->data[mybuf->pos], 0xDEADBEEF);
  mu_assert_eq("item1", mybuf->data[mybuf->pos + 1], 0xBEEFFACE);
  mu_assert_eq("item2", mybuf->data[0], 0xDEADFACE);

  cbuffer_free(mybuf);

  return 0;
}
Ejemplo n.º 19
0
static char* test_cbuffer_append(void) {
  CircularBuffer* mybuf = cbuffer_new();
  uint32_t test_data[5] = {0, 1, 2, 3, 4};
  cbuffer_append(mybuf, test_data, 5);
  mu_assert_eq("pos", mybuf->pos, 0);
  mu_assert_eq("size", cbuffer_size(mybuf), 5);
  mu_assert_eq("content", memcmp(mybuf->data, test_data, 5 * sizeof(uint32_t)), 0);

  uint32_t test_data2[3] = {6, 7, 8};
  cbuffer_append(mybuf, test_data2, 3);
  mu_assert_eq("pos", mybuf->pos, 0);
  mu_assert_eq("size", cbuffer_size(mybuf), 8);
  mu_assert_eq("content2", memcmp(mybuf->data, test_data, 5 * sizeof(uint32_t)), 0);

  mu_assert_eq("content3", memcmp(&(mybuf->data[5]), 
        test_data2, 3 * sizeof(uint32_t)), 0);

  cbuffer_free(mybuf);

  return 0;
}
Ejemplo n.º 20
0
static char* test_cbuffer_delete_front_wraps(void) {
  CircularBuffer* mybuf = cbuffer_new();
  uint32_t test_data[11] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10};
  // put us at the end of the buffer
  mybuf->pos = IO_BUFFER_SIZE - 5;
  mybuf->tail = IO_BUFFER_SIZE - 5;
  cbuffer_append(mybuf, test_data, 11);
  mu_assert_eq("content", memcmp(&(mybuf->data[mybuf->pos]), 
        test_data, 5 * sizeof(uint32_t)), 0);
  int deleted = cbuffer_deletefront(mybuf, 5);
  mu_assert_eq("deleted", deleted, 5);
  mu_assert_eq("pos", mybuf->pos, 0);
  mu_assert_eq("size", cbuffer_size(mybuf), 6);

  mu_assert_eq("item0", mybuf->data[mybuf->pos], 5);
  mu_assert_eq("item1", mybuf->data[mybuf->pos+1], 6);
  mu_assert_eq("item2", mybuf->data[mybuf->pos+2], 7);

  mu_assert_eq("remaining content in cbuffer", memcmp(
        &(mybuf->data[0]), 
        test_data + 5, 6 * sizeof(uint32_t)), 0);

  Buffer* readout = buffer_new(NULL, 6);
  cbuffer_read(mybuf, readout->data, 6);
  mu_assert_eq("remaining content", memcmp(
        readout->data, 
        (test_data + 5), 
        6 * sizeof(uint32_t)), 0);

  // if we ask to delete everything, just return what was actually deleted.
  int deleted_just_to_end = cbuffer_deletefront(mybuf, 100);
  mu_assert_eq("deleted just to end", deleted_just_to_end, 6);
  mu_assert_eq("pos2", mybuf->pos, 6);
  mu_assert_eq("size2", cbuffer_size(mybuf), 0);

  cbuffer_free(mybuf);
  buffer_free(readout);

  return 0;
}
Ejemplo n.º 21
0
static char* test_cbuffer_pop_front(void) {
  CircularBuffer* mybuf = cbuffer_new();
  // put us at the end of the buffer
  mybuf->pos = IO_BUFFER_SIZE - 5;
  mybuf->tail = IO_BUFFER_SIZE - 5;
  uint32_t test_data[11] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10};
  cbuffer_append(mybuf, test_data, 11);

  for (int i = 0; i < 11; i++) {
    mu_assert_eq("pre-pop size", cbuffer_size(mybuf), 11 - i);
    uint32_t value = cbuffer_pop_front(mybuf);
    mu_assert_eq("popped_content", (int)value, i);
  }

  // if we pop an empty collection, we get dead beef.
  uint32_t empty = cbuffer_pop_front(mybuf);
  mu_assert_eq("empty", empty, 0xDEADBEEF);

  cbuffer_free(mybuf);

  return 0;
}
Ejemplo n.º 22
0
/*
 * Make sure cbuffer_fd_read handles the edge case where cbuffer->tail returns
 * to the front of buffer->data
 */
static char* test_cbuffer_fd_read_edge(void) {
  int pipefd[2];
  pipe(pipefd);

  fcntl(pipefd[0], F_SETFL, fcntl(pipefd[0], F_GETFL) | O_NONBLOCK);

  int in = pipefd[1];
  int out = pipefd[0];

  CircularBuffer* mybuf = cbuffer_new();

  // completely fill buffer
  while (cbuffer_freespace(mybuf) > 0) {
    mu_assert_eq("mybuf overflow", cbuffer_push_back(mybuf, 0xDEADBEEF), 0);
  }
  mu_assert_eq("mybuf still has free space", cbuffer_freespace(mybuf), 0);

  // clear a single space in the cbuffer
  // free space should be at the front of cbuffer->data
  cbuffer_deletefront(mybuf, 1);

  uint32_t inbuf[] = {0xCAFEBABE};
  write(in, inbuf, sizeof(uint32_t));

  // read a single word into the free slot in the buffer
  mu_assert_eq("Could not read data", cbuffer_read_fd(mybuf, out, 1), 1);

  // check the content of the cbuffer
  while (cbuffer_size(mybuf) > 1) {
    mu_assert_eq("Content should be 0xDEADBEEF",
        cbuffer_pop_front(mybuf), 0xDEADBEEF);
  }
  mu_assert_eq("Content should be 0xCAFEBABE",
      cbuffer_pop_front(mybuf), 0xCAFEBABE);

  cbuffer_free(mybuf);
  return 0;
}
Ejemplo n.º 23
0
/**
 * Overload buffer test
 */
static char *test_buf()
{
    // local application buffers
    CircularBuffer *tx1 = cbuffer_new();
    CircularBuffer *rx1 = cbuffer_new();
    CircularBuffer *tx2 = cbuffer_new();
    CircularBuffer *rx2 = cbuffer_new();

    VMEStream *test1 = vmestream_initialize(tx1, rx1, 32);
    VMEStream *test2 = malloc(sizeof(VMEStream));
    test2->input = tx2;
    test2->output = rx2;

    test2->rx_size = test1->tx_size;
    test2->tx_size = test1->rx_size;
    test2->rx_data = test1->tx_data;
    test2->tx_data = test1->rx_data;
    test2->MAXRAM  = test1->MAXRAM;


    cbuffer_push_back(rx2, 0xDEADBEEF);
    for (int i = 0; i < 510; i++) {
        cbuffer_push_back(rx2, 0xBEEFCAFE);
    }
    cbuffer_push_back(tx1, 0xBEEFCAFE + 1);
    cbuffer_push_back(tx1, 0xBEEFCAFE + 2);
    cbuffer_push_back(tx1, 0xBEEFCAFE + 3);
    cbuffer_push_back(tx1, 0xBEEFCAFE + 4);

    mu_assert("Error: rx2 should have no space left", 
        cbuffer_freespace(rx2) == 0);
    // sanity check
    mu_assert_eq("Error: output size != 4", cbuffer_size(tx1), 4);

    // do several transfers
    vmestream_transfer_data(test1);
    vmestream_transfer_data(test2);
    vmestream_transfer_data(test1);
    vmestream_transfer_data(test2);

    // no data should have been transferred
    mu_assert_eq("Error: tx_size != 4", *(test1->tx_size), 4);
    mu_assert("Error: rx2.pop != 0xDEADBEEF", 0xDEADBEEF == cbuffer_pop_front(rx2));
    cbuffer_pop_front(rx2);
    cbuffer_pop_front(rx2);

    // popping off rx2 should have freed 3 words, but not enough to transfer all
    // four
    vmestream_transfer_data(test1);
    vmestream_transfer_data(test2);

    mu_assert_eq("Error: tx_size != 4", *(test1->tx_size), 4);
    mu_assert("Errrr: rx2.pop not 0xBEEFCAFE", 0xBEEFCAFE == cbuffer_pop_front(rx2));

    cbuffer_pop_front(rx2);
    // now there is enough room for all the limbo data to be transferred to rx2
    vmestream_transfer_data(test1);
    vmestream_transfer_data(test2);

    mu_assert("Error: tx_size != 0", *(test1->tx_size) == 0);
    mu_assert("Error: tx1 not empty", 0 == cbuffer_size(tx1));
    for (int i = 0; i < 4; ++i) {
      mu_assert_eq("Unexpected data transferred", 
          cbuffer_value_at(rx2, cbuffer_size(rx2) - 4 + i), 0xBEEFCAFE + i + 1);
    }


    // free memory
    vmestream_destroy(test1);
    free(test2);
    cbuffer_free(tx1);
    cbuffer_free(rx1);
    cbuffer_free(tx2);
    cbuffer_free(rx2);

    return 0;
}
Ejemplo n.º 24
0
static char *test_ram1()
{
    // local application buffers
    CircularBuffer *tx1 = cbuffer_new();
    CircularBuffer *rx1 = cbuffer_new();
    CircularBuffer *tx2 = cbuffer_new();
    CircularBuffer *rx2 = cbuffer_new();

    VMEStream *test1 = vmestream_initialize(tx1, rx1, 1);
    VMEStream *test2 = malloc(sizeof(VMEStream));
    test2->input = tx2;
    test2->output = rx2;

    test2->rx_size = test1->tx_size;
    test2->tx_size = test1->rx_size;
    test2->rx_data = test1->tx_data;
    test2->tx_data = test1->rx_data;
    test2->MAXRAM  = test1->MAXRAM;

    for (unsigned int i = 0; i < 20; ++i) {
        // put some output data on host #1
        cbuffer_push_back(tx1, 0xDEADBEEF + i);
        // put some output data on host #2
        cbuffer_push_back(tx2, 0xBEEFCAFE + i);
    }

    // do a transfer
    vmestream_transfer_data(test1); // step 1 
    vmestream_transfer_data(test2); // step 2

    // host #2 has received data, since host #1 filled it's TX buffer in step 1
    // and host #2 can read it out in step 2
    mu_assert("Error: 0xDEADBEEF != rx2.pop", 0xDEADBEEF == cbuffer_pop_front(rx2));

    vmestream_transfer_data(test1); // step 3
    // now host #1 can read the data loaded by host #2 in step 2
    mu_assert("Error: 0xBEEFCAFE != rx1.pop", 0xBEEFCAFE == cbuffer_pop_front(rx1));

    // do another transfer
    vmestream_transfer_data(test2);
    vmestream_transfer_data(test1);

    mu_assert("Error: 0xBEEFCAFE+1 != rx1.pop", 0xBEEFCAFE + 1 == cbuffer_pop_front(rx1));
    mu_assert("Error: 0xDEADBEEF+1 != rx2.pop", 0xDEADBEEF + 1 == cbuffer_pop_front(rx2));

    // We have consumed all received data (via pop).  There is a word of 
    // data in limbo for host #1
    mu_assert("Error: 0 != rx1.size", 0 == cbuffer_size(rx1));
    mu_assert("Error: 0 != rx2.size", 0 == cbuffer_size(rx2));
    mu_assert("Error: 17 != tx1.size", 17 == cbuffer_size(tx1));
    mu_assert("Error: 18 != tx2.size", 18 == cbuffer_size(tx2));

    // call transfer on #1 twice in a row.  Since it's still waiting for
    // #2 to read the data, nothing happens.
    vmestream_transfer_data(test1);
    mu_assert("Error: 0 != rx1.size", 0 == cbuffer_size(rx1));
    mu_assert("Error: 0 != rx2.size", 0 == cbuffer_size(rx2));
    mu_assert("Error: 17 != tx1.size", 17 == cbuffer_size(tx1));
    mu_assert("Error: 18 != tx2.size", 18 == cbuffer_size(tx2));

    // #2 receives limbo data, puts one of it's words in limbo.
    vmestream_transfer_data(test2);
    mu_assert("Error: 0 != rx1.size", 0 == cbuffer_size(rx1));
    mu_assert("Error: 1 != rx2.size", 1 == cbuffer_size(rx2));
    mu_assert("Error: 17 != tx1.size", 17 == cbuffer_size(tx1));
    mu_assert("Error: 17 != tx2.size", 17 == cbuffer_size(tx2));


    // free memory
    vmestream_destroy(test1);
    free(test2);
    cbuffer_free(tx1);
    cbuffer_free(rx1);
    cbuffer_free(tx2);
    cbuffer_free(rx2);

    return 0;
}
Ejemplo n.º 25
0
static char* test_ram1()
{
    CircularBuffer* pc_input    = cbuffer_new();
    CircularBuffer* pc_output   = cbuffer_new();
    CircularBuffer* orsc_input  = cbuffer_new();
    CircularBuffer* orsc_output = cbuffer_new();

    VMEStream *pc_stream = vmestream_initialize_heap(pc_input, pc_output, 1);

    VMEStream *orsc_stream = malloc(sizeof(VMEStream));
    orsc_stream->input              = orsc_input;
    orsc_stream->output             = orsc_output;
    orsc_stream->local_send_size    = pc_stream->remote_send_size;
    orsc_stream->local_recv_size    = pc_stream->remote_recv_size;
    orsc_stream->remote_send_size   = pc_stream->local_send_size;
    orsc_stream->remote_recv_size   = pc_stream->local_recv_size;
    orsc_stream->recv_data          = pc_stream->send_data;
    orsc_stream->send_data          = pc_stream->recv_data;
    orsc_stream->MAXRAM             = pc_stream->MAXRAM;

    for (uint32_t i = 0; i < 20; ++i) {
        cbuffer_push_back(pc_input, 0xDEADBEEF + i);
        cbuffer_push_back(orsc_input, 0xBEEFCAFE + i);
    }

    // initial transfer
    vmestream_transfer_data(pc_stream);

    // transfer data
    vmestream_transfer_data(orsc_stream);
    vmestream_transfer_data(pc_stream);

    mu_assert("Error: orsc_output.pop != DEADBEEF", cbuffer_pop_front(orsc_output) == 0xDEADBEEF);
    mu_assert("Error: pc_output.pop != BEEFCAFE", cbuffer_pop_front(pc_output) == 0xBEEFCAFE);

    // extra transfer is needed to reset the size registers
    // to zero to prepare for another transfer
    vmestream_transfer_data(orsc_stream);
    vmestream_transfer_data(pc_stream);

    // transfer data
    vmestream_transfer_data(orsc_stream);
    vmestream_transfer_data(pc_stream);

    mu_assert("Error: orsc_output.pop != DEADBEEF + 1", cbuffer_pop_front(orsc_output) == 0xDEADBEEF + 1);
    mu_assert("Error: pc_output.pop != BEEFCAFE + 1", cbuffer_pop_front(pc_output) == 0xBEEFCAFE + 1);

    /*
    printf("pc_output.size: %d\n", cbuffer_size(pc_output));
    printf("orsc_output.size: %d\n", cbuffer_size(orsc_output));
    printf("pc_input.size: %d\n", cbuffer_size(pc_input));
    printf("orsc_input.size: %d\n", cbuffer_size(orsc_input));
    */

    mu_assert("Error: pc_output.size != 0", cbuffer_size(pc_output) == 0);
    mu_assert("Error: orsc_output.size != 0", cbuffer_size(orsc_output) == 0);
    mu_assert("Error: pc_input.size != 18", cbuffer_size(pc_input) == 18);
    mu_assert("Error: orsc_input.size != 18", cbuffer_size(orsc_input) == 18);

    // transfer on pc_stream 2x in a row. Nothing should happen.
    vmestream_transfer_data(pc_stream);
    mu_assert("Error: pc_output.size != 0", cbuffer_size(pc_output) == 0);
    mu_assert("Error: orsc_output.size != 0", cbuffer_size(orsc_output) == 0);
    mu_assert("Error: pc_input.size != 18", cbuffer_size(pc_input) == 18);
    mu_assert("Error: orsc_input.size != 18", cbuffer_size(orsc_input) == 18);

    // reset
    vmestream_transfer_data(orsc_stream);
    vmestream_transfer_data(pc_stream);

    vmestream_transfer_data(orsc_stream);
    mu_assert("Error: pc_output.size != 0", cbuffer_size(pc_output) == 0);
    mu_assert("Error: orsc_output.size != 1", cbuffer_size(orsc_output) == 1);
    mu_assert("Error: pc_input.size != 17", cbuffer_size(pc_input) == 17);
    mu_assert("Error: orsc_input.size != 17", cbuffer_size(orsc_input) == 17);

    vmestream_destroy_heap(pc_stream);
    free(orsc_stream);
    cbuffer_free(pc_input);
    cbuffer_free(orsc_input);
    cbuffer_free(pc_output);
    cbuffer_free(orsc_output);

    return 0;
}
Ejemplo n.º 26
0
static char* test_cbuffer_free(void) {
  CircularBuffer* mybuf = cbuffer_new();
  // doesn't crash
  cbuffer_free(mybuf);
  return 0;
}