static char* test_cbuffer_transfer_data(void) { CircularBuffer* src = cbuffer_new(); CircularBuffer* dst = cbuffer_new(); for (int i = 0; i < 200; ++i) { cbuffer_push_back(src, i); } mu_assert_eq("Src buffer size", cbuffer_size(src), 200); mu_assert_eq("Dst buffer size", cbuffer_size(dst), 0); // transfer data from src -> dst cbuffer_transfer_data(src, dst); mu_assert_eq("Src buffer size post transfer", cbuffer_size(src), 0); mu_assert_eq("Dst buffer size post transfer", cbuffer_size(dst), 200); // check content for (int i = 0; i < 200; ++i) { mu_assert_eq("Dst content", cbuffer_pop_front(dst), i); } cbuffer_free(src); cbuffer_free(dst); return 0; }
static char* test_ram2() { // -------------- // Setup // -------------- CircularBuffer* pc_input = cbuffer_new(); CircularBuffer* pc_output = cbuffer_new(); CircularBuffer* orsc_input = cbuffer_new(); CircularBuffer* orsc_output = cbuffer_new(); VMEStream *pc_stream = vmestream_initialize_heap(pc_input, pc_output, 2); VMEStream *orsc_stream = malloc(sizeof(VMEStream)); orsc_stream->input = orsc_input; orsc_stream->output = orsc_output; orsc_stream->local_send_size = pc_stream->remote_send_size; orsc_stream->local_recv_size = pc_stream->remote_recv_size; orsc_stream->remote_send_size = pc_stream->local_send_size; orsc_stream->remote_recv_size = pc_stream->local_recv_size; orsc_stream->recv_data = pc_stream->send_data; orsc_stream->send_data = pc_stream->recv_data; orsc_stream->MAXRAM = pc_stream->MAXRAM; cbuffer_push_back(pc_input, 0xDEADBEEF); cbuffer_push_back(orsc_input, 0xBEEFCAFE); vmestream_transfer_data(pc_stream); vmestream_transfer_data(orsc_stream); vmestream_transfer_data(pc_stream); mu_assert("Error: pc_input not empty", cbuffer_size(pc_input) == 0); mu_assert("Error: orsc_input not empty", cbuffer_size(orsc_input) == 0); mu_assert("Error: orsc_output.pop != DEADBEEF", cbuffer_pop_front(orsc_output)); mu_assert("Error: pc_output.pop != BEEFCAFE", cbuffer_pop_front(pc_output)); mu_assert("Error: pc_output not empty", cbuffer_size(pc_output) == 0); mu_assert("Error: orsc_output not empty", cbuffer_size(orsc_output) == 0); // -------------- // Tear-Down // -------------- vmestream_destroy_heap(pc_stream); free(orsc_stream); cbuffer_free(pc_input); cbuffer_free(orsc_input); cbuffer_free(pc_output); cbuffer_free(orsc_output); return 0; }
/** * Push less data to the buffers than we have RAM available */ static char *test_ram2() { // local application buffers CircularBuffer *tx1 = cbuffer_new(); CircularBuffer *rx1 = cbuffer_new(); CircularBuffer *tx2 = cbuffer_new(); CircularBuffer *rx2 = cbuffer_new(); VMEStream *test1 = vmestream_initialize(tx1, rx1, 2); VMEStream *test2 = malloc(sizeof(VMEStream)); test2->input = tx2; test2->output = rx2; test2->rx_size = test1->tx_size; test2->tx_size = test1->rx_size; test2->rx_data = test1->tx_data; test2->tx_data = test1->rx_data; test2->MAXRAM = test1->MAXRAM; // place only one word on the buffers cbuffer_push_back(tx1, 0xDEADBEEF); // put some output data on host #2 cbuffer_push_back(tx2, 0xBEEFCAFE); vmestream_transfer_data(test1); vmestream_transfer_data(test2); vmestream_transfer_data(test1); mu_assert("Error: tx1 not empty", 0 == cbuffer_size(tx1)); mu_assert("Error: tx2 not empty", 0 == cbuffer_size(tx2)); mu_assert("Error: 0xDEADBEEF != rx2.pop", 0xDEADBEEF == cbuffer_pop_front(rx2)); mu_assert("Error: 0xBEEFCAFE != rx1.pop", 0xBEEFCAFE == cbuffer_pop_front(rx1)); mu_assert("Error: rx2 not empty", 0 == cbuffer_size(rx2)); mu_assert("Error: rx1 not empty", 0 == cbuffer_size(rx1)); // free memory vmestream_destroy(test1); free(test2); cbuffer_free(tx1); cbuffer_free(rx1); cbuffer_free(tx2); cbuffer_free(rx2); return 0; }
static char* test_cbuffer_append_wraps(void) { CircularBuffer* mybuf = cbuffer_new(); // put us at the end of the buffer mybuf->pos = IO_BUFFER_SIZE - 5; mybuf->tail = IO_BUFFER_SIZE - 5; uint32_t test_data[11] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10}; cbuffer_append(mybuf, test_data, 11); mu_assert_eq("pos", mybuf->pos, IO_BUFFER_SIZE - 5); mu_assert_eq("size", cbuffer_size(mybuf), 11); mu_assert_eq("tail content", memcmp( &(mybuf->data[mybuf->pos]), test_data, 5 * sizeof(uint32_t)), 0); // make sure we aren't trashing the memory after the buffer. //mu_assert_eq("tail content sanity", mybuf->data[IO_BUFFER_SIZE-1], 4); mu_assert_eq("head content", memcmp( mybuf->data, test_data + 5, 6 * sizeof(uint32_t)), 0); uint32_t test_data2[3] = {11, 12, 13}; cbuffer_append(mybuf, test_data2, 3); mu_assert_eq("size", cbuffer_size(mybuf), 14); mu_assert_eq("content", memcmp(&(mybuf->data[6]), test_data2, 3), 0); cbuffer_free(mybuf); return 0; }
static char* test_cbuffer_pop(void) { CircularBuffer* mybuf = cbuffer_new(); // put us at the end of the buffer mybuf->pos = IO_BUFFER_SIZE - 5; mybuf->tail = IO_BUFFER_SIZE - 5; uint32_t test_data[11] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10}; cbuffer_append(mybuf, test_data, 11); Buffer* bucky = cbuffer_pop(mybuf, 5); mu_assert_eq("size", cbuffer_size(mybuf), 6); mu_assert_eq("content", memcmp(bucky->data, test_data, 5*sizeof(uint32_t)), 0); Buffer* badger = cbuffer_pop(mybuf, 6); mu_assert_eq("size2", cbuffer_size(mybuf), 0); mu_assert_eq("content2", memcmp(badger->data, test_data + 5, 6), 0); // if we pop an empty collection, we get nothing. Buffer* empty = cbuffer_pop(mybuf, 10); mu_assert_eq("size3", empty->size, 0); cbuffer_free(mybuf); buffer_free(bucky); buffer_free(badger); buffer_free(empty); return 0; }
/* TODO: handle disconnecting */ void ircsock_free(IRCSock *ircsock) { /*{{{*/ if(!ircsock) return; cbuffer_free(ircsock->cbuf); free(ircsock->host); free(ircsock->nick); free(ircsock->chan); free(ircsock); } /*}}}*/
static char* test_cbuffer_copy(void) { CircularBuffer* mybuf = cbuffer_new(); mu_assert_eq("size", cbuffer_size(mybuf), 0); mu_assert_eq("pos", mybuf->pos, 0); mu_assert_eq("tail", mybuf->tail, 0); for (uint32_t i = 0; i < IO_BUFFER_SIZE - 2; ++i) { cbuffer_push_back(mybuf, i); } mu_assert_eq("tail", mybuf->tail, IO_BUFFER_SIZE - 2); CircularBuffer* copy = cbuffer_copy(mybuf); mu_assert_eq("content", memcmp(mybuf->data, copy->data, IO_BUFFER_SIZE * sizeof(uint32_t)), 0); mu_assert_eq("pos copy", mybuf->pos, copy->pos); mu_assert_eq("tail copy", mybuf->tail, copy->tail); cbuffer_free(mybuf); cbuffer_free(copy); return 0; }
static char* test_cbuffer_new(void) { CircularBuffer* mybuf = cbuffer_new(); mu_assert_eq("size", cbuffer_size(mybuf), 0); mu_assert_eq("pos", mybuf->pos, 0); mu_assert_eq("freespace", cbuffer_freespace(mybuf), IO_BUFFER_SIZE - 1); mu_assert_eq("init is zero", (mybuf->data[0]), 0); cbuffer_free(mybuf); return 0; }
static char* test_cbuffer_size(void) { CircularBuffer* mybuf = cbuffer_new(); mybuf->pos = IO_BUFFER_SIZE - 5; mybuf->tail = IO_BUFFER_SIZE - 5; mu_assert_eq("size0", cbuffer_size(mybuf), 0); for (int i = 0; i < 15; ++i) { cbuffer_push_back(mybuf, i); mu_assert_eq("size", cbuffer_size(mybuf), i + 1); } cbuffer_free(mybuf); return 0; }
static char* test_cbuffer_contiguous_data_size(void) { CircularBuffer* mybuf = cbuffer_new(); mybuf->pos = IO_BUFFER_SIZE - 5; mybuf->tail = IO_BUFFER_SIZE - 5; mu_assert_eq("size0", cbuffer_contiguous_data_size(mybuf), 0); mybuf->tail = 10; mu_assert_eq("size5", cbuffer_contiguous_data_size(mybuf), 5); mybuf->pos = 3; mu_assert_eq("size7", cbuffer_contiguous_data_size(mybuf), 7); cbuffer_free(mybuf); return 0; }
static char* test_cbuffer_freespace(void) { CircularBuffer* mybuf = cbuffer_new(); mybuf->tail = IO_BUFFER_SIZE - 5; mu_assert_eq("freespace", cbuffer_freespace(mybuf), 4); mu_assert_eq("size", cbuffer_size(mybuf), IO_BUFFER_SIZE - 5); for (int i = 1; i < 5; ++i) { cbuffer_push_back(mybuf, i); mu_assert_eq("freespace", cbuffer_freespace(mybuf), 4 - i); } cbuffer_free(mybuf); return 0; }
static char* test_cbuffer_net_features(void) { CircularBuffer* mybuf = cbuffer_new(); // put us at the end of the buffer cbuffer_push_back_net(mybuf, 0xDEADBEEF); cbuffer_push_back_net(mybuf, 0xBEEFFACE); cbuffer_push_back_net(mybuf, 0xDEADFACE); mu_assert_eq("item0", cbuffer_value_at_net(mybuf, 0), 0xDEADBEEF); mu_assert_eq("item1", cbuffer_value_at_net(mybuf, 1), 0xBEEFFACE); mu_assert_eq("item2", cbuffer_value_at_net(mybuf, 2), 0xDEADFACE); cbuffer_free(mybuf); return 0; }
static char* test_cbuffer_value_at_wraps(void) { CircularBuffer* mybuf = cbuffer_new(); // put us at the end of the buffer mybuf->pos = IO_BUFFER_SIZE - 5; mybuf->tail = IO_BUFFER_SIZE - 5; uint32_t test_data[11] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10}; cbuffer_append(mybuf, test_data, 11); for (int i = 0; i < 11; ++i) { mu_assert_eq("read at", cbuffer_value_at(mybuf, i), test_data[i]); } cbuffer_free(mybuf); return 0; }
static char* test_cbuffer_fd_full(void) { // make sure we can stop reading if our read buffer is full // make pipes int pipefd[2]; pipe(pipefd); // make txpipe nonblocking, so we can check if it's empty. fcntl(pipefd[0], F_SETFL, fcntl(pipefd[0], F_GETFL) | O_NONBLOCK); int in = pipefd[1]; int out = pipefd[0]; CircularBuffer* frombuf = cbuffer_new(); for (int i = 0; i < 200; ++i) { cbuffer_push_back(frombuf, i); } mu_assert_eq("from size", cbuffer_size(frombuf), 200); CircularBuffer* tobuf = cbuffer_new(); tobuf->pos = IO_BUFFER_SIZE - 100; tobuf->tail = IO_BUFFER_SIZE - 100; ssize_t written = cbuffer_write_fd(frombuf, in, 200); mu_assert_eq("wrote to pipe", written, 200); mu_assert_eq("from size after", cbuffer_size(frombuf), 0); tobuf->tail += IO_BUFFER_SIZE - 100; mu_assert_eq("to freespace", cbuffer_freespace(tobuf), 99); ssize_t read = cbuffer_read_fd(tobuf, out, 200); ssize_t exp = 99; mu_assert_eq("read from pipe", (int)read, (int)exp); cbuffer_free(frombuf); cbuffer_free(tobuf); return 0; }
static char* test_cbuffer_fd_features(void) { // make pipes int pipefd[2]; pipe(pipefd); // make txpipe nonblocking, so we can check if it's empty. fcntl(pipefd[0], F_SETFL, fcntl(pipefd[0], F_GETFL) | O_NONBLOCK); int in = pipefd[1]; int out = pipefd[0]; CircularBuffer* frombuf = cbuffer_new(); for (int i = 0; i < 200; ++i) { cbuffer_push_back(frombuf, i); } mu_assert_eq("from size", cbuffer_size(frombuf), 200); CircularBuffer* tobuf = cbuffer_new(); tobuf->pos = IO_BUFFER_SIZE - 100; tobuf->tail = IO_BUFFER_SIZE - 100; ssize_t written = cbuffer_write_fd(frombuf, in, 200); mu_assert_eq("wrote to pipe", written, 200); mu_assert_eq("from size after", cbuffer_size(frombuf), 0); ssize_t read = cbuffer_read_fd(tobuf, out, 200); mu_assert_eq("read from pipe", read, 200); for (int i = 0; i < 200; ++i) { mu_assert_eq("fd closure value", cbuffer_value_at(tobuf, i), i); } cbuffer_free(frombuf); cbuffer_free(tobuf); return 0; }
static char* test_cbuffer_read_wraps(void) { CircularBuffer* mybuf = cbuffer_new(); // put us at the end of the buffer mybuf->pos = IO_BUFFER_SIZE - 5; mybuf->tail = IO_BUFFER_SIZE - 5; uint32_t test_data[11] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10}; cbuffer_append(mybuf, test_data, 11); Buffer* readout = buffer_new(NULL, 11); cbuffer_read(mybuf, readout->data, 11); mu_assert_eq("size", readout->size, 11); mu_assert_eq("content", memcmp(readout->data, test_data, 11 * sizeof(uint32_t)), 0); cbuffer_free(mybuf); buffer_free(readout); return 0; }
static char* test_cbuffer_read(void) { CircularBuffer* mybuf = cbuffer_new(); Buffer* readout = buffer_new(NULL, 11); uint32_t test_data[11] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10}; cbuffer_append(mybuf, test_data, 11); cbuffer_read(mybuf, readout->data, 11); mu_assert_eq("size", readout->size, 11); mu_assert_eq("content", memcmp(readout->data, test_data, 11 * sizeof(uint32_t)), 0); // if we ask for too much it cbuffer gives us what it has. Buffer* readout2 = buffer_new(NULL, 30); int actually_read = cbuffer_read(mybuf, readout2->data, 30); mu_assert_eq("size2", actually_read, 11); mu_assert_eq("content2", memcmp(readout2->data, test_data, 11 * sizeof(uint32_t)), 0); cbuffer_free(mybuf); buffer_free(readout); buffer_free(readout2); return 0; }
static char* test_cbuffer_push_back(void) { CircularBuffer* mybuf = cbuffer_new(); // put us at the end of the buffer mybuf->pos = IO_BUFFER_SIZE - 2; mybuf->tail = IO_BUFFER_SIZE - 2; cbuffer_push_back(mybuf, 0xDEADBEEF); cbuffer_push_back(mybuf, 0xBEEFFACE); cbuffer_push_back(mybuf, 0xDEADFACE); mu_assert_eq("size", cbuffer_size(mybuf), 3); mu_assert_eq("pos", mybuf->pos, IO_BUFFER_SIZE-2); mu_assert_eq("item0", mybuf->data[mybuf->pos], 0xDEADBEEF); mu_assert_eq("item1", mybuf->data[mybuf->pos + 1], 0xBEEFFACE); mu_assert_eq("item2", mybuf->data[0], 0xDEADFACE); cbuffer_free(mybuf); return 0; }
static char* test_cbuffer_append(void) { CircularBuffer* mybuf = cbuffer_new(); uint32_t test_data[5] = {0, 1, 2, 3, 4}; cbuffer_append(mybuf, test_data, 5); mu_assert_eq("pos", mybuf->pos, 0); mu_assert_eq("size", cbuffer_size(mybuf), 5); mu_assert_eq("content", memcmp(mybuf->data, test_data, 5 * sizeof(uint32_t)), 0); uint32_t test_data2[3] = {6, 7, 8}; cbuffer_append(mybuf, test_data2, 3); mu_assert_eq("pos", mybuf->pos, 0); mu_assert_eq("size", cbuffer_size(mybuf), 8); mu_assert_eq("content2", memcmp(mybuf->data, test_data, 5 * sizeof(uint32_t)), 0); mu_assert_eq("content3", memcmp(&(mybuf->data[5]), test_data2, 3 * sizeof(uint32_t)), 0); cbuffer_free(mybuf); return 0; }
static char* test_cbuffer_delete_front_wraps(void) { CircularBuffer* mybuf = cbuffer_new(); uint32_t test_data[11] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10}; // put us at the end of the buffer mybuf->pos = IO_BUFFER_SIZE - 5; mybuf->tail = IO_BUFFER_SIZE - 5; cbuffer_append(mybuf, test_data, 11); mu_assert_eq("content", memcmp(&(mybuf->data[mybuf->pos]), test_data, 5 * sizeof(uint32_t)), 0); int deleted = cbuffer_deletefront(mybuf, 5); mu_assert_eq("deleted", deleted, 5); mu_assert_eq("pos", mybuf->pos, 0); mu_assert_eq("size", cbuffer_size(mybuf), 6); mu_assert_eq("item0", mybuf->data[mybuf->pos], 5); mu_assert_eq("item1", mybuf->data[mybuf->pos+1], 6); mu_assert_eq("item2", mybuf->data[mybuf->pos+2], 7); mu_assert_eq("remaining content in cbuffer", memcmp( &(mybuf->data[0]), test_data + 5, 6 * sizeof(uint32_t)), 0); Buffer* readout = buffer_new(NULL, 6); cbuffer_read(mybuf, readout->data, 6); mu_assert_eq("remaining content", memcmp( readout->data, (test_data + 5), 6 * sizeof(uint32_t)), 0); // if we ask to delete everything, just return what was actually deleted. int deleted_just_to_end = cbuffer_deletefront(mybuf, 100); mu_assert_eq("deleted just to end", deleted_just_to_end, 6); mu_assert_eq("pos2", mybuf->pos, 6); mu_assert_eq("size2", cbuffer_size(mybuf), 0); cbuffer_free(mybuf); buffer_free(readout); return 0; }
static char* test_cbuffer_pop_front(void) { CircularBuffer* mybuf = cbuffer_new(); // put us at the end of the buffer mybuf->pos = IO_BUFFER_SIZE - 5; mybuf->tail = IO_BUFFER_SIZE - 5; uint32_t test_data[11] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10}; cbuffer_append(mybuf, test_data, 11); for (int i = 0; i < 11; i++) { mu_assert_eq("pre-pop size", cbuffer_size(mybuf), 11 - i); uint32_t value = cbuffer_pop_front(mybuf); mu_assert_eq("popped_content", (int)value, i); } // if we pop an empty collection, we get dead beef. uint32_t empty = cbuffer_pop_front(mybuf); mu_assert_eq("empty", empty, 0xDEADBEEF); cbuffer_free(mybuf); return 0; }
/* * Make sure cbuffer_fd_read handles the edge case where cbuffer->tail returns * to the front of buffer->data */ static char* test_cbuffer_fd_read_edge(void) { int pipefd[2]; pipe(pipefd); fcntl(pipefd[0], F_SETFL, fcntl(pipefd[0], F_GETFL) | O_NONBLOCK); int in = pipefd[1]; int out = pipefd[0]; CircularBuffer* mybuf = cbuffer_new(); // completely fill buffer while (cbuffer_freespace(mybuf) > 0) { mu_assert_eq("mybuf overflow", cbuffer_push_back(mybuf, 0xDEADBEEF), 0); } mu_assert_eq("mybuf still has free space", cbuffer_freespace(mybuf), 0); // clear a single space in the cbuffer // free space should be at the front of cbuffer->data cbuffer_deletefront(mybuf, 1); uint32_t inbuf[] = {0xCAFEBABE}; write(in, inbuf, sizeof(uint32_t)); // read a single word into the free slot in the buffer mu_assert_eq("Could not read data", cbuffer_read_fd(mybuf, out, 1), 1); // check the content of the cbuffer while (cbuffer_size(mybuf) > 1) { mu_assert_eq("Content should be 0xDEADBEEF", cbuffer_pop_front(mybuf), 0xDEADBEEF); } mu_assert_eq("Content should be 0xCAFEBABE", cbuffer_pop_front(mybuf), 0xCAFEBABE); cbuffer_free(mybuf); return 0; }
/** * Overload buffer test */ static char *test_buf() { // local application buffers CircularBuffer *tx1 = cbuffer_new(); CircularBuffer *rx1 = cbuffer_new(); CircularBuffer *tx2 = cbuffer_new(); CircularBuffer *rx2 = cbuffer_new(); VMEStream *test1 = vmestream_initialize(tx1, rx1, 32); VMEStream *test2 = malloc(sizeof(VMEStream)); test2->input = tx2; test2->output = rx2; test2->rx_size = test1->tx_size; test2->tx_size = test1->rx_size; test2->rx_data = test1->tx_data; test2->tx_data = test1->rx_data; test2->MAXRAM = test1->MAXRAM; cbuffer_push_back(rx2, 0xDEADBEEF); for (int i = 0; i < 510; i++) { cbuffer_push_back(rx2, 0xBEEFCAFE); } cbuffer_push_back(tx1, 0xBEEFCAFE + 1); cbuffer_push_back(tx1, 0xBEEFCAFE + 2); cbuffer_push_back(tx1, 0xBEEFCAFE + 3); cbuffer_push_back(tx1, 0xBEEFCAFE + 4); mu_assert("Error: rx2 should have no space left", cbuffer_freespace(rx2) == 0); // sanity check mu_assert_eq("Error: output size != 4", cbuffer_size(tx1), 4); // do several transfers vmestream_transfer_data(test1); vmestream_transfer_data(test2); vmestream_transfer_data(test1); vmestream_transfer_data(test2); // no data should have been transferred mu_assert_eq("Error: tx_size != 4", *(test1->tx_size), 4); mu_assert("Error: rx2.pop != 0xDEADBEEF", 0xDEADBEEF == cbuffer_pop_front(rx2)); cbuffer_pop_front(rx2); cbuffer_pop_front(rx2); // popping off rx2 should have freed 3 words, but not enough to transfer all // four vmestream_transfer_data(test1); vmestream_transfer_data(test2); mu_assert_eq("Error: tx_size != 4", *(test1->tx_size), 4); mu_assert("Errrr: rx2.pop not 0xBEEFCAFE", 0xBEEFCAFE == cbuffer_pop_front(rx2)); cbuffer_pop_front(rx2); // now there is enough room for all the limbo data to be transferred to rx2 vmestream_transfer_data(test1); vmestream_transfer_data(test2); mu_assert("Error: tx_size != 0", *(test1->tx_size) == 0); mu_assert("Error: tx1 not empty", 0 == cbuffer_size(tx1)); for (int i = 0; i < 4; ++i) { mu_assert_eq("Unexpected data transferred", cbuffer_value_at(rx2, cbuffer_size(rx2) - 4 + i), 0xBEEFCAFE + i + 1); } // free memory vmestream_destroy(test1); free(test2); cbuffer_free(tx1); cbuffer_free(rx1); cbuffer_free(tx2); cbuffer_free(rx2); return 0; }
static char *test_ram1() { // local application buffers CircularBuffer *tx1 = cbuffer_new(); CircularBuffer *rx1 = cbuffer_new(); CircularBuffer *tx2 = cbuffer_new(); CircularBuffer *rx2 = cbuffer_new(); VMEStream *test1 = vmestream_initialize(tx1, rx1, 1); VMEStream *test2 = malloc(sizeof(VMEStream)); test2->input = tx2; test2->output = rx2; test2->rx_size = test1->tx_size; test2->tx_size = test1->rx_size; test2->rx_data = test1->tx_data; test2->tx_data = test1->rx_data; test2->MAXRAM = test1->MAXRAM; for (unsigned int i = 0; i < 20; ++i) { // put some output data on host #1 cbuffer_push_back(tx1, 0xDEADBEEF + i); // put some output data on host #2 cbuffer_push_back(tx2, 0xBEEFCAFE + i); } // do a transfer vmestream_transfer_data(test1); // step 1 vmestream_transfer_data(test2); // step 2 // host #2 has received data, since host #1 filled it's TX buffer in step 1 // and host #2 can read it out in step 2 mu_assert("Error: 0xDEADBEEF != rx2.pop", 0xDEADBEEF == cbuffer_pop_front(rx2)); vmestream_transfer_data(test1); // step 3 // now host #1 can read the data loaded by host #2 in step 2 mu_assert("Error: 0xBEEFCAFE != rx1.pop", 0xBEEFCAFE == cbuffer_pop_front(rx1)); // do another transfer vmestream_transfer_data(test2); vmestream_transfer_data(test1); mu_assert("Error: 0xBEEFCAFE+1 != rx1.pop", 0xBEEFCAFE + 1 == cbuffer_pop_front(rx1)); mu_assert("Error: 0xDEADBEEF+1 != rx2.pop", 0xDEADBEEF + 1 == cbuffer_pop_front(rx2)); // We have consumed all received data (via pop). There is a word of // data in limbo for host #1 mu_assert("Error: 0 != rx1.size", 0 == cbuffer_size(rx1)); mu_assert("Error: 0 != rx2.size", 0 == cbuffer_size(rx2)); mu_assert("Error: 17 != tx1.size", 17 == cbuffer_size(tx1)); mu_assert("Error: 18 != tx2.size", 18 == cbuffer_size(tx2)); // call transfer on #1 twice in a row. Since it's still waiting for // #2 to read the data, nothing happens. vmestream_transfer_data(test1); mu_assert("Error: 0 != rx1.size", 0 == cbuffer_size(rx1)); mu_assert("Error: 0 != rx2.size", 0 == cbuffer_size(rx2)); mu_assert("Error: 17 != tx1.size", 17 == cbuffer_size(tx1)); mu_assert("Error: 18 != tx2.size", 18 == cbuffer_size(tx2)); // #2 receives limbo data, puts one of it's words in limbo. vmestream_transfer_data(test2); mu_assert("Error: 0 != rx1.size", 0 == cbuffer_size(rx1)); mu_assert("Error: 1 != rx2.size", 1 == cbuffer_size(rx2)); mu_assert("Error: 17 != tx1.size", 17 == cbuffer_size(tx1)); mu_assert("Error: 17 != tx2.size", 17 == cbuffer_size(tx2)); // free memory vmestream_destroy(test1); free(test2); cbuffer_free(tx1); cbuffer_free(rx1); cbuffer_free(tx2); cbuffer_free(rx2); return 0; }
static char* test_ram1() { CircularBuffer* pc_input = cbuffer_new(); CircularBuffer* pc_output = cbuffer_new(); CircularBuffer* orsc_input = cbuffer_new(); CircularBuffer* orsc_output = cbuffer_new(); VMEStream *pc_stream = vmestream_initialize_heap(pc_input, pc_output, 1); VMEStream *orsc_stream = malloc(sizeof(VMEStream)); orsc_stream->input = orsc_input; orsc_stream->output = orsc_output; orsc_stream->local_send_size = pc_stream->remote_send_size; orsc_stream->local_recv_size = pc_stream->remote_recv_size; orsc_stream->remote_send_size = pc_stream->local_send_size; orsc_stream->remote_recv_size = pc_stream->local_recv_size; orsc_stream->recv_data = pc_stream->send_data; orsc_stream->send_data = pc_stream->recv_data; orsc_stream->MAXRAM = pc_stream->MAXRAM; for (uint32_t i = 0; i < 20; ++i) { cbuffer_push_back(pc_input, 0xDEADBEEF + i); cbuffer_push_back(orsc_input, 0xBEEFCAFE + i); } // initial transfer vmestream_transfer_data(pc_stream); // transfer data vmestream_transfer_data(orsc_stream); vmestream_transfer_data(pc_stream); mu_assert("Error: orsc_output.pop != DEADBEEF", cbuffer_pop_front(orsc_output) == 0xDEADBEEF); mu_assert("Error: pc_output.pop != BEEFCAFE", cbuffer_pop_front(pc_output) == 0xBEEFCAFE); // extra transfer is needed to reset the size registers // to zero to prepare for another transfer vmestream_transfer_data(orsc_stream); vmestream_transfer_data(pc_stream); // transfer data vmestream_transfer_data(orsc_stream); vmestream_transfer_data(pc_stream); mu_assert("Error: orsc_output.pop != DEADBEEF + 1", cbuffer_pop_front(orsc_output) == 0xDEADBEEF + 1); mu_assert("Error: pc_output.pop != BEEFCAFE + 1", cbuffer_pop_front(pc_output) == 0xBEEFCAFE + 1); /* printf("pc_output.size: %d\n", cbuffer_size(pc_output)); printf("orsc_output.size: %d\n", cbuffer_size(orsc_output)); printf("pc_input.size: %d\n", cbuffer_size(pc_input)); printf("orsc_input.size: %d\n", cbuffer_size(orsc_input)); */ mu_assert("Error: pc_output.size != 0", cbuffer_size(pc_output) == 0); mu_assert("Error: orsc_output.size != 0", cbuffer_size(orsc_output) == 0); mu_assert("Error: pc_input.size != 18", cbuffer_size(pc_input) == 18); mu_assert("Error: orsc_input.size != 18", cbuffer_size(orsc_input) == 18); // transfer on pc_stream 2x in a row. Nothing should happen. vmestream_transfer_data(pc_stream); mu_assert("Error: pc_output.size != 0", cbuffer_size(pc_output) == 0); mu_assert("Error: orsc_output.size != 0", cbuffer_size(orsc_output) == 0); mu_assert("Error: pc_input.size != 18", cbuffer_size(pc_input) == 18); mu_assert("Error: orsc_input.size != 18", cbuffer_size(orsc_input) == 18); // reset vmestream_transfer_data(orsc_stream); vmestream_transfer_data(pc_stream); vmestream_transfer_data(orsc_stream); mu_assert("Error: pc_output.size != 0", cbuffer_size(pc_output) == 0); mu_assert("Error: orsc_output.size != 1", cbuffer_size(orsc_output) == 1); mu_assert("Error: pc_input.size != 17", cbuffer_size(pc_input) == 17); mu_assert("Error: orsc_input.size != 17", cbuffer_size(orsc_input) == 17); vmestream_destroy_heap(pc_stream); free(orsc_stream); cbuffer_free(pc_input); cbuffer_free(orsc_input); cbuffer_free(pc_output); cbuffer_free(orsc_output); return 0; }
static char* test_cbuffer_free(void) { CircularBuffer* mybuf = cbuffer_new(); // doesn't crash cbuffer_free(mybuf); return 0; }