void TestOneTriangleVsCylinder(   sData& cData,
                                  const dVector3 &v0,
                                  const dVector3 &v1,
                                  const dVector3 &v2,
                                  const bool bDoubleSided)
{

    // calculate triangle normal
    dVector3Subtract( v2 , v1 ,cData.vE1);
    dVector3 vTemp;
    dVector3Subtract( v0 , v1 ,vTemp);
    dVector3Cross(cData.vE1 , vTemp , cData.vNormal );

    dNormalize3( cData.vNormal);

    // create plane from triangle
    //Plane4f plTrianglePlane = Plane4f( vPolyNormal, v0 );
    dReal plDistance = -dVector3Dot(v0, cData.vNormal);
    dVector4 plTrianglePlane;
    dConstructPlane( cData.vNormal,plDistance,plTrianglePlane);

    // calculate sphere distance to plane
    dReal fDistanceCylinderCenterToPlane = dPointPlaneDistance(cData.vCylinderPos , plTrianglePlane);

    // Sphere must be over positive side of triangle
    if(fDistanceCylinderCenterToPlane < 0 && !bDoubleSided)
    {
        // if not don't generate contacts
        return;
    }

    dVector3 vPnt0;
    dVector3 vPnt1;
    dVector3 vPnt2;

    if (fDistanceCylinderCenterToPlane < REAL(0.0) )
    {
        // flip it
        dVector3Copy(v0 , vPnt0);
        dVector3Copy(v1 , vPnt2);
        dVector3Copy(v2 , vPnt1);
    }
    else
    {
        dVector3Copy(v0 , vPnt0);
        dVector3Copy(v1 , vPnt1);
        dVector3Copy(v2 , vPnt2);
    }

    cData.fBestDepth = MAX_REAL;

    // do intersection test and find best separating axis
    if(!_cldTestSeparatingAxes(cData , vPnt0, vPnt1, vPnt2) )
    {
        // if not found do nothing
        return;
    }

    // if best separation axis is not found
    if ( cData.iBestAxis == 0 )
    {
        // this should not happen (we should already exit in that case)
        dIASSERT(false);
        // do nothing
        return;
    }

    dReal fdot = dVector3Dot( cData.vContactNormal , cData.vCylinderAxis );

    // choose which clipping method are we going to apply
    if (dFabs(fdot) < REAL(0.9) )
    {
        if (!_cldClipCylinderEdgeToTriangle(cData ,vPnt0, vPnt1, vPnt2))
        {
            return;
        }
    }
    else
    {
        _cldClipCylinderToTriangle(cData ,vPnt0, vPnt1, vPnt2);
    }

}
void _cldClipCylinderToTriangle(sData& cData,const dVector3 &v0, const dVector3 &v1, const dVector3 &v2)
{
    int i = 0;
    dVector3 avPoints[3];
    dVector3 avTempArray1[nMAX_CYLINDER_TRIANGLE_CLIP_POINTS];
    dVector3 avTempArray2[nMAX_CYLINDER_TRIANGLE_CLIP_POINTS];

    dSetZero(&avTempArray1[0][0],nMAX_CYLINDER_TRIANGLE_CLIP_POINTS * 4);
    dSetZero(&avTempArray2[0][0],nMAX_CYLINDER_TRIANGLE_CLIP_POINTS * 4);

    // setup array of triangle vertices
    dVector3Copy(v0,avPoints[0]);
    dVector3Copy(v1,avPoints[1]);
    dVector3Copy(v2,avPoints[2]);

    dVector3 vCylinderCirclePos, vCylinderCircleNormal_Rel;
    dSetZero(vCylinderCircleNormal_Rel,4);
    // check which circle from cylinder we take for clipping
    if ( dVector3Dot(cData.vCylinderAxis , cData.vContactNormal) > REAL(0.0))
    {
        // get top circle
        vCylinderCirclePos[0] = cData.vCylinderPos[0] + cData.vCylinderAxis[0]*(cData.fCylinderSize*REAL(0.5));
        vCylinderCirclePos[1] = cData.vCylinderPos[1] + cData.vCylinderAxis[1]*(cData.fCylinderSize*REAL(0.5));
        vCylinderCirclePos[2] = cData.vCylinderPos[2] + cData.vCylinderAxis[2]*(cData.fCylinderSize*REAL(0.5));

        vCylinderCircleNormal_Rel[nCYLINDER_AXIS] = REAL(-1.0);
    }
    else
    {
        // get bottom circle
        vCylinderCirclePos[0] = cData.vCylinderPos[0] - cData.vCylinderAxis[0]*(cData.fCylinderSize*REAL(0.5));
        vCylinderCirclePos[1] = cData.vCylinderPos[1] - cData.vCylinderAxis[1]*(cData.fCylinderSize*REAL(0.5));
        vCylinderCirclePos[2] = cData.vCylinderPos[2] - cData.vCylinderAxis[2]*(cData.fCylinderSize*REAL(0.5));

        vCylinderCircleNormal_Rel[nCYLINDER_AXIS] = REAL(1.0);
    }

    dVector3 vTemp;
    dQuatInv(cData.qCylinderRot , cData.qInvCylinderRot);
    // transform triangle points to space of cylinder circle
    for(i=0; i<3; i++)
    {
        dVector3Subtract(avPoints[i] , vCylinderCirclePos , vTemp);
        dQuatTransform(cData.qInvCylinderRot,vTemp,avPoints[i]);
    }

    int iTmpCounter1 = 0;
    int iTmpCounter2 = 0;
    dVector4 plPlane;

    // plane of cylinder that contains circle for intersection
    //plPlane = Plane4f( vCylinderCircleNormal_Rel, 0.0f );
    dConstructPlane(vCylinderCircleNormal_Rel,REAL(0.0),plPlane);
    dClipPolyToPlane(avPoints, 3, avTempArray1, iTmpCounter1, plPlane);

    // Body of base circle of Cylinder
    int nCircleSegment = 0;
    for (nCircleSegment = 0; nCircleSegment < nCYLINDER_CIRCLE_SEGMENTS; nCircleSegment++)
    {
        dConstructPlane(cData.avCylinderNormals[nCircleSegment],cData.fCylinderRadius,plPlane);

        if (0 == (nCircleSegment % 2))
        {
            dClipPolyToPlane( avTempArray1 , iTmpCounter1 , avTempArray2, iTmpCounter2, plPlane);
        }
        else
        {
            dClipPolyToPlane( avTempArray2, iTmpCounter2, avTempArray1 , iTmpCounter1 , plPlane );
        }

        dIASSERT( iTmpCounter1 >= 0 && iTmpCounter1 <= nMAX_CYLINDER_TRIANGLE_CLIP_POINTS );
        dIASSERT( iTmpCounter2 >= 0 && iTmpCounter2 <= nMAX_CYLINDER_TRIANGLE_CLIP_POINTS );
    }

    // back transform clipped points to absolute space
    dReal ftmpdot;
    dReal fTempDepth;
    dVector3 vPoint;

    if (nCircleSegment %2)
    {
        for( i=0; i<iTmpCounter2; i++)
        {
            dQuatTransform(cData.qCylinderRot,avTempArray2[i], vPoint);
            vPoint[0] += vCylinderCirclePos[0];
            vPoint[1] += vCylinderCirclePos[1];
            vPoint[2] += vCylinderCirclePos[2];

            dVector3Subtract(vPoint,cData.vCylinderPos,vTemp);
            ftmpdot	 = dFabs(dVector3Dot(vTemp, cData.vContactNormal));
            fTempDepth = cData.fBestrt - ftmpdot;
            // Depth must be positive
            if (fTempDepth > REAL(0.0))
            {
                cData.gLocalContacts[cData.nContacts].fDepth = fTempDepth;
                dVector3Copy(cData.vContactNormal,cData.gLocalContacts[cData.nContacts].vNormal);
                dVector3Copy(vPoint,cData.gLocalContacts[cData.nContacts].vPos);
                cData.gLocalContacts[cData.nContacts].nFlags = 1;
                cData.nContacts++;
                if(cData.nContacts >= (cData.iFlags & NUMC_MASK))
                    return;;
            }
        }
    }
    else
    {
        for( i=0; i<iTmpCounter1; i++)
        {
            dQuatTransform(cData.qCylinderRot,avTempArray1[i], vPoint);
            vPoint[0] += vCylinderCirclePos[0];
            vPoint[1] += vCylinderCirclePos[1];
            vPoint[2] += vCylinderCirclePos[2];

            dVector3Subtract(vPoint,cData.vCylinderPos,vTemp);
            ftmpdot	 = dFabs(dVector3Dot(vTemp, cData.vContactNormal));
            fTempDepth = cData.fBestrt - ftmpdot;
            // Depth must be positive
            if (fTempDepth > REAL(0.0))
            {
                cData.gLocalContacts[cData.nContacts].fDepth = fTempDepth;
                dVector3Copy(cData.vContactNormal,cData.gLocalContacts[cData.nContacts].vNormal);
                dVector3Copy(vPoint,cData.gLocalContacts[cData.nContacts].vPos);
                cData.gLocalContacts[cData.nContacts].nFlags = 1;
                cData.nContacts++;
                if(cData.nContacts >= (cData.iFlags & NUMC_MASK))
                    return;;
            }
        }
    }
}
bool _cldClipCylinderEdgeToTriangle(sData& cData, const dVector3 &v0, const dVector3 &v1, const dVector3 &v2)
{
    // translate cylinder
    dReal fTemp = dVector3Dot(cData.vCylinderAxis , cData.vContactNormal);
    dVector3 vN2;
    vN2[0] = cData.vContactNormal[0] - cData.vCylinderAxis[0]*fTemp;
    vN2[1] = cData.vContactNormal[1] - cData.vCylinderAxis[1]*fTemp;
    vN2[2] = cData.vContactNormal[2] - cData.vCylinderAxis[2]*fTemp;

    fTemp = dVector3Length(vN2);
    if (fTemp < REAL(1e-5))
    {
        return false;
    }

    // Normalize it
    vN2[0] /= fTemp;
    vN2[1] /= fTemp;
    vN2[2] /= fTemp;

    // calculate caps centers in absolute space
    dVector3 vCposTrans;
    vCposTrans[0] = cData.vCylinderPos[0] + vN2[0]*cData.fCylinderRadius;
    vCposTrans[1] = cData.vCylinderPos[1] + vN2[1]*cData.fCylinderRadius;
    vCposTrans[2] = cData.vCylinderPos[2] + vN2[2]*cData.fCylinderRadius;

    dVector3 vCEdgePoint0;
    vCEdgePoint0[0]  = vCposTrans[0] + cData.vCylinderAxis[0] * (cData.fCylinderSize* REAL(0.5));
    vCEdgePoint0[1]  = vCposTrans[1] + cData.vCylinderAxis[1] * (cData.fCylinderSize* REAL(0.5));
    vCEdgePoint0[2]  = vCposTrans[2] + cData.vCylinderAxis[2] * (cData.fCylinderSize* REAL(0.5));

    dVector3 vCEdgePoint1;
    vCEdgePoint1[0]  = vCposTrans[0] - cData.vCylinderAxis[0] * (cData.fCylinderSize* REAL(0.5));
    vCEdgePoint1[1]  = vCposTrans[1] - cData.vCylinderAxis[1] * (cData.fCylinderSize* REAL(0.5));
    vCEdgePoint1[2]  = vCposTrans[2] - cData.vCylinderAxis[2] * (cData.fCylinderSize* REAL(0.5));

    // transform cylinder edge points into triangle space
    vCEdgePoint0[0] -= v0[0];
    vCEdgePoint0[1] -= v0[1];
    vCEdgePoint0[2] -= v0[2];

    vCEdgePoint1[0] -= v0[0];
    vCEdgePoint1[1] -= v0[1];
    vCEdgePoint1[2] -= v0[2];

    dVector4 plPlane;
    dVector3 vPlaneNormal;

    // triangle plane
    //plPlane = Plane4f( -cData.vNormal, 0);
    vPlaneNormal[0] = -cData.vNormal[0];
    vPlaneNormal[1] = -cData.vNormal[1];
    vPlaneNormal[2] = -cData.vNormal[2];
    dConstructPlane(vPlaneNormal,REAL(0.0),plPlane);
    if(!dClipEdgeToPlane( vCEdgePoint0, vCEdgePoint1, plPlane ))
    {
        return false;
    }

    // plane with edge 0
    //plPlane = Plane4f( ( cData.vNormal cross cData.vE0 ), REAL(1e-5));
    dVector3Cross(cData.vNormal,cData.vE0,vPlaneNormal);
    dConstructPlane(vPlaneNormal,REAL(1e-5),plPlane);
    if(!dClipEdgeToPlane( vCEdgePoint0, vCEdgePoint1, plPlane ))
    {
        return false;
    }

    // plane with edge 1
    //dVector3 vTemp = ( cData.vNormal cross cData.vE1 );
    dVector3Cross(cData.vNormal,cData.vE1,vPlaneNormal);
    fTemp = dVector3Dot(cData.vE0 , vPlaneNormal) - REAL(1e-5);
    //plPlane = Plane4f( vTemp, -(( cData.vE0 dot vTemp )-REAL(1e-5)));
    dConstructPlane(vPlaneNormal,-fTemp,plPlane);
    if(!dClipEdgeToPlane( vCEdgePoint0, vCEdgePoint1, plPlane ))
    {
        return false;
    }

    // plane with edge 2
    // plPlane = Plane4f( ( cData.vNormal cross cData.vE2 ), REAL(1e-5));
    dVector3Cross(cData.vNormal,cData.vE2,vPlaneNormal);
    dConstructPlane(vPlaneNormal,REAL(1e-5),plPlane);
    if(!dClipEdgeToPlane( vCEdgePoint0, vCEdgePoint1, plPlane ))
    {
        return false;
    }

    // return capsule edge points into absolute space
    vCEdgePoint0[0] += v0[0];
    vCEdgePoint0[1] += v0[1];
    vCEdgePoint0[2] += v0[2];

    vCEdgePoint1[0] += v0[0];
    vCEdgePoint1[1] += v0[1];
    vCEdgePoint1[2] += v0[2];

    // calculate depths for both contact points
    dVector3 vTemp;
    dVector3Subtract(vCEdgePoint0,cData.vCylinderPos, vTemp);
    dReal fRestDepth0 = -dVector3Dot(vTemp,cData.vContactNormal) + cData.fBestrt;
    dVector3Subtract(vCEdgePoint1,cData.vCylinderPos, vTemp);
    dReal fRestDepth1 = -dVector3Dot(vTemp,cData.vContactNormal) + cData.fBestrt;

    dReal fDepth0 = cData.fBestDepth - (fRestDepth0);
    dReal fDepth1 = cData.fBestDepth - (fRestDepth1);

    // clamp depths to zero
    if(fDepth0 < REAL(0.0) )
    {
        fDepth0 = REAL(0.0);
    }

    if(fDepth1<REAL(0.0))
    {
        fDepth1 = REAL(0.0);
    }

    // Generate contact 0
    {
        cData.gLocalContacts[cData.nContacts].fDepth = fDepth0;
        dVector3Copy(cData.vContactNormal,cData.gLocalContacts[cData.nContacts].vNormal);
        dVector3Copy(vCEdgePoint0,cData.gLocalContacts[cData.nContacts].vPos);
        cData.gLocalContacts[cData.nContacts].nFlags = 1;
        cData.nContacts++;
        if(cData.nContacts >= (cData.iFlags & NUMC_MASK))
            return true;
    }

    // Generate contact 1
    {
        // generate contacts
        cData.gLocalContacts[cData.nContacts].fDepth = fDepth1;
        dVector3Copy(cData.vContactNormal,cData.gLocalContacts[cData.nContacts].vNormal);
        dVector3Copy(vCEdgePoint1,cData.gLocalContacts[cData.nContacts].vPos);
        cData.gLocalContacts[cData.nContacts].nFlags = 1;
        cData.nContacts++;
    }

    return true;
}
Ejemplo n.º 4
0
void _cldClipBoxToCylinder(sCylinderBoxData& cData ) 
{
	dVector3 vCylinderCirclePos, vCylinderCircleNormal_Rel;
	// check which circle from cylinder we take for clipping
	if ( dVector3Dot(cData.vCylinderAxis, cData.vNormal) > REAL(0.0) ) 
	{
		// get top circle
		vCylinderCirclePos[0] = cData.vCylinderPos[0] + cData.vCylinderAxis[0]*(cData.fCylinderSize*REAL(0.5));
		vCylinderCirclePos[1] = cData.vCylinderPos[1] + cData.vCylinderAxis[1]*(cData.fCylinderSize*REAL(0.5));
		vCylinderCirclePos[2] = cData.vCylinderPos[2] + cData.vCylinderAxis[2]*(cData.fCylinderSize*REAL(0.5));

		vCylinderCircleNormal_Rel[0] = REAL(0.0);
		vCylinderCircleNormal_Rel[1] = REAL(0.0);
		vCylinderCircleNormal_Rel[2] = REAL(0.0);
		vCylinderCircleNormal_Rel[nCYLINDER_AXIS] = REAL(-1.0);
	}
	else 
	{
		// get bottom circle
		vCylinderCirclePos[0] = cData.vCylinderPos[0] - cData.vCylinderAxis[0]*(cData.fCylinderSize*REAL(0.5));
		vCylinderCirclePos[1] = cData.vCylinderPos[1] - cData.vCylinderAxis[1]*(cData.fCylinderSize*REAL(0.5));
		vCylinderCirclePos[2] = cData.vCylinderPos[2] - cData.vCylinderAxis[2]*(cData.fCylinderSize*REAL(0.5));

		vCylinderCircleNormal_Rel[0] = REAL(0.0);
		vCylinderCircleNormal_Rel[1] = REAL(0.0);
		vCylinderCircleNormal_Rel[2] = REAL(0.0);
		vCylinderCircleNormal_Rel[nCYLINDER_AXIS] = REAL(1.0);
	}

	// vNr is normal in Box frame, pointing from Cylinder to Box
	dVector3 vNr;
	dMatrix3 mBoxInv;

	// Find a way to use quaternion
	dMatrix3Inv(cData.mBoxRot,mBoxInv);
	dMultiplyMat3Vec3(mBoxInv,cData.vNormal,vNr);

	dVector3 vAbsNormal;

	vAbsNormal[0] = dFabs( vNr[0] );
	vAbsNormal[1] = dFabs( vNr[1] );
	vAbsNormal[2] = dFabs( vNr[2] );

	// find which face in box is closest to cylinder
	int iB0, iB1, iB2;

	// Different from Croteam's code
	if (vAbsNormal[1] > vAbsNormal[0]) 
	{
		// 1 > 0
		if (vAbsNormal[0]> vAbsNormal[2]) 
		{
			// 0 > 2 -> 1 > 0 >2
			iB0 = 1; iB1 = 0; iB2 = 2;
		} 
		else 
		{
			// 2 > 0-> Must compare 1 and 2
			if (vAbsNormal[1] > vAbsNormal[2])
			{
				// 1 > 2 -> 1 > 2 > 0
				iB0 = 1; iB1 = 2; iB2 = 0;
			}
			else
			{
				// 2 > 1 -> 2 > 1 > 0;
				iB0 = 2; iB1 = 1; iB2 = 0;
			}			
		}
	} 
	else 
	{
		// 0 > 1
		if (vAbsNormal[1] > vAbsNormal[2]) 
		{
			// 1 > 2 -> 0 > 1 > 2
			iB0 = 0; iB1 = 1; iB2 = 2;
		}
		else 
		{
			// 2 > 1 -> Must compare 0 and 2
			if (vAbsNormal[0] > vAbsNormal[2])
			{
				// 0 > 2 -> 0 > 2 > 1;
				iB0 = 0; iB1 = 2; iB2 = 1;
			}
			else
			{
				// 2 > 0 -> 2 > 0 > 1;
				iB0 = 2; iB1 = 0; iB2 = 1;
			}		
		}
	}

	dVector3 vCenter;
	// find center of box polygon
	dVector3 vTemp;
	if (vNr[iB0] > 0) 
	{
		dMat3GetCol(cData.mBoxRot,iB0,vTemp);
		vCenter[0] = cData.vBoxPos[0] - cData.vBoxHalfSize[iB0]*vTemp[0];
		vCenter[1] = cData.vBoxPos[1] - cData.vBoxHalfSize[iB0]*vTemp[1];
		vCenter[2] = cData.vBoxPos[2] - cData.vBoxHalfSize[iB0]*vTemp[2];
	}
	else 
	{
		dMat3GetCol(cData.mBoxRot,iB0,vTemp);
		vCenter[0] = cData.vBoxPos[0] + cData.vBoxHalfSize[iB0]*vTemp[0];
		vCenter[1] = cData.vBoxPos[1] + cData.vBoxHalfSize[iB0]*vTemp[1];
		vCenter[2] = cData.vBoxPos[2] + cData.vBoxHalfSize[iB0]*vTemp[2];
	}

	// find the vertices of box polygon
	dVector3 avPoints[4];
	dVector3 avTempArray1[MAX_CYLBOX_CLIP_POINTS];
	dVector3 avTempArray2[MAX_CYLBOX_CLIP_POINTS];

	int i=0;
	for(i=0; i<MAX_CYLBOX_CLIP_POINTS; i++) 
	{
		avTempArray1[i][0] = REAL(0.0);
		avTempArray1[i][1] = REAL(0.0);
		avTempArray1[i][2] = REAL(0.0);

		avTempArray2[i][0] = REAL(0.0);
		avTempArray2[i][1] = REAL(0.0);
		avTempArray2[i][2] = REAL(0.0);
	}

	dVector3 vAxis1, vAxis2;

	dMat3GetCol(cData.mBoxRot,iB1,vAxis1);
	dMat3GetCol(cData.mBoxRot,iB2,vAxis2);

	avPoints[0][0] = vCenter[0] + cData.vBoxHalfSize[iB1] * vAxis1[0] - cData.vBoxHalfSize[iB2] * vAxis2[0];
	avPoints[0][1] = vCenter[1] + cData.vBoxHalfSize[iB1] * vAxis1[1] - cData.vBoxHalfSize[iB2] * vAxis2[1];
	avPoints[0][2] = vCenter[2] + cData.vBoxHalfSize[iB1] * vAxis1[2] - cData.vBoxHalfSize[iB2] * vAxis2[2];

	avPoints[1][0] = vCenter[0] - cData.vBoxHalfSize[iB1] * vAxis1[0] - cData.vBoxHalfSize[iB2] * vAxis2[0];
	avPoints[1][1] = vCenter[1] - cData.vBoxHalfSize[iB1] * vAxis1[1] - cData.vBoxHalfSize[iB2] * vAxis2[1];
	avPoints[1][2] = vCenter[2] - cData.vBoxHalfSize[iB1] * vAxis1[2] - cData.vBoxHalfSize[iB2] * vAxis2[2];

	avPoints[2][0] = vCenter[0] - cData.vBoxHalfSize[iB1] * vAxis1[0] + cData.vBoxHalfSize[iB2] * vAxis2[0];
	avPoints[2][1] = vCenter[1] - cData.vBoxHalfSize[iB1] * vAxis1[1] + cData.vBoxHalfSize[iB2] * vAxis2[1];
	avPoints[2][2] = vCenter[2] - cData.vBoxHalfSize[iB1] * vAxis1[2] + cData.vBoxHalfSize[iB2] * vAxis2[2];

	avPoints[3][0] = vCenter[0] + cData.vBoxHalfSize[iB1] * vAxis1[0] + cData.vBoxHalfSize[iB2] * vAxis2[0];
	avPoints[3][1] = vCenter[1] + cData.vBoxHalfSize[iB1] * vAxis1[1] + cData.vBoxHalfSize[iB2] * vAxis2[1];
	avPoints[3][2] = vCenter[2] + cData.vBoxHalfSize[iB1] * vAxis1[2] + cData.vBoxHalfSize[iB2] * vAxis2[2];

	// transform box points to space of cylinder circle
	dMatrix3 mCylinderInv;
	dMatrix3Inv(cData.mCylinderRot,mCylinderInv);

	for(i=0; i<4; i++) 
	{
		dVector3Subtract(avPoints[i],vCylinderCirclePos,vTemp);
		dMultiplyMat3Vec3(mCylinderInv,vTemp,avPoints[i]);
	}

	int iTmpCounter1 = 0;
	int iTmpCounter2 = 0;
	dVector4 plPlane;

	// plane of cylinder that contains circle for intersection
	dConstructPlane(vCylinderCircleNormal_Rel,REAL(0.0),plPlane);
	dClipPolyToPlane(avPoints, 4, avTempArray1, iTmpCounter1, plPlane);


	// Body of base circle of Cylinder
	int nCircleSegment = 0;
	for (nCircleSegment = 0; nCircleSegment < nCYLINDER_SEGMENT; nCircleSegment++)
	{
		dConstructPlane(cData.avCylinderNormals[nCircleSegment],cData.fCylinderRadius,plPlane);

		if (0 == (nCircleSegment % 2))
		{
			dClipPolyToPlane( avTempArray1 , iTmpCounter1 , avTempArray2, iTmpCounter2, plPlane);
		}
		else
		{
			dClipPolyToPlane( avTempArray2, iTmpCounter2, avTempArray1 , iTmpCounter1 , plPlane );
		}

		dIASSERT( iTmpCounter1 >= 0 && iTmpCounter1 <= MAX_CYLBOX_CLIP_POINTS );
		dIASSERT( iTmpCounter2 >= 0 && iTmpCounter2 <= MAX_CYLBOX_CLIP_POINTS );
	}
	
	// back transform clipped points to absolute space
	dReal ftmpdot;	
	dReal fTempDepth;
	dVector3 vPoint;

	if (nCircleSegment %2)
	{
		for( i=0; i<iTmpCounter2; i++)
		{
			dMULTIPLY0_331(vPoint,cData.mCylinderRot,avTempArray2[i]);
			vPoint[0] += vCylinderCirclePos[0];
			vPoint[1] += vCylinderCirclePos[1];
			vPoint[2] += vCylinderCirclePos[2];

			dVector3Subtract(vPoint,cData.vCylinderPos,vTemp);
			ftmpdot	 = dVector3Dot(vTemp, cData.vNormal);
			fTempDepth = cData.fBestrc - ftmpdot;
			// Depth must be positive
			if (fTempDepth > REAL(0.0))
			{
				// generate contacts
				dContactGeom* Contact0 = SAFECONTACT(cData.iFlags, cData.gContact, cData.nContacts, cData.iSkip);
				Contact0->depth = fTempDepth;
				dVector3Copy(cData.vNormal,Contact0->normal);
				dVector3Copy(vPoint,Contact0->pos);
				Contact0->g1 = cData.gCylinder;
				Contact0->g2 = cData.gBox;
				dVector3Inv(Contact0->normal);
				cData.nContacts++;
			}
		}
	}
	else
	{
		for( i=0; i<iTmpCounter1; i++)
		{
			dMULTIPLY0_331(vPoint,cData.mCylinderRot,avTempArray1[i]);
			vPoint[0] += vCylinderCirclePos[0];
			vPoint[1] += vCylinderCirclePos[1];
			vPoint[2] += vCylinderCirclePos[2];

			dVector3Subtract(vPoint,cData.vCylinderPos,vTemp);
			ftmpdot	 = dVector3Dot(vTemp, cData.vNormal);
			fTempDepth = cData.fBestrc - ftmpdot;
			// Depth must be positive
			if (fTempDepth > REAL(0.0))
			{
				// generate contacts
				dContactGeom* Contact0 = SAFECONTACT(cData.iFlags, cData.gContact, cData.nContacts, cData.iSkip);
				Contact0->depth = fTempDepth;
				dVector3Copy(cData.vNormal,Contact0->normal);
				dVector3Copy(vPoint,Contact0->pos);
				Contact0->g1 = cData.gCylinder;
				Contact0->g2 = cData.gBox;
				dVector3Inv(Contact0->normal);
				cData.nContacts++;
			}
		}
	}
}
Ejemplo n.º 5
0
int _cldClipCylinderToBox(sCylinderBoxData& cData)
{

	// calculate that vector perpendicular to cylinder axis which closes lowest angle with collision normal
	dVector3 vN;
	dReal fTemp1 = dVector3Dot(cData.vCylinderAxis,cData.vNormal);
	vN[0]	=	cData.vNormal[0] - cData.vCylinderAxis[0]*fTemp1;
	vN[1]	=	cData.vNormal[1] - cData.vCylinderAxis[1]*fTemp1;
	vN[2]	=	cData.vNormal[2] - cData.vCylinderAxis[2]*fTemp1;

	// normalize that vector
	dNormalize3(vN);

	// translate cylinder end points by the vector
	dVector3 vCposTrans;
	vCposTrans[0] = cData.vCylinderPos[0] + vN[0] * cData.fCylinderRadius;
	vCposTrans[1] = cData.vCylinderPos[1] + vN[1] * cData.fCylinderRadius;
	vCposTrans[2] = cData.vCylinderPos[2] + vN[2] * cData.fCylinderRadius;

	cData.vEp0[0]  = vCposTrans[0] + cData.vCylinderAxis[0]*(cData.fCylinderSize*REAL(0.5));
	cData.vEp0[1]  = vCposTrans[1] + cData.vCylinderAxis[1]*(cData.fCylinderSize*REAL(0.5));
	cData.vEp0[2]  = vCposTrans[2] + cData.vCylinderAxis[2]*(cData.fCylinderSize*REAL(0.5));

	cData.vEp1[0]  = vCposTrans[0] - cData.vCylinderAxis[0]*(cData.fCylinderSize*REAL(0.5));
	cData.vEp1[1]  = vCposTrans[1] - cData.vCylinderAxis[1]*(cData.fCylinderSize*REAL(0.5));
	cData.vEp1[2]  = vCposTrans[2] - cData.vCylinderAxis[2]*(cData.fCylinderSize*REAL(0.5));

	// transform edge points in box space
	cData.vEp0[0] -= cData.vBoxPos[0];
	cData.vEp0[1] -= cData.vBoxPos[1];
	cData.vEp0[2] -= cData.vBoxPos[2];

	cData.vEp1[0] -= cData.vBoxPos[0];
	cData.vEp1[1] -= cData.vBoxPos[1];
	cData.vEp1[2] -= cData.vBoxPos[2];

	dVector3 vTemp1;
	// clip the edge to box 
	dVector4 plPlane;
	// plane 0 +x
	dMat3GetCol(cData.mBoxRot,0,vTemp1);
	dConstructPlane(vTemp1,cData.vBoxHalfSize[0],plPlane);
	if(!dClipEdgeToPlane( cData.vEp0, cData.vEp1, plPlane )) 
	{ 
		return 0; 
	}

	// plane 1 +y
	dMat3GetCol(cData.mBoxRot,1,vTemp1);
	dConstructPlane(vTemp1,cData.vBoxHalfSize[1],plPlane);
	if(!dClipEdgeToPlane( cData.vEp0, cData.vEp1, plPlane )) 
	{ 
		return 0; 
	}

	// plane 2 +z
	dMat3GetCol(cData.mBoxRot,2,vTemp1);
	dConstructPlane(vTemp1,cData.vBoxHalfSize[2],plPlane);
	if(!dClipEdgeToPlane( cData.vEp0, cData.vEp1, plPlane )) 
	{ 
		return 0; 
	}

	// plane 3 -x
	dMat3GetCol(cData.mBoxRot,0,vTemp1);
	dVector3Inv(vTemp1);
	dConstructPlane(vTemp1,cData.vBoxHalfSize[0],plPlane);
	if(!dClipEdgeToPlane( cData.vEp0, cData.vEp1, plPlane )) 
	{ 
		return 0; 
	}

	// plane 4 -y
	dMat3GetCol(cData.mBoxRot,1,vTemp1);
	dVector3Inv(vTemp1);
	dConstructPlane(vTemp1,cData.vBoxHalfSize[1],plPlane);
	if(!dClipEdgeToPlane( cData.vEp0, cData.vEp1, plPlane )) 
	{ 
		return 0; 
	}

	// plane 5 -z
	dMat3GetCol(cData.mBoxRot,2,vTemp1);
	dVector3Inv(vTemp1);
	dConstructPlane(vTemp1,cData.vBoxHalfSize[2],plPlane);
	if(!dClipEdgeToPlane( cData.vEp0, cData.vEp1, plPlane )) 
	{ 
		return 0; 
	}

	// calculate depths for both contact points
	cData.fDepth0 = cData.fBestrb + dVector3Dot(cData.vEp0, cData.vNormal);
	cData.fDepth1 = cData.fBestrb + dVector3Dot(cData.vEp1, cData.vNormal);

	// clamp depths to 0
	if(cData.fDepth0<0) 
	{
		cData.fDepth0 = REAL(0.0);
	}

	if(cData.fDepth1<0) 
	{
		cData.fDepth1 = REAL(0.0);
	}

	// back transform edge points from box to absolute space
	cData.vEp0[0] += cData.vBoxPos[0];
	cData.vEp0[1] += cData.vBoxPos[1];
	cData.vEp0[2] += cData.vBoxPos[2];

	cData.vEp1[0] += cData.vBoxPos[0];
	cData.vEp1[1] += cData.vBoxPos[1];
	cData.vEp1[2] += cData.vBoxPos[2];

	dContactGeom* Contact0 = SAFECONTACT(cData.iFlags, cData.gContact, cData.nContacts, cData.iSkip);
	Contact0->depth = cData.fDepth0;
	dVector3Copy(cData.vNormal,Contact0->normal);
	dVector3Copy(cData.vEp0,Contact0->pos);
	Contact0->g1 = cData.gCylinder;
	Contact0->g2 = cData.gBox;
	dVector3Inv(Contact0->normal);
	cData.nContacts++;
	
	dContactGeom* Contact1 = SAFECONTACT(cData.iFlags, cData.gContact, cData.nContacts, cData.iSkip);
	Contact1->depth = cData.fDepth1;
	dVector3Copy(cData.vNormal,Contact1->normal);
	dVector3Copy(cData.vEp1,Contact1->pos);
	Contact1->g1 = cData.gCylinder;
	Contact1->g2 = cData.gBox;
	dVector3Inv(Contact1->normal);
	cData.nContacts++;

	return 1;
}
int sCylinderBoxData::_cldClipCylinderToBox()
{
	dIASSERT(m_nContacts != (m_iFlags & NUMC_MASK));

	// calculate that vector perpendicular to cylinder axis which closes lowest angle with collision normal
	dVector3 vN;
	dReal fTemp1 = dVector3Dot(m_vCylinderAxis,m_vNormal);
	vN[0]	=	m_vNormal[0] - m_vCylinderAxis[0]*fTemp1;
	vN[1]	=	m_vNormal[1] - m_vCylinderAxis[1]*fTemp1;
	vN[2]	=	m_vNormal[2] - m_vCylinderAxis[2]*fTemp1;

	// normalize that vector
	dNormalize3(vN);

	// translate cylinder end points by the vector
	dVector3 vCposTrans;
	vCposTrans[0] = m_vCylinderPos[0] + vN[0] * m_fCylinderRadius;
	vCposTrans[1] = m_vCylinderPos[1] + vN[1] * m_fCylinderRadius;
	vCposTrans[2] = m_vCylinderPos[2] + vN[2] * m_fCylinderRadius;

	m_vEp0[0]  = vCposTrans[0] + m_vCylinderAxis[0]*(m_fCylinderSize*REAL(0.5));
	m_vEp0[1]  = vCposTrans[1] + m_vCylinderAxis[1]*(m_fCylinderSize*REAL(0.5));
	m_vEp0[2]  = vCposTrans[2] + m_vCylinderAxis[2]*(m_fCylinderSize*REAL(0.5));

	m_vEp1[0]  = vCposTrans[0] - m_vCylinderAxis[0]*(m_fCylinderSize*REAL(0.5));
	m_vEp1[1]  = vCposTrans[1] - m_vCylinderAxis[1]*(m_fCylinderSize*REAL(0.5));
	m_vEp1[2]  = vCposTrans[2] - m_vCylinderAxis[2]*(m_fCylinderSize*REAL(0.5));

	// transform edge points in box space
	m_vEp0[0] -= m_vBoxPos[0];
	m_vEp0[1] -= m_vBoxPos[1];
	m_vEp0[2] -= m_vBoxPos[2];

	m_vEp1[0] -= m_vBoxPos[0];
	m_vEp1[1] -= m_vBoxPos[1];
	m_vEp1[2] -= m_vBoxPos[2];

	dVector3 vTemp1;
	// clip the edge to box 
	dVector4 plPlane;
	// plane 0 +x
	dMat3GetCol(m_mBoxRot,0,vTemp1);
	dConstructPlane(vTemp1,m_vBoxHalfSize[0],plPlane);
	if(!dClipEdgeToPlane( m_vEp0, m_vEp1, plPlane )) 
	{ 
		return 0; 
	}

	// plane 1 +y
	dMat3GetCol(m_mBoxRot,1,vTemp1);
	dConstructPlane(vTemp1,m_vBoxHalfSize[1],plPlane);
	if(!dClipEdgeToPlane( m_vEp0, m_vEp1, plPlane )) 
	{ 
		return 0; 
	}

	// plane 2 +z
	dMat3GetCol(m_mBoxRot,2,vTemp1);
	dConstructPlane(vTemp1,m_vBoxHalfSize[2],plPlane);
	if(!dClipEdgeToPlane( m_vEp0, m_vEp1, plPlane )) 
	{ 
		return 0; 
	}

	// plane 3 -x
	dMat3GetCol(m_mBoxRot,0,vTemp1);
	dVector3Inv(vTemp1);
	dConstructPlane(vTemp1,m_vBoxHalfSize[0],plPlane);
	if(!dClipEdgeToPlane( m_vEp0, m_vEp1, plPlane )) 
	{ 
		return 0; 
	}

	// plane 4 -y
	dMat3GetCol(m_mBoxRot,1,vTemp1);
	dVector3Inv(vTemp1);
	dConstructPlane(vTemp1,m_vBoxHalfSize[1],plPlane);
	if(!dClipEdgeToPlane( m_vEp0, m_vEp1, plPlane )) 
	{ 
		return 0; 
	}

	// plane 5 -z
	dMat3GetCol(m_mBoxRot,2,vTemp1);
	dVector3Inv(vTemp1);
	dConstructPlane(vTemp1,m_vBoxHalfSize[2],plPlane);
	if(!dClipEdgeToPlane( m_vEp0, m_vEp1, plPlane )) 
	{ 
		return 0; 
	}

	// calculate depths for both contact points
	m_fDepth0 = m_fBestrb + dVector3Dot(m_vEp0, m_vNormal);
	m_fDepth1 = m_fBestrb + dVector3Dot(m_vEp1, m_vNormal);

	// clamp depths to 0
	if(m_fDepth0<0) 
	{
		m_fDepth0 = REAL(0.0);
	}

	if(m_fDepth1<0) 
	{
		m_fDepth1 = REAL(0.0);
	}

	// back transform edge points from box to absolute space
	m_vEp0[0] += m_vBoxPos[0];
	m_vEp0[1] += m_vBoxPos[1];
	m_vEp0[2] += m_vBoxPos[2];

	m_vEp1[0] += m_vBoxPos[0];
	m_vEp1[1] += m_vBoxPos[1];
	m_vEp1[2] += m_vBoxPos[2];

	dContactGeom* Contact0 = SAFECONTACT(m_iFlags, m_gContact, m_nContacts, m_iSkip);
	Contact0->depth = m_fDepth0;
	dVector3Copy(m_vNormal,Contact0->normal);
	dVector3Copy(m_vEp0,Contact0->pos);
	Contact0->g1 = m_gCylinder;
	Contact0->g2 = m_gBox;
	Contact0->side1 = -1;
	Contact0->side2 = -1;
	dVector3Inv(Contact0->normal);
	m_nContacts++;
	
	if (m_nContacts != (m_iFlags & NUMC_MASK))
	{
		dContactGeom* Contact1 = SAFECONTACT(m_iFlags, m_gContact, m_nContacts, m_iSkip);
		Contact1->depth = m_fDepth1;
		dVector3Copy(m_vNormal,Contact1->normal);
		dVector3Copy(m_vEp1,Contact1->pos);
		Contact1->g1 = m_gCylinder;
		Contact1->g2 = m_gBox;
		Contact1->side1 = -1;
		Contact1->side2 = -1;
		dVector3Inv(Contact1->normal);
		m_nContacts++;
	}

	return 1;
}