/* determines the setup value */
int mp_reduce_2k_setup_l(mp_int *a, mp_int *d)
{
   int    res;
   mp_int tmp;
   
   if ((res = mp_init(&tmp)) != MP_OKAY) {
      return res;
   }
   
   if ((res = mp_2expt(&tmp, mp_count_bits(a))) != MP_OKAY) {
      goto ERR;
   }
   
   if ((res = s_mp_sub(&tmp, a, d)) != MP_OKAY) {
      goto ERR;
   }
   
ERR:
   mp_clear(&tmp);
   return res;
}
Ejemplo n.º 2
0
/* reduces a modulo n where n is of the form 2**p - d */
int mp_reduce_2k(mp_int *a, mp_int *n, mp_digit d)
{
   mp_int q;
   int    p, res;

   if ((res = mp_init(&q)) != MP_OKAY) {
      return res;
   }

   p = mp_count_bits(n);
top:
   /* q = a/2**p, a = a mod 2**p */
   if ((res = mp_div_2d(a, p, &q, a)) != MP_OKAY) {
      goto ERR;
   }

   if (d != 1) {
      /* q = q * d */
      if ((res = mp_mul_d(&q, d, &q)) != MP_OKAY) {
         goto ERR;
      }
   }

   /* a = a + q */
   if ((res = s_mp_add(a, &q, a)) != MP_OKAY) {
      goto ERR;
   }

   if (mp_cmp_mag(a, n) != MP_LT) {
      if ((res = s_mp_sub(a, n, a)) != MP_OKAY) {
         goto ERR;
      }
      goto top;
   }

ERR:
   mp_clear(&q);
   return res;
}
Ejemplo n.º 3
0
int  mpf_normalize(mp_float *a)
{
   long     cb, diff;
   int      err;
   mp_digit c;

   /* sanity */
   if (a->radix < 2) {
      return MP_VAL;
   }

   cb = mp_count_bits(&(a->mantissa));
   if (cb > a->radix) {
      diff    = cb - a->radix;
      a->exp += diff;

      /* round it, add 1 after shift if diff-1'th bit is 1 */
      c = a->mantissa.dp[diff/DIGIT_BIT] & (1U<<(diff%DIGIT_BIT));
      if ((err = mp_div_2d(&(a->mantissa), diff, &(a->mantissa), NULL)) != MP_OKAY) {
         return err;
      }

      if (c != 0) {
         return mp_add_d(&(a->mantissa), 1, &(a->mantissa));
      } else {
         return MP_OKAY;
      }
   } else if (cb < a->radix) {
      if (mp_iszero(&(a->mantissa)) == MP_YES) {
         return mpf_const_0(a);
      } else {
         diff    = a->radix - cb;
         a->exp -= diff;
         return mp_mul_2d(&(a->mantissa), diff, &(a->mantissa));
      }
   }
   return MP_OKAY;
}
Ejemplo n.º 4
0
/* reduces a modulo n where n is of the form 2**p - d
   This differs from reduce_2k since "d" can be larger
   than a single digit.
*/
int mp_reduce_2k_l(mp_int *a, const mp_int *n, const mp_int *d)
{
   mp_int q;
   int    p, res;

   if ((res = mp_init(&q)) != MP_OKAY) {
      return res;
   }

   p = mp_count_bits(n);
top:
   /* q = a/2**p, a = a mod 2**p */
   if ((res = mp_div_2d(a, p, &q, a)) != MP_OKAY) {
      goto LBL_ERR;
   }

   /* q = q * d */
   if ((res = mp_mul(&q, d, &q)) != MP_OKAY) {
      goto LBL_ERR;
   }

   /* a = a + q */
   if ((res = s_mp_add(a, &q, a)) != MP_OKAY) {
      goto LBL_ERR;
   }

   if (mp_cmp_mag(a, n) != MP_LT) {
      if ((res = s_mp_sub(a, n, a)) != MP_OKAY) {
         goto LBL_ERR;
      }
      goto top;
   }

LBL_ERR:
   mp_clear(&q);
   return res;
}
Ejemplo n.º 5
0
/* A forced 64-bit version of mp_get_long, since on some platforms long is
 * not all that long. */
static MVMuint64 mp_get_int64(MVMThreadContext *tc, mp_int * a) {
    int i, bits;
    MVMuint64 res;

    if (a->used == 0) {
         return 0;
    }

    bits = mp_count_bits(a);
    if (bits > 64) {
        MVM_exception_throw_adhoc(tc, "Cannot unbox %d bit wide bigint into native integer", bits);
    }

    /* get number of digits of the lsb we have to read */
    i = MIN(a->used,(int)((sizeof(MVMuint64)*CHAR_BIT+DIGIT_BIT-1)/DIGIT_BIT))-1;

    /* get most significant digit of result */
    res = DIGIT(a,i);

    while (--i >= 0) {
        res = (res << DIGIT_BIT) | DIGIT(a,i);
    }
    return res;
}
Ejemplo n.º 6
0
int
main (void)
{
  mp_int  p, q;
  char    buf[4096];
  int     k, li;
  clock_t t1;

  srand (time (NULL));
  load_tab();

  printf ("Enter # of bits: \n");
  fgets (buf, sizeof (buf), stdin);
  sscanf (buf, "%d", &k);

  printf ("Enter number of bases to try (1 to 8):\n");
  fgets (buf, sizeof (buf), stdin);
  sscanf (buf, "%d", &li);


  mp_init (&p);
  mp_init (&q);

  t1 = clock ();
  pprime (k, li, &p, &q);
  t1 = clock () - t1;

  printf ("\n\nTook %ld ticks, %d bits\n", t1, mp_count_bits (&p));

  mp_toradix (&p, buf, 10);
  printf ("P == %s\n", buf);
  mp_toradix (&q, buf, 10);
  printf ("Q == %s\n", buf);

  return 0;
}
Ejemplo n.º 7
0
/* determines the setup value */
int mp_reduce_2k_setup(mp_int *a, mp_digit *d)
{
   int res, p;
   mp_int tmp;
   
   if ((res = mp_init(&tmp)) != MP_OKAY) {
      return res;
   }
   
   p = mp_count_bits(a);
   if ((res = mp_2expt(&tmp, p)) != MP_OKAY) {
      mp_clear(&tmp);
      return res;
   }
   
   if ((res = s_mp_sub(&tmp, a, &tmp)) != MP_OKAY) {
      mp_clear(&tmp);
      return res;
   }
   
   *d = tmp.dp[0];
   mp_clear(&tmp);
   return MP_OKAY;
}
Ejemplo n.º 8
0
/**
  PKCS #1 pad then sign
  @param in        The hash to sign
  @param inlen     The length of the hash to sign (octets)
  @param out       [out] The signature
  @param outlen    [in/out] The max size and resulting size of the signature
  @param padding   Type of padding (LTC_PKCS_1_PSS or LTC_PKCS_1_V1_5)
  @param prng      An active PRNG state
  @param prng_idx  The index of the PRNG desired
  @param hash_idx  The index of the hash desired
  @param saltlen   The length of the salt desired (octets)
  @param key       The private RSA key to use
  @return CRYPT_OK if successful
*/
int rsa_sign_hash_ex(const unsigned char *in,       unsigned long  inlen,
                           unsigned char *out,      unsigned long *outlen,
                           int            padding,
                           prng_state    *prng,     int            prng_idx,
                           int            hash_idx, unsigned long  saltlen,
                           rsa_key *key)
{
   unsigned long modulus_bitlen, modulus_bytelen, x, y;
   int           err;

   LTC_ARGCHK(in       != NULL);
   LTC_ARGCHK(out      != NULL);
   LTC_ARGCHK(outlen   != NULL);
   LTC_ARGCHK(key      != NULL);

   /* valid padding? */
   if ((padding != LTC_PKCS_1_V1_5) && (padding != LTC_PKCS_1_PSS)) {
     return CRYPT_PK_INVALID_PADDING;
   }

   if (padding == LTC_PKCS_1_PSS) {
     /* valid prng and hash ? */
     if ((err = prng_is_valid(prng_idx)) != CRYPT_OK) {
        return err;
     }
     if ((err = hash_is_valid(hash_idx)) != CRYPT_OK) {
        return err;
     }
   }

   /* get modulus len in bits */
   modulus_bitlen = mp_count_bits((key->N));

  /* outlen must be at least the size of the modulus */
  modulus_bytelen = mp_unsigned_bin_size((key->N));
  if (modulus_bytelen > *outlen) {
     *outlen = modulus_bytelen;
     return CRYPT_BUFFER_OVERFLOW;
  }

  if (padding == LTC_PKCS_1_PSS) {
    /* PSS pad the key */
    x = *outlen;
    if ((err = pkcs_1_pss_encode(in, inlen, saltlen, prng, prng_idx,
                                 hash_idx, modulus_bitlen, out, &x)) != CRYPT_OK) {
       return err;
    }
  } else {
    /* PKCS #1 v1.5 pad the hash */
    unsigned char *tmpin;
    ltc_asn1_list digestinfo[2], siginfo[2];

    /* not all hashes have OIDs... so sad */
    if (hash_descriptor[hash_idx].OIDlen == 0) {
       return CRYPT_INVALID_ARG;
    }

    /* construct the SEQUENCE 
      SEQUENCE {
         SEQUENCE {hashoid OID
                   blah    NULL
         }
         hash    OCTET STRING 
      }
   */
    LTC_SET_ASN1(digestinfo, 0, LTC_ASN1_OBJECT_IDENTIFIER, hash_descriptor[hash_idx].OID, hash_descriptor[hash_idx].OIDlen);
    LTC_SET_ASN1(digestinfo, 1, LTC_ASN1_NULL,              NULL,                          0);
    LTC_SET_ASN1(siginfo,    0, LTC_ASN1_SEQUENCE,          digestinfo,                    2);
    LTC_SET_ASN1(siginfo,    1, LTC_ASN1_OCTET_STRING,      in,                            inlen);

    /* allocate memory for the encoding */
    y = mp_unsigned_bin_size(key->N);
    tmpin = XMALLOC(y);
    if (tmpin == NULL) {
       return CRYPT_MEM;
    }

    if ((err = der_encode_sequence(siginfo, 2, tmpin, &y)) != CRYPT_OK) {
       XFREE(tmpin);
       return err;
    }

    x = *outlen;
    if ((err = pkcs_1_v1_5_encode(tmpin, y, LTC_PKCS_1_EMSA,
                                  modulus_bitlen, NULL, 0,
                                  out, &x)) != CRYPT_OK) {
      XFREE(tmpin);
      return err;
    }
    XFREE(tmpin);
  }

  /* RSA encode it */
  return ltc_mp.rsa_me(out, x, out, outlen, PK_PRIVATE, key);
}
Ejemplo n.º 9
0
 int size() const {
   return mp_count_bits( const_cast< mp_int* >( &value ) );
 }
Ejemplo n.º 10
0
int ppro_r5_rsa_encrypt_key_ex(const unsigned char *in,     unsigned long inlen,
                             unsigned char *out,    unsigned long *outlen,
                       const unsigned char *lparam, unsigned long lparamlen,
                       prng_state *prng, int prng_idx, int hash_idx, int padding, rsa_key *key)
{
  unsigned long modulus_bitlen, modulus_bytelen, x;
  int           err;

  LTC_ARGCHK(in     != NULL);
  LTC_ARGCHK(out    != NULL);
  LTC_ARGCHK(outlen != NULL);
  LTC_ARGCHK(key    != NULL);

  /* valid padding? */
  if ((padding != LTC_PKCS_1_V1_5) &&
      (padding != LTC_PKCS_1_OAEP)) {
    return CRYPT_PK_INVALID_PADDING;
  }

  /* valid prng? */
  if ((err = prng_is_valid(prng_idx)) != CRYPT_OK) {
     return err;
  }

  if (padding == LTC_PKCS_1_OAEP) {
    /* valid hash? */
    if ((err = hash_is_valid(hash_idx)) != CRYPT_OK) {
       return err;
    }
  }

  /* get modulus len in bits */
  modulus_bitlen = mp_count_bits( (key->N));

  /* outlen must be at least the size of the modulus */
  modulus_bytelen = mp_unsigned_bin_size( (key->N));
  if (modulus_bytelen > *outlen) {
     *outlen = modulus_bytelen;
     return CRYPT_BUFFER_OVERFLOW;
  }

  if (padding == LTC_PKCS_1_OAEP) {
    /* OAEP pad the key */
    x = *outlen;
    if ((err = pkcs_1_oaep_encode(in, inlen, lparam,
                                  lparamlen, modulus_bitlen, prng, prng_idx, hash_idx,
                                  out, &x)) != CRYPT_OK) {
       return err;
    }
  } else {
    /* PKCS #1 v1.5 pad the key */
    x = *outlen;
    if ((err = pkcs_1_v1_5_encode(in, inlen, LTC_PKCS_1_EME,
                                  modulus_bitlen, prng, prng_idx,
                                  out, &x)) != CRYPT_OK) {
      return err;
    }
  }

  /* rsa exptmod the OAEP or PKCS #1 v1.5 pad */
  return ltc_mp.rsa_me(out, x, out, outlen, PK_PRIVATE, key);
}
Ejemplo n.º 11
0
/**
   Compute an RSA modular exponentiation
   @param in         The input data to send into RSA
   @param inlen      The length of the input (octets)
   @param out        [out] The destination
   @param outlen     [in/out] The max size and resulting size of the output
   @param which      Which exponent to use, e.g. PK_PRIVATE or PK_PUBLIC
   @param key        The RSA key to use
   @return CRYPT_OK if successful
*/
int rsa_exptmod(const unsigned char *in,   unsigned long inlen,
                      unsigned char *out,  unsigned long *outlen, int which,
                      rsa_key *key)
{
   void        *tmp, *tmpa, *tmpb;
   #ifdef LTC_RSA_BLINDING
   void        *rnd = NULL, *rndi = NULL /* inverse of rnd */;
   #endif
   unsigned long x;
   int           err;

   LTC_ARGCHK(in     != NULL);
   LTC_ARGCHK(out    != NULL);
   LTC_ARGCHK(outlen != NULL);
   LTC_ARGCHK(key    != NULL);

   /* is the key of the right type for the operation? */
   if (which == PK_PRIVATE && (key->type != PK_PRIVATE)) {
      return CRYPT_PK_NOT_PRIVATE;
   }

   /* must be a private or public operation */
   if (which != PK_PRIVATE && which != PK_PUBLIC) {
      return CRYPT_PK_INVALID_TYPE;
   }

   /* init and copy into tmp */
   if ((err = mp_init_multi(&tmp, &tmpa, &tmpb, NULL)) != CRYPT_OK)
        { return err; }
   if ((err = mp_read_unsigned_bin(tmp, (unsigned char *)in, (int)inlen)) != CRYPT_OK)
        { goto error; }


   /* sanity check on the input */
   if (mp_cmp(key->N, tmp) == LTC_MP_LT) {
      err = CRYPT_PK_INVALID_SIZE;
      goto error;
   }

   /* are we using the private exponent and is the key optimized? */
   if (which == PK_PRIVATE) {
      #ifdef LTC_RSA_BLINDING
      if ((err = mp_init_multi(&rnd, &rndi, NULL)) != CRYPT_OK)
            { goto error; }
      /* do blinding */
      err = mp_rand(rnd, mp_count_bits(key->N));
      if (err != CRYPT_OK) {
             goto error_blind;
      }

      /* rndi = 1/rnd mod N */
      err = mp_invmod(rnd, key->N, rndi);
      if (err != CRYPT_OK) {
             goto error_blind;
      }

      /* rnd = rnd^e */
      err = mp_exptmod( rnd, key->e, key->N, rnd);
      if (err != CRYPT_OK) {
             goto error_blind;
      }

      /* tmp = tmp*rnd mod N */
      err = mp_mulmod( tmp, rnd, key->N, tmp);
      if (err != CRYPT_OK) {
             goto error_blind;
      }
      #endif /* LTC_RSA_BLINDING */

      /* tmpa = tmp^dP mod p */
      if ((err = mp_exptmod(tmp, key->dP, key->p, tmpa)) != CRYPT_OK)                               { goto error_blind; }

      /* tmpb = tmp^dQ mod q */
      if ((err = mp_exptmod(tmp, key->dQ, key->q, tmpb)) != CRYPT_OK)                               { goto error_blind; }

      /* tmp = (tmpa - tmpb) * qInv (mod p) */
      if ((err = mp_sub(tmpa, tmpb, tmp)) != CRYPT_OK)                                              { goto error_blind; }
      if ((err = mp_mulmod(tmp, key->qP, key->p, tmp)) != CRYPT_OK)                                { goto error_blind; }

      /* tmp = tmpb + q * tmp */
      if ((err = mp_mul(tmp, key->q, tmp)) != CRYPT_OK)                                             { goto error_blind; }
      if ((err = mp_add(tmp, tmpb, tmp)) != CRYPT_OK)                                               { goto error_blind; }

      #ifdef LTC_RSA_BLINDING
      /* unblind */
      err = mp_mulmod( tmp, rndi, key->N, tmp);
      if (err != CRYPT_OK) {
             goto error_blind;
      }
      #endif
   } else {
      /* exptmod it */
      if ((err = mp_exptmod(tmp, key->e, key->N, tmp)) != CRYPT_OK)                                { goto error; }
   }

   /* read it back */
   x = (unsigned long)mp_unsigned_bin_size(key->N);
   if (x > *outlen) {
      *outlen = x;
      err = CRYPT_BUFFER_OVERFLOW;
      goto error;
   }

   /* this should never happen ... */
   if (mp_unsigned_bin_size(tmp) > mp_unsigned_bin_size(key->N)) {
      err = CRYPT_ERROR;
      goto error;
   }
   *outlen = x;

   /* convert it */
   zeromem(out, x);
   if ((err = mp_to_unsigned_bin(tmp, out+(x-mp_unsigned_bin_size(tmp)))) != CRYPT_OK)               { goto error; }

   /* clean up and return */
   err = CRYPT_OK;
error_blind:
   #ifdef LTC_RSA_BLINDING
   mp_clear_multi(rnd, rndi, NULL);
   #endif
error:
   mp_clear_multi(tmp, tmpa, tmpb, NULL);
   return err;
}
Ejemplo n.º 12
0
/* integer signed division. 
 * c*b + d == a [e.g. a/b, c=quotient, d=remainder]
 * HAC pp.598 Algorithm 14.20
 *
 * Note that the description in HAC is horribly 
 * incomplete.  For example, it doesn't consider 
 * the case where digits are removed from 'x' in 
 * the inner loop.  It also doesn't consider the 
 * case that y has fewer than three digits, etc..
 *
 * The overall algorithm is as described as 
 * 14.20 from HAC but fixed to treat these cases.
*/
int mp_div MPA(mp_int * a, mp_int * b, mp_int * c, mp_int * d)
{
  mp_int  q, x, y, t1, t2;
  int     res, n, t, i, norm, neg;

  /* is divisor zero ? */
  if (mp_iszero (b) == 1) {
    return MP_VAL;
  }

  /* if a < b then q=0, r = a */
  if (mp_cmp_mag (a, b) == MP_LT) {
    if (d != NULL) {
      res = mp_copy (MPST, a, d);
    } else {
      res = MP_OKAY;
    }
    if (c != NULL) {
      mp_zero (c);
    }
    return res;
  }

  if ((res = mp_init_size (&q, a->used + 2)) != MP_OKAY) {
    return res;
  }
  q.used = a->used + 2;

  if ((res = mp_init (&t1)) != MP_OKAY) {
    goto LBL_Q;
  }

  if ((res = mp_init (&t2)) != MP_OKAY) {
    goto LBL_T1;
  }

  if ((res = mp_init_copy (MPST, &x, a)) != MP_OKAY) {
    goto LBL_T2;
  }

  if ((res = mp_init_copy (MPST, &y, b)) != MP_OKAY) {
    goto LBL_X;
  }

  /* fix the sign */
  neg = (a->sign == b->sign) ? MP_ZPOS : MP_NEG;
  x.sign = y.sign = MP_ZPOS;

  /* normalize both x and y, ensure that y >= b/2, [b == 2**DIGIT_BIT] */
  norm = mp_count_bits(&y) % DIGIT_BIT;
  if (norm < (int)(DIGIT_BIT-1)) {
     norm = (DIGIT_BIT-1) - norm;
     if ((res = mp_mul_2d (MPST, &x, norm, &x)) != MP_OKAY) {
       goto LBL_Y;
     }
     if ((res = mp_mul_2d (MPST, &y, norm, &y)) != MP_OKAY) {
       goto LBL_Y;
     }
  } else {
     norm = 0;
  }

  /* note hac does 0 based, so if used==5 then its 0,1,2,3,4, e.g. use 4 */
  n = x.used - 1;
  t = y.used - 1;

  /* while (x >= y*b**n-t) do { q[n-t] += 1; x -= y*b**{n-t} } */
  if ((res = mp_lshd (MPST, &y, n - t)) != MP_OKAY) { /* y = y*b**{n-t} */
    goto LBL_Y;
  }

  while (mp_cmp (&x, &y) != MP_LT) {
    ++(q.dp[n - t]);
    if ((res = mp_sub (MPST, &x, &y, &x)) != MP_OKAY) {
      goto LBL_Y;
    }
  }

  /* reset y by shifting it back down */
  mp_rshd (&y, n - t);

  /* step 3. for i from n down to (t + 1) */
  for (i = n; i >= (t + 1); i--) {
    if (i > x.used) {
      continue;
    }

    /* step 3.1 if xi == yt then set q{i-t-1} to b-1, 
     * otherwise set q{i-t-1} to (xi*b + x{i-1})/yt */
    if (x.dp[i] == y.dp[t]) {
      q.dp[i - t - 1] = ((((mp_digit)1) << DIGIT_BIT) - 1);
    } else {
      mp_word tmp;
      tmp = ((mp_word) x.dp[i]) << ((mp_word) DIGIT_BIT);
      tmp |= ((mp_word) x.dp[i - 1]);
      tmp /= ((mp_word) y.dp[t]);
      if (tmp > (mp_word) MP_MASK)
        tmp = MP_MASK;
      q.dp[i - t - 1] = (mp_digit) (tmp & (mp_word) (MP_MASK));
    }

    /* while (q{i-t-1} * (yt * b + y{t-1})) > 
             xi * b**2 + xi-1 * b + xi-2 
     
       do q{i-t-1} -= 1; 
    */
    q.dp[i - t - 1] = (q.dp[i - t - 1] + 1) & MP_MASK;
    do {
      q.dp[i - t - 1] = (q.dp[i - t - 1] - 1) & MP_MASK;

      /* find left hand */
      mp_zero (&t1);
      t1.dp[0] = (t - 1 < 0) ? 0 : y.dp[t - 1];
      t1.dp[1] = y.dp[t];
      t1.used = 2;
      if ((res = mp_mul_d (MPST, &t1, q.dp[i - t - 1], &t1)) != MP_OKAY) {
        goto LBL_Y;
      }

      /* find right hand */
      t2.dp[0] = (i - 2 < 0) ? 0 : x.dp[i - 2];
      t2.dp[1] = (i - 1 < 0) ? 0 : x.dp[i - 1];
      t2.dp[2] = x.dp[i];
      t2.used = 3;
    } while (mp_cmp_mag(&t1, &t2) == MP_GT);

    /* step 3.3 x = x - q{i-t-1} * y * b**{i-t-1} */
    if ((res = mp_mul_d (MPST, &y, q.dp[i - t - 1], &t1)) != MP_OKAY) {
      goto LBL_Y;
    }

    if ((res = mp_lshd (MPST, &t1, i - t - 1)) != MP_OKAY) {
      goto LBL_Y;
    }

    if ((res = mp_sub (MPST, &x, &t1, &x)) != MP_OKAY) {
      goto LBL_Y;
    }

    /* if x < 0 then { x = x + y*b**{i-t-1}; q{i-t-1} -= 1; } */
    if (x.sign == MP_NEG) {
      if ((res = mp_copy (MPST, &y, &t1)) != MP_OKAY) {
        goto LBL_Y;
      }
      if ((res = mp_lshd (MPST, &t1, i - t - 1)) != MP_OKAY) {
        goto LBL_Y;
      }
      if ((res = mp_add (MPST, &x, &t1, &x)) != MP_OKAY) {
        goto LBL_Y;
      }

      q.dp[i - t - 1] = (q.dp[i - t - 1] - 1UL) & MP_MASK;
    }
  }

  /* now q is the quotient and x is the remainder 
   * [which we have to normalize] 
   */
  
  /* get sign before writing to c */
  x.sign = x.used == 0 ? MP_ZPOS : a->sign;

  if (c != NULL) {
    mp_clamp (&q);
    mp_managed_copy (MPST, &q, c);
    c->sign = neg;
  }

  if (d != NULL) {
    mp_div_2d (MPST, &x, norm, &x, NULL);
    mp_managed_copy (MPST, &x, d);
  }

  res = MP_OKAY;

LBL_Y:mp_clear (&y);
LBL_X:mp_clear (&x);
LBL_T2:mp_clear (&t2);
LBL_T1:mp_clear (&t1);
LBL_Q:mp_clear (&q);
  return res;
}
Ejemplo n.º 13
0
/* returns size of ASCII reprensentation */
int mp_radix_size (mp_int * a, int radix, int *size)
{
  int     res, digs;
  mp_int  t;
  mp_digit d;

  *size = 0;

  /* special case for binary */
  if (radix == 2) {
    *size = mp_count_bits (a) + (a->sign == MP_NEG ? 1 : 0) + 1;
    return MP_OKAY;
  }

  /* make sure the radix is in range */
  if (radix < 2 || radix > 64) {
    return MP_VAL;
  }

  if (mp_iszero(a) == MP_YES) {
    *size = 2;
    return MP_OKAY;
  }

  /* digs is the digit count */
  digs = 0;

  /* if it's negative add one for the sign */
  if (a->sign == MP_NEG) {
    ++digs;
  }

  /* init a copy of the input */
  if ((res = mp_init_copy (&t, a)) != MP_OKAY) {
    return res;
  }

  /* force temp to positive */
  t.sign = MP_ZPOS; 

  /* fetch out all of the digits */
  while (mp_iszero (&t) == MP_NO) {
    if ((res = mp_div_d (&t, (mp_digit) radix, &t, &d)) != MP_OKAY) {
      mp_clear (&t);
      return res;
    }
    ++digs;
  }
  mp_clear (&t);

  /* 
   * return digs + 1, the 1 is for the NULL byte that would be required.
   * mp_toradix_n requires a minimum of 3 bytes, so never report less than
   * that.
   */

  if ( digs >= 2 ) {
      *size = digs + 1;
  } else {
      *size = 3;
  }
  return MP_OKAY;
}
Ejemplo n.º 14
0
int mp_exptmod_fast (mp_int * G, mp_int * X, mp_int * P, mp_int * Y, int redmode)
{
  mp_int  M[TAB_SIZE], res;
  mp_digit buf, mp;
  int     err, bitbuf, bitcpy, bitcnt, mode, digidx, x, y, winsize;

  /* use a pointer to the reduction algorithm.  This allows us to use
   * one of many reduction algorithms without modding the guts of
   * the code with if statements everywhere.
   */
  int     (*redux)(mp_int*,mp_int*,mp_digit);

  /* find window size */
  x = mp_count_bits (X);
  if (x <= 7) {
    winsize = 2;
  } else if (x <= 36) {
    winsize = 3;
  } else if (x <= 140) {
    winsize = 4;
  } else if (x <= 450) {
    winsize = 5;
  } else if (x <= 1303) {
    winsize = 6;
  } else if (x <= 3529) {
    winsize = 7;
  } else {
    winsize = 8;
  }

#ifdef MP_LOW_MEM
  if (winsize > 5) {
     winsize = 5;
  }
#endif

  /* init M array */
  /* init first cell */
  if ((err = mp_init_size(&M[1], P->alloc)) != MP_OKAY) {
     return err;
  }

  /* now init the second half of the array */
  for (x = 1<<(winsize-1); x < (1 << winsize); x++) {
    if ((err = mp_init_size(&M[x], P->alloc)) != MP_OKAY) {
      for (y = 1<<(winsize-1); y < x; y++) {
        mp_clear (&M[y]);
      }
      mp_clear(&M[1]);
      return err;
    }
  }

  /* determine and setup reduction code */
  if (redmode == 0) {
#ifdef BN_MP_MONTGOMERY_SETUP_C     
     /* now setup montgomery  */
     if ((err = mp_montgomery_setup (P, &mp)) != MP_OKAY) {
        goto LBL_M;
     }
#else
     err = MP_VAL;
     goto LBL_M;
#endif

     /* automatically pick the comba one if available (saves quite a few calls/ifs) */
#ifdef BN_FAST_MP_MONTGOMERY_REDUCE_C
     if ((((P->used * 2) + 1) < MP_WARRAY) &&
          (P->used < (1 << ((CHAR_BIT * sizeof(mp_word)) - (2 * DIGIT_BIT))))) {
        redux = fast_mp_montgomery_reduce;
     } else 
#endif
     {
#ifdef BN_MP_MONTGOMERY_REDUCE_C
        /* use slower baseline Montgomery method */
        redux = mp_montgomery_reduce;
#else
        err = MP_VAL;
        goto LBL_M;
#endif
     }
  } else if (redmode == 1) {
#if defined(BN_MP_DR_SETUP_C) && defined(BN_MP_DR_REDUCE_C)
     /* setup DR reduction for moduli of the form B**k - b */
     mp_dr_setup(P, &mp);
     redux = mp_dr_reduce;
#else
     err = MP_VAL;
     goto LBL_M;
#endif
  } else {
#if defined(BN_MP_REDUCE_2K_SETUP_C) && defined(BN_MP_REDUCE_2K_C)
     /* setup DR reduction for moduli of the form 2**k - b */
     if ((err = mp_reduce_2k_setup(P, &mp)) != MP_OKAY) {
        goto LBL_M;
     }
     redux = mp_reduce_2k;
#else
     err = MP_VAL;
     goto LBL_M;
#endif
  }

  /* setup result */
  if ((err = mp_init_size (&res, P->alloc)) != MP_OKAY) {
    goto LBL_M;
  }

  /* create M table
   *

   *
   * The first half of the table is not computed though accept for M[0] and M[1]
   */

  if (redmode == 0) {
#ifdef BN_MP_MONTGOMERY_CALC_NORMALIZATION_C
     /* now we need R mod m */
     if ((err = mp_montgomery_calc_normalization (&res, P)) != MP_OKAY) {
       goto LBL_RES;
     }

     /* now set M[1] to G * R mod m */
     if ((err = mp_mulmod (G, &res, P, &M[1])) != MP_OKAY) {
       goto LBL_RES;
     }
#else
     err = MP_VAL;
     goto LBL_RES;
#endif
  } else {
     mp_set(&res, 1);
     if ((err = mp_mod(G, P, &M[1])) != MP_OKAY) {
        goto LBL_RES;
     }
  }

  /* compute the value at M[1<<(winsize-1)] by squaring M[1] (winsize-1) times */
  if ((err = mp_copy (&M[1], &M[1 << (winsize - 1)])) != MP_OKAY) {
    goto LBL_RES;
  }

  for (x = 0; x < (winsize - 1); x++) {
    if ((err = mp_sqr (&M[1 << (winsize - 1)], &M[1 << (winsize - 1)])) != MP_OKAY) {
      goto LBL_RES;
    }
    if ((err = redux (&M[1 << (winsize - 1)], P, mp)) != MP_OKAY) {
      goto LBL_RES;
    }
  }

  /* create upper table */
  for (x = (1 << (winsize - 1)) + 1; x < (1 << winsize); x++) {
    if ((err = mp_mul (&M[x - 1], &M[1], &M[x])) != MP_OKAY) {
      goto LBL_RES;
    }
    if ((err = redux (&M[x], P, mp)) != MP_OKAY) {
      goto LBL_RES;
    }
  }

  /* set initial mode and bit cnt */
  mode   = 0;
  bitcnt = 1;
  buf    = 0;
  digidx = X->used - 1;
  bitcpy = 0;
  bitbuf = 0;

  for (;;) {
    /* grab next digit as required */
    if (--bitcnt == 0) {
      /* if digidx == -1 we are out of digits so break */
      if (digidx == -1) {
        break;
      }
      /* read next digit and reset bitcnt */
      buf    = X->dp[digidx--];
      bitcnt = (int)DIGIT_BIT;
    }

    /* grab the next msb from the exponent */
    y     = (mp_digit)(buf >> (DIGIT_BIT - 1)) & 1;
    buf <<= (mp_digit)1;

    /* if the bit is zero and mode == 0 then we ignore it
     * These represent the leading zero bits before the first 1 bit
     * in the exponent.  Technically this opt is not required but it
     * does lower the # of trivial squaring/reductions used
     */
    if ((mode == 0) && (y == 0)) {
      continue;
    }

    /* if the bit is zero and mode == 1 then we square */
    if ((mode == 1) && (y == 0)) {
      if ((err = mp_sqr (&res, &res)) != MP_OKAY) {
        goto LBL_RES;
      }
      if ((err = redux (&res, P, mp)) != MP_OKAY) {
        goto LBL_RES;
      }
      continue;
    }

    /* else we add it to the window */
    bitbuf |= (y << (winsize - ++bitcpy));
    mode    = 2;

    if (bitcpy == winsize) {
      /* ok window is filled so square as required and multiply  */
      /* square first */
      for (x = 0; x < winsize; x++) {
        if ((err = mp_sqr (&res, &res)) != MP_OKAY) {
          goto LBL_RES;
        }
        if ((err = redux (&res, P, mp)) != MP_OKAY) {
          goto LBL_RES;
        }
      }

      /* then multiply */
      if ((err = mp_mul (&res, &M[bitbuf], &res)) != MP_OKAY) {
        goto LBL_RES;
      }
      if ((err = redux (&res, P, mp)) != MP_OKAY) {
        goto LBL_RES;
      }

      /* empty window and reset */
      bitcpy = 0;
      bitbuf = 0;
      mode   = 1;
    }
  }

  /* if bits remain then square/multiply */
  if ((mode == 2) && (bitcpy > 0)) {
    /* square then multiply if the bit is set */
    for (x = 0; x < bitcpy; x++) {
      if ((err = mp_sqr (&res, &res)) != MP_OKAY) {
        goto LBL_RES;
      }
      if ((err = redux (&res, P, mp)) != MP_OKAY) {
        goto LBL_RES;
      }

      /* get next bit of the window */
      bitbuf <<= 1;
      if ((bitbuf & (1 << winsize)) != 0) {
        /* then multiply */
        if ((err = mp_mul (&res, &M[1], &res)) != MP_OKAY) {
          goto LBL_RES;
        }
        if ((err = redux (&res, P, mp)) != MP_OKAY) {
          goto LBL_RES;
        }
      }
    }
  }

  if (redmode == 0) {
     /* fixup result if Montgomery reduction is used
      * recall that any value in a Montgomery system is
      * actually multiplied by R mod n.  So we have
      * to reduce one more time to cancel out the factor
      * of R.
      */
     if ((err = redux(&res, P, mp)) != MP_OKAY) {
       goto LBL_RES;
     }
  }

  /* swap res with Y */
  mp_exch (&res, Y);
  err = MP_OKAY;
LBL_RES:mp_clear (&res);
LBL_M:
  mp_clear(&M[1]);
  for (x = 1<<(winsize-1); x < (1 << winsize); x++) {
    mp_clear (&M[x]);
  }
  return err;
}
Ejemplo n.º 15
0
/**
  Read a mp_int integer
  @param in       The DER encoded data
  @param inlen    Size of DER encoded data
  @param num      The first mp_int to decode
  @return CRYPT_OK if successful
*/
int der_decode_integer(const unsigned char *in, unsigned long inlen, void *num)
{
   unsigned long x, y, z;
   int           err;

   LTC_ARGCHK(num    != NULL);
   LTC_ARGCHK(in     != NULL);

   /* min DER INTEGER is 0x02 01 00 == 0 */
   if (inlen < (1 + 1 + 1)) {
      return CRYPT_INVALID_PACKET;
   }

   /* ok expect 0x02 when we AND with 0001 1111 [1F] */
   x = 0;
   if ((in[x++] & 0x1F) != 0x02) {
      return CRYPT_INVALID_PACKET;
   }

   /* now decode the len stuff */
   z = in[x++];

   if ((z & 0x80) == 0x00) {
      /* short form */

      /* will it overflow? */
      if (x + z > inlen) {
         return CRYPT_INVALID_PACKET;
      }
     
      /* no so read it */
      if ((err = mp_read_unsigned_bin(num, (unsigned char *)in + x, z)) != CRYPT_OK) {
         return err;
      }
   } else {
      /* long form */
      z &= 0x7F;
      
      /* will number of length bytes overflow? (or > 4) */
      if (((x + z) > inlen) || (z > 4) || (z == 0)) {
         return CRYPT_INVALID_PACKET;
      }

      /* now read it in */
      y = 0;
      while (z--) {
         y = ((unsigned long)(in[x++])) | (y << 8);
      }

      /* now will reading y bytes overrun? */
      if ((x + y) > inlen) {
         return CRYPT_INVALID_PACKET;
      }

      /* no so read it */
      if ((err = mp_read_unsigned_bin(num, (unsigned char *)in + x, y)) != CRYPT_OK) {
         return err;
      }
   }

   /* see if it's negative */
   if (in[x] & 0x80) {
      void *tmp;
      if (mp_init(&tmp) != CRYPT_OK) {
         return CRYPT_MEM;
      }

      if (mp_2expt(tmp, mp_count_bits(num)) != CRYPT_OK || mp_sub(num, tmp, num) != CRYPT_OK) {
         mp_clear(tmp);
         return CRYPT_MEM;
      }
      mp_clear(tmp);
   } 

   return CRYPT_OK;

}
Ejemplo n.º 16
0
int wc_SrpSetParams(Srp* srp, const byte* N,    word32 nSz,
                              const byte* g,    word32 gSz,
                              const byte* salt, word32 saltSz)
{
    SrpHash hash;
    byte digest1[SRP_MAX_DIGEST_SIZE];
    byte digest2[SRP_MAX_DIGEST_SIZE];
    byte pad = 0;
    int i, j, r;

    if (!srp || !N || !g || !salt || nSz < gSz)
        return BAD_FUNC_ARG;

    if (!srp->user)
        return SRP_CALL_ORDER_E;

    /* Set N */
    if (mp_read_unsigned_bin(&srp->N, N, nSz) != MP_OKAY)
        return MP_READ_E;

    if (mp_count_bits(&srp->N) < SRP_MODULUS_MIN_BITS)
        return BAD_FUNC_ARG;

    /* Set g */
    if (mp_read_unsigned_bin(&srp->g, g, gSz) != MP_OKAY)
        return MP_READ_E;

    if (mp_cmp(&srp->N, &srp->g) != MP_GT)
        return BAD_FUNC_ARG;

    /* Set salt */
    if (srp->salt) {
        ForceZero(srp->salt, srp->saltSz);
        XFREE(srp->salt, srp->heap, DYNAMIC_TYPE_SRP);
    }

    srp->salt = (byte*)XMALLOC(saltSz, srp->heap, DYNAMIC_TYPE_SRP);
    if (srp->salt == NULL)
        return MEMORY_E;

    XMEMCPY(srp->salt, salt, saltSz);
    srp->saltSz = saltSz;

    /* Set k = H(N, g) */
            r = SrpHashInit(&hash, srp->type);
    if (!r) r = SrpHashUpdate(&hash, (byte*) N, nSz);
    for (i = 0; (word32)i < nSz - gSz; i++)
        SrpHashUpdate(&hash, &pad, 1);
    if (!r) r = SrpHashUpdate(&hash, (byte*) g, gSz);
    if (!r) r = SrpHashFinal(&hash, srp->k);

    /* update client proof */

    /* digest1 = H(N) */
    if (!r) r = SrpHashInit(&hash, srp->type);
    if (!r) r = SrpHashUpdate(&hash, (byte*) N, nSz);
    if (!r) r = SrpHashFinal(&hash, digest1);

    /* digest2 = H(g) */
    if (!r) r = SrpHashInit(&hash, srp->type);
    if (!r) r = SrpHashUpdate(&hash, (byte*) g, gSz);
    if (!r) r = SrpHashFinal(&hash, digest2);

    /* digest1 = H(N) ^ H(g) */
    if (r == 0) {
        for (i = 0, j = SrpHashSize(srp->type); i < j; i++)
            digest1[i] ^= digest2[i];
    }

    /* digest2 = H(user) */
    if (!r) r = SrpHashInit(&hash, srp->type);
    if (!r) r = SrpHashUpdate(&hash, srp->user, srp->userSz);
    if (!r) r = SrpHashFinal(&hash, digest2);

    /* client proof = H( H(N) ^ H(g) | H(user) | salt) */
    if (!r) r = SrpHashUpdate(&srp->client_proof, digest1, j);
    if (!r) r = SrpHashUpdate(&srp->client_proof, digest2, j);
    if (!r) r = SrpHashUpdate(&srp->client_proof, salt, saltSz);

    return r;
}
Ejemplo n.º 17
0
int ecc_make_key_ex(prng_state *prng, int wprng, ecc_key *key, const ltc_ecc_set_type *dp)
{
   int            err;
   ecc_point     *base;
   void          *prime, *order, *a;
   unsigned char *buf;
   int            keysize, orderbits;

   LTC_ARGCHK(key         != NULL);
   LTC_ARGCHK(ltc_mp.name != NULL);
   LTC_ARGCHK(dp          != NULL);

   /* good prng? */
   if ((err = prng_is_valid(wprng)) != CRYPT_OK) {
      return err;
   }

   key->idx = -1;
   key->dp  = dp;
   keysize  = dp->size;

   /* allocate ram */
   base = NULL;
   buf  = XMALLOC(ECC_MAXSIZE);
   if (buf == NULL) {
      return CRYPT_MEM;
   }

   /* make up random string */
   if (prng_descriptor[wprng].read(buf, (unsigned long)keysize, prng) != (unsigned long)keysize) {
      err = CRYPT_ERROR_READPRNG;
      goto ERR_BUF;
   }

   /* setup the key variables */
   if ((err = mp_init_multi(&key->pubkey.x, &key->pubkey.y, &key->pubkey.z, &key->k, &prime, &order, &a, NULL)) != CRYPT_OK) {
      goto ERR_BUF;
   }
   base = ltc_ecc_new_point();
   if (base == NULL) {
      err = CRYPT_MEM;
      goto errkey;
   }

   /* read in the specs for this key */
   if ((err = mp_read_radix(prime,   (char *)key->dp->prime, 16)) != CRYPT_OK)                  { goto errkey; }
   if ((err = mp_read_radix(order,   (char *)key->dp->order, 16)) != CRYPT_OK)                  { goto errkey; }
   if ((err = mp_read_radix(base->x, (char *)key->dp->Gx, 16)) != CRYPT_OK)                     { goto errkey; }
   if ((err = mp_read_radix(base->y, (char *)key->dp->Gy, 16)) != CRYPT_OK)                     { goto errkey; }
   if ((err = mp_set(base->z, 1)) != CRYPT_OK)                                                  { goto errkey; }
   if ((err = mp_read_unsigned_bin(key->k, (unsigned char *)buf, keysize)) != CRYPT_OK)         { goto errkey; }

   /* ECC key pair generation according to FIPS-186-4 (B.4.2 Key Pair Generation by Testing Candidates):
    * the generated private key k should be the range [1, order–1]
    *  a/ N = bitlen(order)
    *  b/ generate N random bits and convert them into big integer k
    *  c/ if k not in [1, order-1] go to b/
    *  e/ Q = k*G
    */
   orderbits = mp_count_bits(order);
   do {
     if ((err = rand_bn_bits(key->k, orderbits, prng, wprng)) != CRYPT_OK)                      { goto errkey; }
   } while (mp_iszero(key->k) || mp_cmp(key->k, order) != LTC_MP_LT);

   /* make the public key */
   if ((err = mp_read_radix(a, (char *)key->dp->A, 16)) != CRYPT_OK)                            { goto errkey; }
   if ((err = ltc_mp.ecc_ptmul(key->k, base, &key->pubkey, a, prime, 1)) != CRYPT_OK)           { goto errkey; }
   key->type = PK_PRIVATE;

   /* free up ram */
   err = CRYPT_OK;
   goto cleanup;
errkey:
   mp_clear_multi(key->pubkey.x, key->pubkey.y, key->pubkey.z, key->k, NULL);
cleanup:
   ltc_ecc_del_point(base);
   mp_clear_multi(prime, order, a, NULL);
ERR_BUF:
#ifdef LTC_CLEAN_STACK
   zeromem(buf, ECC_MAXSIZE);
#endif
   XFREE(buf);
   return err;
}
Ejemplo n.º 18
0
int main(void)
{
   mp_int a, b, c, d, e, f;
   unsigned long expt_n, add_n, sub_n, mul_n, div_n, sqr_n, mul2d_n, div2d_n,
      gcd_n, lcm_n, inv_n, div2_n, mul2_n, add_d_n, sub_d_n, t;
   unsigned rr;
   int i, n, err, cnt, ix, old_kara_m, old_kara_s;
   mp_digit mp;


   mp_init(&a);
   mp_init(&b);
   mp_init(&c);
   mp_init(&d);
   mp_init(&e);
   mp_init(&f);

   srand(time(NULL));

#if 0
   // test montgomery
   printf("Testing montgomery...\n");
   for (i = 1; i < 10; i++) {
      printf("Testing digit size: %d\n", i);
      for (n = 0; n < 1000; n++) {
         mp_rand(&a, i);
         a.dp[0] |= 1;

         // let's see if R is right
         mp_montgomery_calc_normalization(&b, &a);
         mp_montgomery_setup(&a, &mp);

         // now test a random reduction
         for (ix = 0; ix < 100; ix++) {
             mp_rand(&c, 1 + abs(rand()) % (2*i));
             mp_copy(&c, &d);
             mp_copy(&c, &e);

             mp_mod(&d, &a, &d);
             mp_montgomery_reduce(&c, &a, mp);
             mp_mulmod(&c, &b, &a, &c);

             if (mp_cmp(&c, &d) != MP_EQ) {
printf("d = e mod a, c = e MOD a\n");
mp_todecimal(&a, buf); printf("a = %s\n", buf);
mp_todecimal(&e, buf); printf("e = %s\n", buf);
mp_todecimal(&d, buf); printf("d = %s\n", buf);
mp_todecimal(&c, buf); printf("c = %s\n", buf);
printf("compare no compare!\n"); exit(EXIT_FAILURE); }
         }
      }
   }
   printf("done\n");

   // test mp_get_int
   printf("Testing: mp_get_int\n");
   for (i = 0; i < 1000; ++i) {
      t = ((unsigned long) rand() * rand() + 1) & 0xFFFFFFFF;
      mp_set_int(&a, t);
      if (t != mp_get_int(&a)) {
	 printf("mp_get_int() bad result!\n");
	 return 1;
      }
   }
   mp_set_int(&a, 0);
   if (mp_get_int(&a) != 0) {
      printf("mp_get_int() bad result!\n");
      return 1;
   }
   mp_set_int(&a, 0xffffffff);
   if (mp_get_int(&a) != 0xffffffff) {
      printf("mp_get_int() bad result!\n");
      return 1;
   }
   // test mp_sqrt
   printf("Testing: mp_sqrt\n");
   for (i = 0; i < 1000; ++i) {
      printf("%6d\r", i);
      fflush(stdout);
      n = (rand() & 15) + 1;
      mp_rand(&a, n);
      if (mp_sqrt(&a, &b) != MP_OKAY) {
	 printf("mp_sqrt() error!\n");
	 return 1;
      }
      mp_n_root(&a, 2, &a);
      if (mp_cmp_mag(&b, &a) != MP_EQ) {
	 printf("mp_sqrt() bad result!\n");
	 return 1;
      }
   }

   printf("\nTesting: mp_is_square\n");
   for (i = 0; i < 1000; ++i) {
      printf("%6d\r", i);
      fflush(stdout);

      /* test mp_is_square false negatives */
      n = (rand() & 7) + 1;
      mp_rand(&a, n);
      mp_sqr(&a, &a);
      if (mp_is_square(&a, &n) != MP_OKAY) {
	 printf("fn:mp_is_square() error!\n");
	 return 1;
      }
      if (n == 0) {
	 printf("fn:mp_is_square() bad result!\n");
	 return 1;
      }

      /* test for false positives */
      mp_add_d(&a, 1, &a);
      if (mp_is_square(&a, &n) != MP_OKAY) {
	 printf("fp:mp_is_square() error!\n");
	 return 1;
      }
      if (n == 1) {
	 printf("fp:mp_is_square() bad result!\n");
	 return 1;
      }

   }
   printf("\n\n");

   /* test for size */
   for (ix = 10; ix < 128; ix++) {
      printf("Testing (not safe-prime): %9d bits    \r", ix);
      fflush(stdout);
      err =
	 mp_prime_random_ex(&a, 8, ix,
			    (rand() & 1) ? LTM_PRIME_2MSB_OFF :
			    LTM_PRIME_2MSB_ON, myrng, NULL);
      if (err != MP_OKAY) {
	 printf("failed with err code %d\n", err);
	 return EXIT_FAILURE;
      }
      if (mp_count_bits(&a) != ix) {
	 printf("Prime is %d not %d bits!!!\n", mp_count_bits(&a), ix);
	 return EXIT_FAILURE;
      }
   }

   for (ix = 16; ix < 128; ix++) {
      printf("Testing (   safe-prime): %9d bits    \r", ix);
      fflush(stdout);
      err =
	 mp_prime_random_ex(&a, 8, ix,
			    ((rand() & 1) ? LTM_PRIME_2MSB_OFF :
			     LTM_PRIME_2MSB_ON) | LTM_PRIME_SAFE, myrng,
			    NULL);
      if (err != MP_OKAY) {
	 printf("failed with err code %d\n", err);
	 return EXIT_FAILURE;
      }
      if (mp_count_bits(&a) != ix) {
	 printf("Prime is %d not %d bits!!!\n", mp_count_bits(&a), ix);
	 return EXIT_FAILURE;
      }
      /* let's see if it's really a safe prime */
      mp_sub_d(&a, 1, &a);
      mp_div_2(&a, &a);
      mp_prime_is_prime(&a, 8, &cnt);
      if (cnt != MP_YES) {
	 printf("sub is not prime!\n");
	 return EXIT_FAILURE;
      }
   }

   printf("\n\n");

   mp_read_radix(&a, "123456", 10);
   mp_toradix_n(&a, buf, 10, 3);
   printf("a == %s\n", buf);
   mp_toradix_n(&a, buf, 10, 4);
   printf("a == %s\n", buf);
   mp_toradix_n(&a, buf, 10, 30);
   printf("a == %s\n", buf);


#if 0
   for (;;) {
      fgets(buf, sizeof(buf), stdin);
      mp_read_radix(&a, buf, 10);
      mp_prime_next_prime(&a, 5, 1);
      mp_toradix(&a, buf, 10);
      printf("%s, %lu\n", buf, a.dp[0] & 3);
   }
#endif

   /* test mp_cnt_lsb */
   printf("testing mp_cnt_lsb...\n");
   mp_set(&a, 1);
   for (ix = 0; ix < 1024; ix++) {
      if (mp_cnt_lsb(&a) != ix) {
	 printf("Failed at %d, %d\n", ix, mp_cnt_lsb(&a));
	 return 0;
      }
      mp_mul_2(&a, &a);
   }

/* test mp_reduce_2k */
   printf("Testing mp_reduce_2k...\n");
   for (cnt = 3; cnt <= 128; ++cnt) {
      mp_digit tmp;

      mp_2expt(&a, cnt);
      mp_sub_d(&a, 2, &a);	/* a = 2**cnt - 2 */


      printf("\nTesting %4d bits", cnt);
      printf("(%d)", mp_reduce_is_2k(&a));
      mp_reduce_2k_setup(&a, &tmp);
      printf("(%d)", tmp);
      for (ix = 0; ix < 1000; ix++) {
	 if (!(ix & 127)) {
	    printf(".");
	    fflush(stdout);
	 }
	 mp_rand(&b, (cnt / DIGIT_BIT + 1) * 2);
	 mp_copy(&c, &b);
	 mp_mod(&c, &a, &c);
	 mp_reduce_2k(&b, &a, 2);
	 if (mp_cmp(&c, &b)) {
	    printf("FAILED\n");
	    exit(0);
	 }
      }
   }

/* test mp_div_3  */
   printf("Testing mp_div_3...\n");
   mp_set(&d, 3);
   for (cnt = 0; cnt < 10000;) {
      mp_digit r1, r2;

      if (!(++cnt & 127))
	 printf("%9d\r", cnt);
      mp_rand(&a, abs(rand()) % 128 + 1);
      mp_div(&a, &d, &b, &e);
      mp_div_3(&a, &c, &r2);

      if (mp_cmp(&b, &c) || mp_cmp_d(&e, r2)) {
	 printf("\n\nmp_div_3 => Failure\n");
      }
   }
   printf("\n\nPassed div_3 testing\n");

/* test the DR reduction */
   printf("testing mp_dr_reduce...\n");
   for (cnt = 2; cnt < 32; cnt++) {
      printf("%d digit modulus\n", cnt);
      mp_grow(&a, cnt);
      mp_zero(&a);
      for (ix = 1; ix < cnt; ix++) {
	 a.dp[ix] = MP_MASK;
      }
      a.used = cnt;
      a.dp[0] = 3;

      mp_rand(&b, cnt - 1);
      mp_copy(&b, &c);

      rr = 0;
      do {
	 if (!(rr & 127)) {
	    printf("%9lu\r", rr);
	    fflush(stdout);
	 }
	 mp_sqr(&b, &b);
	 mp_add_d(&b, 1, &b);
	 mp_copy(&b, &c);

	 mp_mod(&b, &a, &b);
	 mp_dr_reduce(&c, &a, (((mp_digit) 1) << DIGIT_BIT) - a.dp[0]);

	 if (mp_cmp(&b, &c) != MP_EQ) {
	    printf("Failed on trial %lu\n", rr);
	    exit(-1);

	 }
      } while (++rr < 500);
      printf("Passed DR test for %d digits\n", cnt);
   }

#endif

/* test the mp_reduce_2k_l code */
#if 0
#if 0
/* first load P with 2^1024 - 0x2A434 B9FDEC95 D8F9D550 FFFFFFFF FFFFFFFF */
   mp_2expt(&a, 1024);
   mp_read_radix(&b, "2A434B9FDEC95D8F9D550FFFFFFFFFFFFFFFF", 16);
   mp_sub(&a, &b, &a);
#elif 1
/*  p = 2^2048 - 0x1 00000000 00000000 00000000 00000000 4945DDBF 8EA2A91D 5776399B B83E188F  */
   mp_2expt(&a, 2048);
   mp_read_radix(&b,
		 "1000000000000000000000000000000004945DDBF8EA2A91D5776399BB83E188F",
		 16);
   mp_sub(&a, &b, &a);
#endif

   mp_todecimal(&a, buf);
   printf("p==%s\n", buf);
/* now mp_reduce_is_2k_l() should return */
   if (mp_reduce_is_2k_l(&a) != 1) {
      printf("mp_reduce_is_2k_l() return 0, should be 1\n");
      return EXIT_FAILURE;
   }
   mp_reduce_2k_setup_l(&a, &d);
   /* now do a million square+1 to see if it varies */
   mp_rand(&b, 64);
   mp_mod(&b, &a, &b);
   mp_copy(&b, &c);
   printf("testing mp_reduce_2k_l...");
   fflush(stdout);
   for (cnt = 0; cnt < (1UL << 20); cnt++) {
      mp_sqr(&b, &b);
      mp_add_d(&b, 1, &b);
      mp_reduce_2k_l(&b, &a, &d);
      mp_sqr(&c, &c);
      mp_add_d(&c, 1, &c);
      mp_mod(&c, &a, &c);
      if (mp_cmp(&b, &c) != MP_EQ) {
	 printf("mp_reduce_2k_l() failed at step %lu\n", cnt);
	 mp_tohex(&b, buf);
	 printf("b == %s\n", buf);
	 mp_tohex(&c, buf);
	 printf("c == %s\n", buf);
	 return EXIT_FAILURE;
      }
   }
   printf("...Passed\n");
#endif

   div2_n = mul2_n = inv_n = expt_n = lcm_n = gcd_n = add_n =
      sub_n = mul_n = div_n = sqr_n = mul2d_n = div2d_n = cnt = add_d_n =
      sub_d_n = 0;

   /* force KARA and TOOM to enable despite cutoffs */
   KARATSUBA_SQR_CUTOFF = KARATSUBA_MUL_CUTOFF = 8;
   TOOM_SQR_CUTOFF = TOOM_MUL_CUTOFF = 16;

   for (;;) {
      /* randomly clear and re-init one variable, this has the affect of triming the alloc space */
      switch (abs(rand()) % 7) {
      case 0:
	 mp_clear(&a);
	 mp_init(&a);
	 break;
      case 1:
	 mp_clear(&b);
	 mp_init(&b);
	 break;
      case 2:
	 mp_clear(&c);
	 mp_init(&c);
	 break;
      case 3:
	 mp_clear(&d);
	 mp_init(&d);
	 break;
      case 4:
	 mp_clear(&e);
	 mp_init(&e);
	 break;
      case 5:
	 mp_clear(&f);
	 mp_init(&f);
	 break;
      case 6:
	 break;			/* don't clear any */
      }


      printf
	 ("%4lu/%4lu/%4lu/%4lu/%4lu/%4lu/%4lu/%4lu/%4lu/%4lu/%4lu/%4lu/%4lu/%4lu/%4lu ",
	  add_n, sub_n, mul_n, div_n, sqr_n, mul2d_n, div2d_n, gcd_n, lcm_n,
	  expt_n, inv_n, div2_n, mul2_n, add_d_n, sub_d_n);
      fgets(cmd, 4095, stdin);
      cmd[strlen(cmd) - 1] = 0;
      printf("%s  ]\r", cmd);
      fflush(stdout);
      if (!strcmp(cmd, "mul2d")) {
	 ++mul2d_n;
	 fgets(buf, 4095, stdin);
	 mp_read_radix(&a, buf, 64);
	 fgets(buf, 4095, stdin);
	 sscanf(buf, "%d", &rr);
	 fgets(buf, 4095, stdin);
	 mp_read_radix(&b, buf, 64);

	 mp_mul_2d(&a, rr, &a);
	 a.sign = b.sign;
	 if (mp_cmp(&a, &b) != MP_EQ) {
	    printf("mul2d failed, rr == %d\n", rr);
	    draw(&a);
	    draw(&b);
	    return 0;
	 }
      } else if (!strcmp(cmd, "div2d")) {
	 ++div2d_n;
	 fgets(buf, 4095, stdin);
	 mp_read_radix(&a, buf, 64);
	 fgets(buf, 4095, stdin);
	 sscanf(buf, "%d", &rr);
	 fgets(buf, 4095, stdin);
	 mp_read_radix(&b, buf, 64);

	 mp_div_2d(&a, rr, &a, &e);
	 a.sign = b.sign;
	 if (a.used == b.used && a.used == 0) {
	    a.sign = b.sign = MP_ZPOS;
	 }
	 if (mp_cmp(&a, &b) != MP_EQ) {
	    printf("div2d failed, rr == %d\n", rr);
	    draw(&a);
	    draw(&b);
	    return 0;
	 }
      } else if (!strcmp(cmd, "add")) {
	 ++add_n;
	 fgets(buf, 4095, stdin);
	 mp_read_radix(&a, buf, 64);
	 fgets(buf, 4095, stdin);
	 mp_read_radix(&b, buf, 64);
	 fgets(buf, 4095, stdin);
	 mp_read_radix(&c, buf, 64);
	 mp_copy(&a, &d);
	 mp_add(&d, &b, &d);
	 if (mp_cmp(&c, &d) != MP_EQ) {
	    printf("add %lu failure!\n", add_n);
	    draw(&a);
	    draw(&b);
	    draw(&c);
	    draw(&d);
	    return 0;
	 }

	 /* test the sign/unsigned storage functions */

	 rr = mp_signed_bin_size(&c);
	 mp_to_signed_bin(&c, (unsigned char *) cmd);
	 memset(cmd + rr, rand() & 255, sizeof(cmd) - rr);
	 mp_read_signed_bin(&d, (unsigned char *) cmd, rr);
	 if (mp_cmp(&c, &d) != MP_EQ) {
	    printf("mp_signed_bin failure!\n");
	    draw(&c);
	    draw(&d);
	    return 0;
	 }


	 rr = mp_unsigned_bin_size(&c);
	 mp_to_unsigned_bin(&c, (unsigned char *) cmd);
	 memset(cmd + rr, rand() & 255, sizeof(cmd) - rr);
	 mp_read_unsigned_bin(&d, (unsigned char *) cmd, rr);
	 if (mp_cmp_mag(&c, &d) != MP_EQ) {
	    printf("mp_unsigned_bin failure!\n");
	    draw(&c);
	    draw(&d);
	    return 0;
	 }

      } else if (!strcmp(cmd, "sub")) {
	 ++sub_n;
	 fgets(buf, 4095, stdin);
	 mp_read_radix(&a, buf, 64);
	 fgets(buf, 4095, stdin);
	 mp_read_radix(&b, buf, 64);
	 fgets(buf, 4095, stdin);
	 mp_read_radix(&c, buf, 64);
	 mp_copy(&a, &d);
	 mp_sub(&d, &b, &d);
	 if (mp_cmp(&c, &d) != MP_EQ) {
	    printf("sub %lu failure!\n", sub_n);
	    draw(&a);
	    draw(&b);
	    draw(&c);
	    draw(&d);
	    return 0;
	 }
      } else if (!strcmp(cmd, "mul")) {
	 ++mul_n;
	 fgets(buf, 4095, stdin);
	 mp_read_radix(&a, buf, 64);
	 fgets(buf, 4095, stdin);
	 mp_read_radix(&b, buf, 64);
	 fgets(buf, 4095, stdin);
	 mp_read_radix(&c, buf, 64);
	 mp_copy(&a, &d);
	 mp_mul(&d, &b, &d);
	 if (mp_cmp(&c, &d) != MP_EQ) {
	    printf("mul %lu failure!\n", mul_n);
	    draw(&a);
	    draw(&b);
	    draw(&c);
	    draw(&d);
	    return 0;
	 }
      } else if (!strcmp(cmd, "div")) {
	 ++div_n;
	 fgets(buf, 4095, stdin);
	 mp_read_radix(&a, buf, 64);
	 fgets(buf, 4095, stdin);
	 mp_read_radix(&b, buf, 64);
	 fgets(buf, 4095, stdin);
	 mp_read_radix(&c, buf, 64);
	 fgets(buf, 4095, stdin);
	 mp_read_radix(&d, buf, 64);

	 mp_div(&a, &b, &e, &f);
	 if (mp_cmp(&c, &e) != MP_EQ || mp_cmp(&d, &f) != MP_EQ) {
	    printf("div %lu %d, %d, failure!\n", div_n, mp_cmp(&c, &e),
		   mp_cmp(&d, &f));
	    draw(&a);
	    draw(&b);
	    draw(&c);
	    draw(&d);
	    draw(&e);
	    draw(&f);
	    return 0;
	 }

      } else if (!strcmp(cmd, "sqr")) {
	 ++sqr_n;
	 fgets(buf, 4095, stdin);
	 mp_read_radix(&a, buf, 64);
	 fgets(buf, 4095, stdin);
	 mp_read_radix(&b, buf, 64);
	 mp_copy(&a, &c);
	 mp_sqr(&c, &c);
	 if (mp_cmp(&b, &c) != MP_EQ) {
	    printf("sqr %lu failure!\n", sqr_n);
	    draw(&a);
	    draw(&b);
	    draw(&c);
	    return 0;
	 }
      } else if (!strcmp(cmd, "gcd")) {
	 ++gcd_n;
	 fgets(buf, 4095, stdin);
	 mp_read_radix(&a, buf, 64);
	 fgets(buf, 4095, stdin);
	 mp_read_radix(&b, buf, 64);
	 fgets(buf, 4095, stdin);
	 mp_read_radix(&c, buf, 64);
	 mp_copy(&a, &d);
	 mp_gcd(&d, &b, &d);
	 d.sign = c.sign;
	 if (mp_cmp(&c, &d) != MP_EQ) {
	    printf("gcd %lu failure!\n", gcd_n);
	    draw(&a);
	    draw(&b);
	    draw(&c);
	    draw(&d);
	    return 0;
	 }
      } else if (!strcmp(cmd, "lcm")) {
	 ++lcm_n;
	 fgets(buf, 4095, stdin);
	 mp_read_radix(&a, buf, 64);
	 fgets(buf, 4095, stdin);
	 mp_read_radix(&b, buf, 64);
	 fgets(buf, 4095, stdin);
	 mp_read_radix(&c, buf, 64);
	 mp_copy(&a, &d);
	 mp_lcm(&d, &b, &d);
	 d.sign = c.sign;
	 if (mp_cmp(&c, &d) != MP_EQ) {
	    printf("lcm %lu failure!\n", lcm_n);
	    draw(&a);
	    draw(&b);
	    draw(&c);
	    draw(&d);
	    return 0;
	 }
      } else if (!strcmp(cmd, "expt")) {
	 ++expt_n;
	 fgets(buf, 4095, stdin);
	 mp_read_radix(&a, buf, 64);
	 fgets(buf, 4095, stdin);
	 mp_read_radix(&b, buf, 64);
	 fgets(buf, 4095, stdin);
	 mp_read_radix(&c, buf, 64);
	 fgets(buf, 4095, stdin);
	 mp_read_radix(&d, buf, 64);
	 mp_copy(&a, &e);
	 mp_exptmod(&e, &b, &c, &e);
	 if (mp_cmp(&d, &e) != MP_EQ) {
	    printf("expt %lu failure!\n", expt_n);
	    draw(&a);
	    draw(&b);
	    draw(&c);
	    draw(&d);
	    draw(&e);
	    return 0;
	 }
      } else if (!strcmp(cmd, "invmod")) {
	 ++inv_n;
	 fgets(buf, 4095, stdin);
	 mp_read_radix(&a, buf, 64);
	 fgets(buf, 4095, stdin);
	 mp_read_radix(&b, buf, 64);
	 fgets(buf, 4095, stdin);
	 mp_read_radix(&c, buf, 64);
	 mp_invmod(&a, &b, &d);
	 mp_mulmod(&d, &a, &b, &e);
	 if (mp_cmp_d(&e, 1) != MP_EQ) {
	    printf("inv [wrong value from MPI?!] failure\n");
	    draw(&a);
	    draw(&b);
	    draw(&c);
	    draw(&d);
	    mp_gcd(&a, &b, &e);
	    draw(&e);
	    return 0;
	 }

      } else if (!strcmp(cmd, "div2")) {
	 ++div2_n;
	 fgets(buf, 4095, stdin);
	 mp_read_radix(&a, buf, 64);
	 fgets(buf, 4095, stdin);
	 mp_read_radix(&b, buf, 64);
	 mp_div_2(&a, &c);
	 if (mp_cmp(&c, &b) != MP_EQ) {
	    printf("div_2 %lu failure\n", div2_n);
	    draw(&a);
	    draw(&b);
	    draw(&c);
	    return 0;
	 }
      } else if (!strcmp(cmd, "mul2")) {
	 ++mul2_n;
	 fgets(buf, 4095, stdin);
	 mp_read_radix(&a, buf, 64);
	 fgets(buf, 4095, stdin);
	 mp_read_radix(&b, buf, 64);
	 mp_mul_2(&a, &c);
	 if (mp_cmp(&c, &b) != MP_EQ) {
	    printf("mul_2 %lu failure\n", mul2_n);
	    draw(&a);
	    draw(&b);
	    draw(&c);
	    return 0;
	 }
      } else if (!strcmp(cmd, "add_d")) {
	 ++add_d_n;
	 fgets(buf, 4095, stdin);
	 mp_read_radix(&a, buf, 64);
	 fgets(buf, 4095, stdin);
	 sscanf(buf, "%d", &ix);
	 fgets(buf, 4095, stdin);
	 mp_read_radix(&b, buf, 64);
	 mp_add_d(&a, ix, &c);
	 if (mp_cmp(&b, &c) != MP_EQ) {
	    printf("add_d %lu failure\n", add_d_n);
	    draw(&a);
	    draw(&b);
	    draw(&c);
	    printf("d == %d\n", ix);
	    return 0;
	 }
      } else if (!strcmp(cmd, "sub_d")) {
	 ++sub_d_n;
	 fgets(buf, 4095, stdin);
	 mp_read_radix(&a, buf, 64);
	 fgets(buf, 4095, stdin);
	 sscanf(buf, "%d", &ix);
	 fgets(buf, 4095, stdin);
	 mp_read_radix(&b, buf, 64);
	 mp_sub_d(&a, ix, &c);
	 if (mp_cmp(&b, &c) != MP_EQ) {
	    printf("sub_d %lu failure\n", sub_d_n);
	    draw(&a);
	    draw(&b);
	    draw(&c);
	    printf("d == %d\n", ix);
	    return 0;
	 }
      }
   }
   return 0;
}
Ejemplo n.º 19
0
Archivo: timing.c Proyecto: ershov/tcl
int main(void)
{
    ulong64 tt, gg, CLK_PER_SEC;
    FILE *log, *logb, *logc, *logd;
    mp_int a, b, c, d, e, f;
    int n, cnt, ix, old_kara_m, old_kara_s;
    unsigned rr;

    mp_init(&a);
    mp_init(&b);
    mp_init(&c);
    mp_init(&d);
    mp_init(&e);
    mp_init(&f);

    srand(time(NULL));


    /* temp. turn off TOOM */
    TOOM_MUL_CUTOFF = TOOM_SQR_CUTOFF = 100000;

    CLK_PER_SEC = TIMFUNC();
    sleep(1);
    CLK_PER_SEC = TIMFUNC() - CLK_PER_SEC;

    printf("CLK_PER_SEC == %llu\n", CLK_PER_SEC);
    goto exptmod;
    log = fopen("logs/add.log", "w");
    for (cnt = 8; cnt <= 128; cnt += 8) {
        SLEEP;
        mp_rand(&a, cnt);
        mp_rand(&b, cnt);
        rr = 0;
        tt = -1;
        do {
            gg = TIMFUNC();
            DO(mp_add(&a, &b, &c));
            gg = (TIMFUNC() - gg) >> 1;
            if (tt > gg)
                tt = gg;
        } while (++rr < 100000);
        printf("Adding\t\t%4d-bit => %9llu/sec, %9llu cycles\n",
               mp_count_bits(&a), CLK_PER_SEC / tt, tt);
        fprintf(log, "%d %9llu\n", cnt * DIGIT_BIT, tt);
        fflush(log);
    }
    fclose(log);

    log = fopen("logs/sub.log", "w");
    for (cnt = 8; cnt <= 128; cnt += 8) {
        SLEEP;
        mp_rand(&a, cnt);
        mp_rand(&b, cnt);
        rr = 0;
        tt = -1;
        do {
            gg = TIMFUNC();
            DO(mp_sub(&a, &b, &c));
            gg = (TIMFUNC() - gg) >> 1;
            if (tt > gg)
                tt = gg;
        } while (++rr < 100000);

        printf("Subtracting\t\t%4d-bit => %9llu/sec, %9llu cycles\n",
               mp_count_bits(&a), CLK_PER_SEC / tt, tt);
        fprintf(log, "%d %9llu\n", cnt * DIGIT_BIT, tt);
        fflush(log);
    }
    fclose(log);

    /* do mult/square twice, first without karatsuba and second with */
multtest:
    old_kara_m = KARATSUBA_MUL_CUTOFF;
    old_kara_s = KARATSUBA_SQR_CUTOFF;
    for (ix = 0; ix < 2; ix++) {
        printf("With%s Karatsuba\n", (ix == 0) ? "out" : "");

        KARATSUBA_MUL_CUTOFF = (ix == 0) ? 9999 : old_kara_m;
        KARATSUBA_SQR_CUTOFF = (ix == 0) ? 9999 : old_kara_s;

        log = fopen((ix == 0) ? "logs/mult.log" : "logs/mult_kara.log", "w");
        for (cnt = 4; cnt <= 10240 / DIGIT_BIT; cnt += 2) {
            SLEEP;
            mp_rand(&a, cnt);
            mp_rand(&b, cnt);
            rr = 0;
            tt = -1;
            do {
                gg = TIMFUNC();
                DO(mp_mul(&a, &b, &c));
                gg = (TIMFUNC() - gg) >> 1;
                if (tt > gg)
                    tt = gg;
            } while (++rr < 100);
            printf("Multiplying\t%4d-bit => %9llu/sec, %9llu cycles\n",
                   mp_count_bits(&a), CLK_PER_SEC / tt, tt);
            fprintf(log, "%d %9llu\n", mp_count_bits(&a), tt);
            fflush(log);
        }
        fclose(log);

        log = fopen((ix == 0) ? "logs/sqr.log" : "logs/sqr_kara.log", "w");
        for (cnt = 4; cnt <= 10240 / DIGIT_BIT; cnt += 2) {
            SLEEP;
            mp_rand(&a, cnt);
            rr = 0;
            tt = -1;
            do {
                gg = TIMFUNC();
                DO(mp_sqr(&a, &b));
                gg = (TIMFUNC() - gg) >> 1;
                if (tt > gg)
                    tt = gg;
            } while (++rr < 100);
            printf("Squaring\t%4d-bit => %9llu/sec, %9llu cycles\n",
                   mp_count_bits(&a), CLK_PER_SEC / tt, tt);
            fprintf(log, "%d %9llu\n", mp_count_bits(&a), tt);
            fflush(log);
        }
        fclose(log);

    }
exptmod:

    {
        char *primes[] = {
            /* 2K large moduli */
            "179769313486231590772930519078902473361797697894230657273430081157732675805500963132708477322407536021120113879871393357658789768814416622492847430639474124377767893424865485276302219601246094119453082952085005768838150682342462881473913110540827237163350510684586239334100047359817950870678242457666208137217",
            "32317006071311007300714876688669951960444102669715484032130345427524655138867890893197201411522913463688717960921898019494119559150490921095088152386448283120630877367300996091750197750389652106796057638384067568276792218642619756161838094338476170470581645852036305042887575891541065808607552399123930385521914333389668342420684974786564569494856176035326322058077805659331026192708460314150258592864177116725943603718461857357598351152301645904403697613233287231227125684710820209725157101726931323469678542580656697935045997268352998638099733077152121140120031150424541696791951097529546801429027668869927491725169",
            "1044388881413152506691752710716624382579964249047383780384233483283953907971557456848826811934997558340890106714439262837987573438185793607263236087851365277945956976543709998340361590134383718314428070011855946226376318839397712745672334684344586617496807908705803704071284048740118609114467977783598029006686938976881787785946905630190260940599579453432823469303026696443059025015972399867714215541693835559885291486318237914434496734087811872639496475100189041349008417061675093668333850551032972088269550769983616369411933015213796825837188091833656751221318492846368125550225998300412344784862595674492194617023806505913245610825731835380087608622102834270197698202313169017678006675195485079921636419370285375124784014907159135459982790513399611551794271106831134090584272884279791554849782954323534517065223269061394905987693002122963395687782878948440616007412945674919823050571642377154816321380631045902916136926708342856440730447899971901781465763473223850267253059899795996090799469201774624817718449867455659250178329070473119433165550807568221846571746373296884912819520317457002440926616910874148385078411929804522981857338977648103126085902995208257421855249796721729039744118165938433694823325696642096892124547425283",
            /* 2K moduli mersenne primes */
            "6864797660130609714981900799081393217269435300143305409394463459185543183397656052122559640661454554977296311391480858037121987999716643812574028291115057151",
            "531137992816767098689588206552468627329593117727031923199444138200403559860852242739162502265229285668889329486246501015346579337652707239409519978766587351943831270835393219031728127",
            "10407932194664399081925240327364085538615262247266704805319112350403608059673360298012239441732324184842421613954281007791383566248323464908139906605677320762924129509389220345773183349661583550472959420547689811211693677147548478866962501384438260291732348885311160828538416585028255604666224831890918801847068222203140521026698435488732958028878050869736186900714720710555703168729087",
            "1475979915214180235084898622737381736312066145333169775147771216478570297878078949377407337049389289382748507531496480477281264838760259191814463365330269540496961201113430156902396093989090226259326935025281409614983499388222831448598601834318536230923772641390209490231836446899608210795482963763094236630945410832793769905399982457186322944729636418890623372171723742105636440368218459649632948538696905872650486914434637457507280441823676813517852099348660847172579408422316678097670224011990280170474894487426924742108823536808485072502240519452587542875349976558572670229633962575212637477897785501552646522609988869914013540483809865681250419497686697771007",
            "259117086013202627776246767922441530941818887553125427303974923161874019266586362086201209516800483406550695241733194177441689509238807017410377709597512042313066624082916353517952311186154862265604547691127595848775610568757931191017711408826252153849035830401185072116424747461823031471398340229288074545677907941037288235820705892351068433882986888616658650280927692080339605869308790500409503709875902119018371991620994002568935113136548829739112656797303241986517250116412703509705427773477972349821676443446668383119322540099648994051790241624056519054483690809616061625743042361721863339415852426431208737266591962061753535748892894599629195183082621860853400937932839420261866586142503251450773096274235376822938649407127700846077124211823080804139298087057504713825264571448379371125032081826126566649084251699453951887789613650248405739378594599444335231188280123660406262468609212150349937584782292237144339628858485938215738821232393687046160677362909315071",
            "190797007524439073807468042969529173669356994749940177394741882673528979787005053706368049835514900244303495954950709725762186311224148828811920216904542206960744666169364221195289538436845390250168663932838805192055137154390912666527533007309292687539092257043362517857366624699975402375462954490293259233303137330643531556539739921926201438606439020075174723029056838272505051571967594608350063404495977660656269020823960825567012344189908927956646011998057988548630107637380993519826582389781888135705408653045219655801758081251164080554609057468028203308718724654081055323215860189611391296030471108443146745671967766308925858547271507311563765171008318248647110097614890313562856541784154881743146033909602737947385055355960331855614540900081456378659068370317267696980001187750995491090350108417050917991562167972281070161305972518044872048331306383715094854938415738549894606070722584737978176686422134354526989443028353644037187375385397838259511833166416134323695660367676897722287918773420968982326089026150031515424165462111337527431154890666327374921446276833564519776797633875503548665093914556482031482248883127023777039667707976559857333357013727342079099064400455741830654320379350833236245819348824064783585692924881021978332974949906122664421376034687815350484991",

            /* DR moduli */
            "14059105607947488696282932836518693308967803494693489478439861164411992439598399594747002144074658928593502845729752797260025831423419686528151609940203368612079",
            "101745825697019260773923519755878567461315282017759829107608914364075275235254395622580447400994175578963163918967182013639660669771108475957692810857098847138903161308502419410142185759152435680068435915159402496058513611411688900243039",
            "736335108039604595805923406147184530889923370574768772191969612422073040099331944991573923112581267542507986451953227192970402893063850485730703075899286013451337291468249027691733891486704001513279827771740183629161065194874727962517148100775228363421083691764065477590823919364012917984605619526140821797602431",
            "38564998830736521417281865696453025806593491967131023221754800625044118265468851210705360385717536794615180260494208076605798671660719333199513807806252394423283413430106003596332513246682903994829528690198205120921557533726473585751382193953592127439965050261476810842071573684505878854588706623484573925925903505747545471088867712185004135201289273405614415899438276535626346098904241020877974002916168099951885406379295536200413493190419727789712076165162175783",
            "542189391331696172661670440619180536749994166415993334151601745392193484590296600979602378676624808129613777993466242203025054573692562689251250471628358318743978285860720148446448885701001277560572526947619392551574490839286458454994488665744991822837769918095117129546414124448777033941223565831420390846864429504774477949153794689948747680362212954278693335653935890352619041936727463717926744868338358149568368643403037768649616778526013610493696186055899318268339432671541328195724261329606699831016666359440874843103020666106568222401047720269951530296879490444224546654729111504346660859907296364097126834834235287147",
            "1487259134814709264092032648525971038895865645148901180585340454985524155135260217788758027400478312256339496385275012465661575576202252063145698732079880294664220579764848767704076761853197216563262660046602703973050798218246170835962005598561669706844469447435461092542265792444947706769615695252256130901271870341005768912974433684521436211263358097522726462083917939091760026658925757076733484173202927141441492573799914240222628795405623953109131594523623353044898339481494120112723445689647986475279242446083151413667587008191682564376412347964146113898565886683139407005941383669325997475076910488086663256335689181157957571445067490187939553165903773554290260531009121879044170766615232300936675369451260747671432073394867530820527479172464106442450727640226503746586340279816318821395210726268291535648506190714616083163403189943334431056876038286530365757187367147446004855912033137386225053275419626102417236133948503",
            "1095121115716677802856811290392395128588168592409109494900178008967955253005183831872715423151551999734857184538199864469605657805519106717529655044054833197687459782636297255219742994736751541815269727940751860670268774903340296040006114013971309257028332849679096824800250742691718610670812374272414086863715763724622797509437062518082383056050144624962776302147890521249477060215148275163688301275847155316042279405557632639366066847442861422164832655874655824221577849928863023018366835675399949740429332468186340518172487073360822220449055340582568461568645259954873303616953776393853174845132081121976327462740354930744487429617202585015510744298530101547706821590188733515880733527449780963163909830077616357506845523215289297624086914545378511082534229620116563260168494523906566709418166011112754529766183554579321224940951177394088465596712620076240067370589036924024728375076210477267488679008016579588696191194060127319035195370137160936882402244399699172017835144537488486396906144217720028992863941288217185353914991583400421682751000603596655790990815525126154394344641336397793791497068253936771017031980867706707490224041075826337383538651825493679503771934836094655802776331664261631740148281763487765852746577808019633679",

            /* generic unrestricted moduli */
            "17933601194860113372237070562165128350027320072176844226673287945873370751245439587792371960615073855669274087805055507977323024886880985062002853331424203",
            "2893527720709661239493896562339544088620375736490408468011883030469939904368086092336458298221245707898933583190713188177399401852627749210994595974791782790253946539043962213027074922559572312141181787434278708783207966459019479487",
            "347743159439876626079252796797422223177535447388206607607181663903045907591201940478223621722118173270898487582987137708656414344685816179420855160986340457973820182883508387588163122354089264395604796675278966117567294812714812796820596564876450716066283126720010859041484786529056457896367683122960411136319",
            "47266428956356393164697365098120418976400602706072312735924071745438532218237979333351774907308168340693326687317443721193266215155735814510792148768576498491199122744351399489453533553203833318691678263241941706256996197460424029012419012634671862283532342656309677173602509498417976091509154360039893165037637034737020327399910409885798185771003505320583967737293415979917317338985837385734747478364242020380416892056650841470869294527543597349250299539682430605173321029026555546832473048600327036845781970289288898317888427517364945316709081173840186150794397479045034008257793436817683392375274635794835245695887",
            "436463808505957768574894870394349739623346440601945961161254440072143298152040105676491048248110146278752857839930515766167441407021501229924721335644557342265864606569000117714935185566842453630868849121480179691838399545644365571106757731317371758557990781880691336695584799313313687287468894148823761785582982549586183756806449017542622267874275103877481475534991201849912222670102069951687572917937634467778042874315463238062009202992087620963771759666448266532858079402669920025224220613419441069718482837399612644978839925207109870840278194042158748845445131729137117098529028886770063736487420613144045836803985635654192482395882603511950547826439092832800532152534003936926017612446606135655146445620623395788978726744728503058670046885876251527122350275750995227",
            "11424167473351836398078306042624362277956429440521137061889702611766348760692206243140413411077394583180726863277012016602279290144126785129569474909173584789822341986742719230331946072730319555984484911716797058875905400999504305877245849119687509023232790273637466821052576859232452982061831009770786031785669030271542286603956118755585683996118896215213488875253101894663403069677745948305893849505434201763745232895780711972432011344857521691017896316861403206449421332243658855453435784006517202894181640562433575390821384210960117518650374602256601091379644034244332285065935413233557998331562749140202965844219336298970011513882564935538704289446968322281451907487362046511461221329799897350993370560697505809686438782036235372137015731304779072430260986460269894522159103008260495503005267165927542949439526272736586626709581721032189532726389643625590680105784844246152702670169304203783072275089194754889511973916207",
            "1214855636816562637502584060163403830270705000634713483015101384881871978446801224798536155406895823305035467591632531067547890948695117172076954220727075688048751022421198712032848890056357845974246560748347918630050853933697792254955890439720297560693579400297062396904306270145886830719309296352765295712183040773146419022875165382778007040109957609739589875590885701126197906063620133954893216612678838507540777138437797705602453719559017633986486649523611975865005712371194067612263330335590526176087004421363598470302731349138773205901447704682181517904064735636518462452242791676541725292378925568296858010151852326316777511935037531017413910506921922450666933202278489024521263798482237150056835746454842662048692127173834433089016107854491097456725016327709663199738238442164843147132789153725513257167915555162094970853584447993125488607696008169807374736711297007473812256272245489405898470297178738029484459690836250560495461579533254473316340608217876781986188705928270735695752830825527963838355419762516246028680280988020401914551825487349990306976304093109384451438813251211051597392127491464898797406789175453067960072008590614886532333015881171367104445044718144312416815712216611576221546455968770801413440778423979",
            NULL
        };
        log = fopen("logs/expt.log", "w");
        logb = fopen("logs/expt_dr.log", "w");
        logc = fopen("logs/expt_2k.log", "w");
        logd = fopen("logs/expt_2kl.log", "w");
        for (n = 0; primes[n]; n++) {
            SLEEP;
            mp_read_radix(&a, primes[n], 10);
            mp_zero(&b);
            for (rr = 0; rr < (unsigned) mp_count_bits(&a); rr++) {
                mp_mul_2(&b, &b);
                b.dp[0] |= lbit();
                b.used += 1;
            }
            mp_sub_d(&a, 1, &c);
            mp_mod(&b, &c, &b);
            mp_set(&c, 3);
            rr = 0;
            tt = -1;
            do {
                gg = TIMFUNC();
                DO(mp_exptmod(&c, &b, &a, &d));
                gg = (TIMFUNC() - gg) >> 1;
                if (tt > gg)
                    tt = gg;
            } while (++rr < 10);
            mp_sub_d(&a, 1, &e);
            mp_sub(&e, &b, &b);
            mp_exptmod(&c, &b, &a, &e);	/* c^(p-1-b) mod a */
            mp_mulmod(&e, &d, &a, &d);	/* c^b * c^(p-1-b) == c^p-1 == 1 */
            if (mp_cmp_d(&d, 1)) {
                printf("Different (%d)!!!\n", mp_count_bits(&a));
                draw(&d);
                exit(0);
            }
            printf("Exponentiating\t%4d-bit => %9llu/sec, %9llu cycles\n",
                   mp_count_bits(&a), CLK_PER_SEC / tt, tt);
            fprintf(n < 4 ? logd : (n < 9) ? logc : (n < 16) ? logb : log,
                    "%d %9llu\n", mp_count_bits(&a), tt);
        }
    }
    fclose(log);
    fclose(logb);
    fclose(logc);
    fclose(logd);

    log = fopen("logs/invmod.log", "w");
    for (cnt = 4; cnt <= 128; cnt += 4) {
        SLEEP;
        mp_rand(&a, cnt);
        mp_rand(&b, cnt);

        do {
            mp_add_d(&b, 1, &b);
            mp_gcd(&a, &b, &c);
        } while (mp_cmp_d(&c, 1) != MP_EQ);

        rr = 0;
        tt = -1;
        do {
            gg = TIMFUNC();
            DO(mp_invmod(&b, &a, &c));
            gg = (TIMFUNC() - gg) >> 1;
            if (tt > gg)
                tt = gg;
        } while (++rr < 1000);
        mp_mulmod(&b, &c, &a, &d);
        if (mp_cmp_d(&d, 1) != MP_EQ) {
            printf("Failed to invert\n");
            return 0;
        }
        printf("Inverting mod\t%4d-bit => %9llu/sec, %9llu cycles\n",
               mp_count_bits(&a), CLK_PER_SEC / tt, tt);
        fprintf(log, "%d %9llu\n", cnt * DIGIT_BIT, tt);
    }
    fclose(log);

    return 0;
}
Ejemplo n.º 20
0
Archivo: c4ecc.c Proyecto: rhardman/C4
C4Err ECC_Import_Info( void *in, size_t inlen,
                      bool *isPrivate,
                      bool *isANSIx963,
                      size_t *keySizeOut  )
{
    C4Err           err = kC4Err_NoErr;
    int             status  =  CRYPT_OK;
    
    uint8_t*        inByte = in;
    
    unsigned long   key_size   = 0;
    int             key_type = PK_PUBLIC;
    bool            ANSIx963 = false;
    
    void *x = NULL;
    
    LTC_ARGCHK(in  != NULL);
    LTC_ARGCHK(ltc_mp.name != NULL);
    
    if (inByte[0] != 4 && inByte[0] != 6 && inByte[0] != 7)
    {
        /* find out what type of key it is */
        unsigned char   flags[1];
        unsigned long   key_bytes  = 0;
        
        status = der_decode_sequence_multi(in, inlen,
                                           LTC_ASN1_BIT_STRING, 1UL, &flags,
                                           LTC_ASN1_SHORT_INTEGER,   1UL, &key_bytes,
                                           
                                           LTC_ASN1_EOL,        0UL, NULL); CKSTAT;
        
        key_size = key_bytes * 8;
        key_type = (flags[0] == 1)?PK_PRIVATE:PK_PUBLIC;
        
    }
    else
    {
        
        
        mp_init(&x);
        status = mp_read_unsigned_bin(x, (unsigned char *)inByte+1, (inlen-1)>>1); CKSTAT;
        
        
        ANSIx963 = true;
        key_type = PK_PUBLIC;
        key_size  = mp_count_bits(x);
        
    }
    
    
    if(isPrivate)
        *isPrivate = key_type == PK_PRIVATE;
    
    if(keySizeOut)
        *keySizeOut = (size_t) key_size;
    
    if(isANSIx963)
        *isANSIx963 = ANSIx963 ;
    
    
done:
    
    if(status != CRYPT_OK)
    {
        err = sCrypt2C4Err(status);
    }
    
    if(x) mp_clear(x);
    
    return (err);
    
}
Ejemplo n.º 21
0
/* get the size for an unsigned equivalent */
int mp_unsigned_bin_size (mp_int * a)
{
  int     size = mp_count_bits (a);
  return (size / 8 + ((size & 7) != 0 ? 1 : 0));
}
Ejemplo n.º 22
0
/* two complement or */
int mp_tc_or(const mp_int *a, const mp_int *b, mp_int *c)
{
   int res = MP_OKAY, bits;
   int as = mp_isneg(a), bs = mp_isneg(b);
   mp_int *mx = NULL, _mx, acpy, bcpy;

   if ((as != MP_NO) || (bs != MP_NO)) {
      bits = MAX(mp_count_bits(a), mp_count_bits(b));
      res = mp_init_set_int(&_mx, 1uL);
      if (res != MP_OKAY) {
         goto end;
      }

      mx = &_mx;
      res = mp_mul_2d(mx, bits + 1, mx);
      if (res != MP_OKAY) {
         goto end;
      }

      if (as != MP_NO) {
         res = mp_init(&acpy);
         if (res != MP_OKAY) {
            goto end;
         }

         res = mp_add(mx, a, &acpy);
         if (res != MP_OKAY) {
            mp_clear(&acpy);
            goto end;
         }
         a = &acpy;
      }
      if (bs != MP_NO) {
         res = mp_init(&bcpy);
         if (res != MP_OKAY) {
            goto end;
         }

         res = mp_add(mx, b, &bcpy);
         if (res != MP_OKAY) {
            mp_clear(&bcpy);
            goto end;
         }
         b = &bcpy;
      }
   }

   res = mp_or(a, b, c);

   if (((as != MP_NO) || (bs != MP_NO)) && (res == MP_OKAY)) {
      res = mp_sub(c, mx, c);
   }

end:
   if (a == &acpy) {
      mp_clear(&acpy);
   }

   if (b == &bcpy) {
      mp_clear(&bcpy);
   }

   if (mx == &_mx) {
      mp_clear(mx);
   }

   return res;
}
Ejemplo n.º 23
0
static int count_bits(void *a)
{
   LTC_ARGCHK(a != NULL);
   return mp_count_bits(a);
}
Ejemplo n.º 24
0
int rsa_test(void)
{
   unsigned char in[1024], out[1024], tmp[1024];
   rsa_key       key, privKey, pubKey;
   int           hash_idx, prng_idx, stat, stat2;
   unsigned long rsa_msgsize, len, len2, cnt;
   static unsigned char lparam[] = { 0x01, 0x02, 0x03, 0x04 };

   if (rsa_compat_test() != 0) {
      return 1;
   }
      
   hash_idx = find_hash("sha1");
   prng_idx = find_prng("yarrow");
   if (hash_idx == -1 || prng_idx == -1) {
      fprintf(stderr, "rsa_test requires LTC_SHA1 and yarrow");
      return 1;
   }
   
   /* make 10 random key */
   for (cnt = 0; cnt < 10; cnt++) {
      DO(rsa_make_key(&yarrow_prng, prng_idx, 1024/8, 65537, &key));
      if (mp_count_bits(key.N) != 1024) {
         fprintf(stderr, "rsa_1024 key modulus has %d bits\n", mp_count_bits(key.N));

len = mp_unsigned_bin_size(key.N);
mp_to_unsigned_bin(key.N, tmp);
 fprintf(stderr, "N == \n");
for (cnt = 0; cnt < len; ) {
   fprintf(stderr, "%02x ", tmp[cnt]);
   if (!(++cnt & 15)) fprintf(stderr, "\n");
}

len = mp_unsigned_bin_size(key.p);
mp_to_unsigned_bin(key.p, tmp);
 fprintf(stderr, "p == \n");
for (cnt = 0; cnt < len; ) {
   fprintf(stderr, "%02x ", tmp[cnt]);
   if (!(++cnt & 15)) fprintf(stderr, "\n");
}

len = mp_unsigned_bin_size(key.q);
mp_to_unsigned_bin(key.q, tmp);
 fprintf(stderr, "\nq == \n");
for (cnt = 0; cnt < len; ) {
   fprintf(stderr, "%02x ", tmp[cnt]);
   if (!(++cnt & 15)) fprintf(stderr, "\n");
}
 fprintf(stderr, "\n");


         return 1;
      }
      if (cnt != 9) {
         rsa_free(&key);
      }
   }
    
   /* encrypt the key (without lparam) */
   for (cnt = 0; cnt < 4; cnt++) {
   for (rsa_msgsize = 1; rsa_msgsize <= 86; rsa_msgsize++) {
      /* make a random key/msg */
      yarrow_read(in, rsa_msgsize, &yarrow_prng);

      len  = sizeof(out);
      len2 = rsa_msgsize;
   
      DO(rsa_encrypt_key(in, rsa_msgsize, out, &len, NULL, 0, &yarrow_prng, prng_idx, hash_idx, &key));
      /* change a byte */
      out[8] ^= 1;
      DO(rsa_decrypt_key(out, len, tmp, &len2, NULL, 0, hash_idx, &stat2, &key));
      /* change a byte back */
      out[8] ^= 1;
      if (len2 != rsa_msgsize) {
         fprintf(stderr, "\nrsa_decrypt_key mismatch len %lu (first decrypt)", len2);
         return 1;
      }

      len2 = rsa_msgsize;
      DO(rsa_decrypt_key(out, len, tmp, &len2, NULL, 0, hash_idx, &stat, &key));
      if (!(stat == 1 && stat2 == 0)) {
         fprintf(stderr, "rsa_decrypt_key failed");
         return 1;
      }
      if (len2 != rsa_msgsize || memcmp(tmp, in, rsa_msgsize)) {
         unsigned long x;
         fprintf(stderr, "\nrsa_decrypt_key mismatch, len %lu (second decrypt)\n", len2);
         fprintf(stderr, "Original contents: \n"); 
         for (x = 0; x < rsa_msgsize; ) {
             fprintf(stderr, "%02x ", in[x]);
             if (!(++x % 16)) {
                fprintf(stderr, "\n");
             }
         }
         fprintf(stderr, "\n");
         fprintf(stderr, "Output contents: \n"); 
         for (x = 0; x < rsa_msgsize; ) {
             fprintf(stderr, "%02x ", out[x]);
             if (!(++x % 16)) {
                fprintf(stderr, "\n");
             }
         }     
         fprintf(stderr, "\n");
         return 1;
      }
   }
   }

   /* encrypt the key (with lparam) */
   for (rsa_msgsize = 1; rsa_msgsize <= 86; rsa_msgsize++) {
      len  = sizeof(out);
      len2 = rsa_msgsize;
      DO(rsa_encrypt_key(in, rsa_msgsize, out, &len, lparam, sizeof(lparam), &yarrow_prng, prng_idx, hash_idx, &key));
      /* change a byte */
      out[8] ^= 1;
      DO(rsa_decrypt_key(out, len, tmp, &len2, lparam, sizeof(lparam), hash_idx, &stat2, &key));
      if (len2 != rsa_msgsize) {
         fprintf(stderr, "\nrsa_decrypt_key mismatch len %lu (first decrypt)", len2);
         return 1;
      }
      /* change a byte back */
      out[8] ^= 1;

      len2 = rsa_msgsize;
      DO(rsa_decrypt_key(out, len, tmp, &len2, lparam, sizeof(lparam), hash_idx, &stat, &key));
      if (!(stat == 1 && stat2 == 0)) {
         fprintf(stderr, "rsa_decrypt_key failed");
         return 1;
      }
      if (len2 != rsa_msgsize || memcmp(tmp, in, rsa_msgsize)) {
         fprintf(stderr, "rsa_decrypt_key mismatch len %lu", len2);
         return 1;
      }
   }

   /* encrypt the key LTC_PKCS #1 v1.5 (payload from 1 to 117 bytes) */
   for (rsa_msgsize = 1; rsa_msgsize <= 117; rsa_msgsize++) {
      len  = sizeof(out);
      len2 = rsa_msgsize;
      DO(rsa_encrypt_key_ex(in, rsa_msgsize, out, &len, NULL, 0, &yarrow_prng, prng_idx, 0, LTC_PKCS_1_V1_5, &key));

      len2 = rsa_msgsize;
      DO(rsa_decrypt_key_ex(out, len, tmp, &len2, NULL, 0, 0, LTC_PKCS_1_V1_5, &stat, &key));
      if (!(stat == 1 && stat2 == 0)) {
         fprintf(stderr, "rsa_decrypt_key_ex failed, %d, %d", stat, stat2);
         return 1;
      }
      if (len2 != rsa_msgsize || memcmp(tmp, in, rsa_msgsize)) {
         fprintf(stderr, "rsa_decrypt_key_ex mismatch len %lu", len2);
         return 1;
      }
   }

   /* sign a message (unsalted, lower cholestorol and Atkins approved) now */
   len = sizeof(out);
   DO(rsa_sign_hash(in, 20, out, &len, &yarrow_prng, prng_idx, hash_idx, 0, &key));

/* export key and import as both private and public */
   len2 = sizeof(tmp);
   DO(rsa_export(tmp, &len2, PK_PRIVATE, &key)); 
   DO(rsa_import(tmp, len2, &privKey)); 
   len2 = sizeof(tmp);
   DO(rsa_export(tmp, &len2, PK_PUBLIC, &key));
   DO(rsa_import(tmp, len2, &pubKey));

   /* verify with original */
   DO(rsa_verify_hash(out, len, in, 20, hash_idx, 0, &stat, &key));
   /* change a byte */
   in[0] ^= 1;
   DO(rsa_verify_hash(out, len, in, 20, hash_idx, 0, &stat2, &key));
   
   if (!(stat == 1 && stat2 == 0)) {
      fprintf(stderr, "rsa_verify_hash (unsalted, origKey) failed, %d, %d", stat, stat2);
      rsa_free(&key);
      rsa_free(&pubKey);
      rsa_free(&privKey);
      return 1;
   }

   /* verify with privKey */
   /* change a byte */
   in[0] ^= 1;
   DO(rsa_verify_hash(out, len, in, 20, hash_idx, 0, &stat, &privKey));
   /* change a byte */
   in[0] ^= 1;
   DO(rsa_verify_hash(out, len, in, 20, hash_idx, 0, &stat2, &privKey));
   
   if (!(stat == 1 && stat2 == 0)) {
      fprintf(stderr, "rsa_verify_hash (unsalted, privKey) failed, %d, %d", stat, stat2);
      rsa_free(&key);
      rsa_free(&pubKey);
      rsa_free(&privKey);
      return 1;
   }

   /* verify with pubKey */
   /* change a byte */
   in[0] ^= 1;
   DO(rsa_verify_hash(out, len, in, 20, hash_idx, 0, &stat, &pubKey));
   /* change a byte */
   in[0] ^= 1;
   DO(rsa_verify_hash(out, len, in, 20, hash_idx, 0, &stat2, &pubKey));
   
   if (!(stat == 1 && stat2 == 0)) {
      fprintf(stderr, "rsa_verify_hash (unsalted, pubkey) failed, %d, %d", stat, stat2);
      rsa_free(&key);
      rsa_free(&pubKey);
      rsa_free(&privKey);
      return 1;
   }

   /* sign a message (salted) now (use privKey to make, pubKey to verify) */
   len = sizeof(out);
   DO(rsa_sign_hash(in, 20, out, &len, &yarrow_prng, prng_idx, hash_idx, 8, &privKey));
   DO(rsa_verify_hash(out, len, in, 20, hash_idx, 8, &stat, &pubKey));
   /* change a byte */
   in[0] ^= 1;
   DO(rsa_verify_hash(out, len, in, 20, hash_idx, 8, &stat2, &pubKey));
   
   if (!(stat == 1 && stat2 == 0)) {
      fprintf(stderr, "rsa_verify_hash (salted) failed, %d, %d", stat, stat2);
      rsa_free(&key);
      rsa_free(&pubKey);
      rsa_free(&privKey);
      return 1;
   }
   
   /* sign a message with LTC_PKCS #1 v1.5 */
   len = sizeof(out);
   DO(rsa_sign_hash_ex(in, 20, out, &len, LTC_PKCS_1_V1_5, &yarrow_prng, prng_idx, hash_idx, 8, &privKey));
   DO(rsa_verify_hash_ex(out, len, in, 20, LTC_PKCS_1_V1_5, hash_idx, 8, &stat, &pubKey));
   /* change a byte */
   in[0] ^= 1;
   DO(rsa_verify_hash_ex(out, len, in, 20, LTC_PKCS_1_V1_5, hash_idx, 8, &stat2, &pubKey));
   
   if (!(stat == 1 && stat2 == 0)) {
      fprintf(stderr, "rsa_verify_hash_ex failed, %d, %d", stat, stat2);
      rsa_free(&key);
      rsa_free(&pubKey);
      rsa_free(&privKey);
      return 1;
   }

   /* free the key and return */
   rsa_free(&key);
   rsa_free(&pubKey);
   rsa_free(&privKey);
   return 0;
}
Ejemplo n.º 25
0
/* makes a prime of at least k bits */
int
pprime (int k, int li, mp_int * p, mp_int * q)
{
  mp_int  a, b, c, n, x, y, z, v;
  int     res, ii;
  static const mp_digit bases[] = { 2, 3, 5, 7, 11, 13, 17, 19 };

  /* single digit ? */
  if (k <= (int) DIGIT_BIT) {
    mp_set (p, prime_digit ());
    return MP_OKAY;
  }

  if ((res = mp_init (&c)) != MP_OKAY) {
    return res;
  }

  if ((res = mp_init (&v)) != MP_OKAY) {
    goto LBL_C;
  }

  /* product of first 50 primes */
  if ((res =
       mp_read_radix (&v,
		      "19078266889580195013601891820992757757219839668357012055907516904309700014933909014729740190",
		      10)) != MP_OKAY) {
    goto LBL_V;
  }

  if ((res = mp_init (&a)) != MP_OKAY) {
    goto LBL_V;
  }

  /* set the prime */
  mp_set (&a, prime_digit ());

  if ((res = mp_init (&b)) != MP_OKAY) {
    goto LBL_A;
  }

  if ((res = mp_init (&n)) != MP_OKAY) {
    goto LBL_B;
  }

  if ((res = mp_init (&x)) != MP_OKAY) {
    goto LBL_N;
  }

  if ((res = mp_init (&y)) != MP_OKAY) {
    goto LBL_X;
  }

  if ((res = mp_init (&z)) != MP_OKAY) {
    goto LBL_Y;
  }

  /* now loop making the single digit */
  while (mp_count_bits (&a) < k) {
    fprintf (stderr, "prime has %4d bits left\r", k - mp_count_bits (&a));
    fflush (stderr);
  top:
    mp_set (&b, prime_digit ());

    /* now compute z = a * b * 2 */
    if ((res = mp_mul (&a, &b, &z)) != MP_OKAY) {	/* z = a * b */
      goto LBL_Z;
    }

    if ((res = mp_copy (&z, &c)) != MP_OKAY) {	/* c = a * b */
      goto LBL_Z;
    }

    if ((res = mp_mul_2 (&z, &z)) != MP_OKAY) {	/* z = 2 * a * b */
      goto LBL_Z;
    }

    /* n = z + 1 */
    if ((res = mp_add_d (&z, 1, &n)) != MP_OKAY) {	/* n = z + 1 */
      goto LBL_Z;
    }

    /* check (n, v) == 1 */
    if ((res = mp_gcd (&n, &v, &y)) != MP_OKAY) {	/* y = (n, v) */
      goto LBL_Z;
    }

    if (mp_cmp_d (&y, 1) != MP_EQ)
      goto top;

    /* now try base x=bases[ii]  */
    for (ii = 0; ii < li; ii++) {
      mp_set (&x, bases[ii]);

      /* compute x^a mod n */
      if ((res = mp_exptmod (&x, &a, &n, &y)) != MP_OKAY) {	/* y = x^a mod n */
	goto LBL_Z;
      }

      /* if y == 1 loop */
      if (mp_cmp_d (&y, 1) == MP_EQ)
	continue;

      /* now x^2a mod n */
      if ((res = mp_sqrmod (&y, &n, &y)) != MP_OKAY) {	/* y = x^2a mod n */
	goto LBL_Z;
      }

      if (mp_cmp_d (&y, 1) == MP_EQ)
	continue;

      /* compute x^b mod n */
      if ((res = mp_exptmod (&x, &b, &n, &y)) != MP_OKAY) {	/* y = x^b mod n */
	goto LBL_Z;
      }

      /* if y == 1 loop */
      if (mp_cmp_d (&y, 1) == MP_EQ)
	continue;

      /* now x^2b mod n */
      if ((res = mp_sqrmod (&y, &n, &y)) != MP_OKAY) {	/* y = x^2b mod n */
	goto LBL_Z;
      }

      if (mp_cmp_d (&y, 1) == MP_EQ)
	continue;

      /* compute x^c mod n == x^ab mod n */
      if ((res = mp_exptmod (&x, &c, &n, &y)) != MP_OKAY) {	/* y = x^ab mod n */
	goto LBL_Z;
      }

      /* if y == 1 loop */
      if (mp_cmp_d (&y, 1) == MP_EQ)
	continue;

      /* now compute (x^c mod n)^2 */
      if ((res = mp_sqrmod (&y, &n, &y)) != MP_OKAY) {	/* y = x^2ab mod n */
	goto LBL_Z;
      }

      /* y should be 1 */
      if (mp_cmp_d (&y, 1) != MP_EQ)
	continue;
      break;
    }

    /* no bases worked? */
    if (ii == li)
      goto top;

{
   char buf[4096];

   mp_toradix(&n, buf, 10);
   printf("Certificate of primality for:\n%s\n\n", buf);
   mp_toradix(&a, buf, 10);
   printf("A == \n%s\n\n", buf);
   mp_toradix(&b, buf, 10);
   printf("B == \n%s\n\nG == %d\n", buf, bases[ii]);
   printf("----------------------------------------------------------------\n");
}

    /* a = n */
    mp_copy (&n, &a);
  }

  /* get q to be the order of the large prime subgroup */
  mp_sub_d (&n, 1, q);
  mp_div_2 (q, q);
  mp_div (q, &b, q, NULL);

  mp_exch (&n, p);

  res = MP_OKAY;
LBL_Z:mp_clear (&z);
LBL_Y:mp_clear (&y);
LBL_X:mp_clear (&x);
LBL_N:mp_clear (&n);
LBL_B:mp_clear (&b);
LBL_A:mp_clear (&a);
LBL_V:mp_clear (&v);
LBL_C:mp_clear (&c);
  return res;
}
/**
   LTC_PKCS #1 decrypt then v1.5 or OAEP depad
   @param in          The ciphertext
   @param inlen       The length of the ciphertext (octets)
   @param out         [out] The plaintext
   @param outlen      [in/out] The max size and resulting size of the plaintext (octets)
   @param lparam      The system "lparam" value
   @param lparamlen   The length of the lparam value (octets)
   @param hash_idx    The index of the hash desired
   @param padding     Type of padding (LTC_LTC_PKCS_1_OAEP or LTC_LTC_PKCS_1_V1_5)
   @param stat        [out] Result of the decryption, 1==valid, 0==invalid
   @param key         The corresponding private RSA key
   @return CRYPT_OK if succcessul (even if invalid)
*/
int rsa_decrypt_key_ex(const unsigned char *in,       unsigned long  inlen,
                             unsigned char *out,      unsigned long *outlen,
                       const unsigned char *lparam,   unsigned long  lparamlen,
                             int            hash_idx, int            padding,
                             int           *stat,     rsa_key       *key)
{
  unsigned long modulus_bitlen, modulus_bytelen, x;
  int           err;
  unsigned char *tmp;

  LTC_ARGCHK(out    != NULL);
  LTC_ARGCHK(outlen != NULL);
  LTC_ARGCHK(key    != NULL);
  LTC_ARGCHK(stat   != NULL);

  /* default to invalid */
  *stat = 0;

  /* valid padding? */

  if ((padding != LTC_LTC_PKCS_1_V1_5) &&
      (padding != LTC_LTC_PKCS_1_OAEP)) {
    return CRYPT_PK_INVALID_PADDING;
  }

  if (padding == LTC_LTC_PKCS_1_OAEP) {
    /* valid hash ? */
    if ((err = hash_is_valid(hash_idx)) != CRYPT_OK) {
       return err;
    }
  }

  /* get modulus len in bits */
  modulus_bitlen = mp_count_bits( (key->N));

  /* outlen must be at least the size of the modulus */
  modulus_bytelen = mp_unsigned_bin_size( (key->N));
  if (modulus_bytelen != inlen) {
     return CRYPT_INVALID_PACKET;
  }

  /* allocate ram */
  tmp = XMALLOC(inlen);
  if (tmp == NULL) {
     return CRYPT_MEM;
  }

  /* rsa decode the packet */
  x = inlen;
  if ((err = ltc_mp.rsa_me(in, inlen, tmp, &x, PK_PUBLIC, key)) != CRYPT_OK) {
     XFREE(tmp);
     return err;
  }

  if (padding == LTC_LTC_PKCS_1_OAEP) {
    /* now OAEP decode the packet */
    err = pkcs_1_oaep_decode(tmp, x, lparam, lparamlen, modulus_bitlen, hash_idx,
                             out, outlen, stat);
  } else {
    /* now LTC_PKCS #1 v1.5 depad the packet */
    err = pkcs_1_v1_5_decode(tmp, x, LTC_LTC_PKCS_1_EME, modulus_bitlen, out, outlen, stat);
  }

  XFREE(tmp);
  return err;
}
Ejemplo n.º 27
0
/**
    This will export either an RSAPublicKey or RSAPrivateKey [defined in PKCS #1 v2.1]
    @param out       [out] Destination of the packet
    @param outlen    [in/out] The max size and resulting size of the packet
    @param type      The type of exported key (PK_PRIVATE or PK_PUBLIC)
    @param key       The RSA key to export
    @return CRYPT_OK if successful
*/
int rsa_export(unsigned char *out, unsigned long *outlen, int type, rsa_key *key)
{
   unsigned long zero=0;
   int err;
   LTC_ARGCHK(out    != NULL);
   LTC_ARGCHK(outlen != NULL);
   LTC_ARGCHK(key    != NULL);

   /* type valid? */
   if (!(key->type == PK_PRIVATE) && (type == PK_PRIVATE)) {
      return CRYPT_PK_INVALID_TYPE;
   }

   if (type == PK_PRIVATE) {
      /* private key */
      /* output is
            Version, n, e, d, p, q, d mod (p-1), d mod (q - 1), 1/q mod p
       */
      return der_encode_sequence_multi(out, outlen,
                          LTC_ASN1_SHORT_INTEGER, 1UL, &zero,
                          LTC_ASN1_INTEGER, 1UL,  key->N,
                          LTC_ASN1_INTEGER, 1UL,  key->e,
                          LTC_ASN1_INTEGER, 1UL,  key->d,
                          LTC_ASN1_INTEGER, 1UL,  key->p,
                          LTC_ASN1_INTEGER, 1UL,  key->q,
                          LTC_ASN1_INTEGER, 1UL,  key->dP,
                          LTC_ASN1_INTEGER, 1UL,  key->dQ,
                          LTC_ASN1_INTEGER, 1UL,  key->qP,
                          LTC_ASN1_EOL,     0UL, NULL);
   } else {
      /* public key */
      unsigned long tmplen, *ptmplen;
      unsigned char* tmp = NULL;

      if (type & PK_STD) {
          tmplen = (mp_count_bits(key->N)/8)*2+8;
          tmp = XMALLOC(tmplen);
          ptmplen = &tmplen;
          if (tmp == NULL) {
              return CRYPT_MEM;
          }
      }
      else {
          tmp = out;
          ptmplen = outlen;
      }

      err = der_encode_sequence_multi(tmp, ptmplen,
                                 LTC_ASN1_INTEGER, 1UL,  key->N,
                                 LTC_ASN1_INTEGER, 1UL,  key->e,
                                 LTC_ASN1_EOL,     0UL, NULL);

      if ((err != CRYPT_OK) || !(type & PK_STD)) {
          goto finish;
      }

      err = der_encode_subject_public_key_info(out, outlen,
        PKA_RSA, tmp, tmplen, LTC_ASN1_NULL, NULL, 0);

finish:
      if (tmp != out)
        XFREE(tmp);
      return err;

   }
}
Ejemplo n.º 28
0
/**
  Create DSA parameters (INTERNAL ONLY, not part of public API)
  @param prng          An active PRNG state
  @param wprng         The index of the PRNG desired
  @param group_size    Size of the multiplicative group (octets)
  @param modulus_size  Size of the modulus (octets)
  @param p             [out] bignum where generated 'p' is stored (must be initialized by caller)
  @param q             [out] bignum where generated 'q' is stored (must be initialized by caller)
  @param g             [out] bignum where generated 'g' is stored (must be initialized by caller)
  @return CRYPT_OK if successful, upon error this function will free all allocated memory
*/
static int _dsa_make_params(prng_state *prng, int wprng, int group_size, int modulus_size, void *p, void *q, void *g)
{
  unsigned long L, N, n, outbytes, seedbytes, counter, j, i;
  int err, res, mr_tests_q, mr_tests_p, found_p, found_q, hash;
  unsigned char *wbuf, *sbuf, digest[MAXBLOCKSIZE];
  void *t2L1, *t2N1, *t2q, *t2seedlen, *U, *W, *X, *c, *h, *e, *seedinc;

  /* check size */
  if (group_size >= LTC_MDSA_MAX_GROUP || group_size < 1 || group_size >= modulus_size) {
    return CRYPT_INVALID_ARG;
  }

 /* FIPS-186-4 A.1.1.2 Generation of the Probable Primes p and q Using an Approved Hash Function
  *
  * L = The desired length of the prime p (in bits e.g. L = 1024)
  * N = The desired length of the prime q (in bits e.g. N = 160)
  * seedlen = The desired bit length of the domain parameter seed; seedlen shallbe equal to or greater than N
  * outlen  = The bit length of Hash function
  *
  * 1.  Check that the (L, N)
  * 2.  If (seedlen <N), then return INVALID.
  * 3.  n = ceil(L / outlen) - 1
  * 4.  b = L- 1 - (n * outlen)
  * 5.  domain_parameter_seed = an arbitrary sequence of seedlen bits
  * 6.  U = Hash (domain_parameter_seed) mod 2^(N-1)
  * 7.  q = 2^(N-1) + U + 1 - (U mod 2)
  * 8.  Test whether or not q is prime as specified in Appendix C.3
  * 9.  If qis not a prime, then go to step 5.
  * 10. offset = 1
  * 11. For counter = 0 to (4L- 1) do {
  *       For j=0 to n do {
  *         Vj = Hash ((domain_parameter_seed+ offset + j) mod 2^seedlen
  *       }
  *       W = V0 + (V1 *2^outlen) + ... + (Vn-1 * 2^((n-1) * outlen)) + ((Vn mod 2^b) * 2^(n * outlen))
  *       X = W + 2^(L-1)           Comment: 0 <= W < 2^(L-1); hence 2^(L-1) <= X < 2^L
  *       c = X mod 2*q
  *       p = X - (c - 1)           Comment: p ~ 1 (mod 2*q)
  *       If (p >= 2^(L-1)) {
  *         Test whether or not p is prime as specified in Appendix C.3.
  *         If p is determined to be prime, then return VALID and the values of p, qand (optionally) the values of domain_parameter_seed and counter
  *       }
  *       offset = offset + n + 1   Comment: Increment offset
  *     }
  */

  seedbytes = group_size;
  L = (unsigned long)modulus_size * 8;
  N = (unsigned long)group_size * 8;

  /* XXX-TODO no Lucas test */
#ifdef LTC_MPI_HAS_LUCAS_TEST
  /* M-R tests (when followed by one Lucas test) according FIPS-186-4 - Appendix C.3 - table C.1 */
  mr_tests_p = (L <= 2048) ? 3 : 2;
  if      (N <= 160)  { mr_tests_q = 19; }
  else if (N <= 224)  { mr_tests_q = 24; }
  else                { mr_tests_q = 27; }
#else
  /* M-R tests (without Lucas test) according FIPS-186-4 - Appendix C.3 - table C.1 */
  if      (L <= 1024) { mr_tests_p = 40; }
  else if (L <= 2048) { mr_tests_p = 56; }
  else                { mr_tests_p = 64; }

  if      (N <= 160)  { mr_tests_q = 40; }
  else if (N <= 224)  { mr_tests_q = 56; }
  else                { mr_tests_q = 64; }
#endif

  if (N <= 256) {
    hash = register_hash(&sha256_desc);
  }
  else if (N <= 384) {
    hash = register_hash(&sha384_desc);
  }
  else if (N <= 512) {
    hash = register_hash(&sha512_desc);
  }
  else {
    return CRYPT_INVALID_ARG; /* group_size too big */
  }

  if ((err = hash_is_valid(hash)) != CRYPT_OK)                                   { return err; }
  outbytes = hash_descriptor[hash].hashsize;

  n = ((L + outbytes*8 - 1) / (outbytes*8)) - 1;

  if ((wbuf = XMALLOC((n+1)*outbytes)) == NULL)                                  { err = CRYPT_MEM; goto cleanup3; }
  if ((sbuf = XMALLOC(seedbytes)) == NULL)                                       { err = CRYPT_MEM; goto cleanup2; }

  err = mp_init_multi(&t2L1, &t2N1, &t2q, &t2seedlen, &U, &W, &X, &c, &h, &e, &seedinc, NULL);
  if (err != CRYPT_OK)                                                           { goto cleanup1; }

  if ((err = mp_2expt(t2L1, L-1)) != CRYPT_OK)                                   { goto cleanup; }
  /* t2L1 = 2^(L-1) */
  if ((err = mp_2expt(t2N1, N-1)) != CRYPT_OK)                                   { goto cleanup; }
  /* t2N1 = 2^(N-1) */
  if ((err = mp_2expt(t2seedlen, seedbytes*8)) != CRYPT_OK)                      { goto cleanup; }
  /* t2seedlen = 2^seedlen */

  for(found_p=0; !found_p;) {
    /* q */
    for(found_q=0; !found_q;) {
      if (prng_descriptor[wprng].read(sbuf, seedbytes, prng) != seedbytes)       { err = CRYPT_ERROR_READPRNG; goto cleanup; }
      i = outbytes;
      if ((err = hash_memory(hash, sbuf, seedbytes, digest, &i)) != CRYPT_OK)    { goto cleanup; }
      if ((err = mp_read_unsigned_bin(U, digest, outbytes)) != CRYPT_OK)         { goto cleanup; }
      if ((err = mp_mod(U, t2N1, U)) != CRYPT_OK)                                { goto cleanup; }
      if ((err = mp_add(t2N1, U, q)) != CRYPT_OK)                                { goto cleanup; }
      if (!mp_isodd(q)) mp_add_d(q, 1, q);
      if ((err = mp_prime_is_prime(q, mr_tests_q, &res)) != CRYPT_OK)            { goto cleanup; }
      if (res == LTC_MP_YES) found_q = 1;
    }

    /* p */
    if ((err = mp_read_unsigned_bin(seedinc, sbuf, seedbytes)) != CRYPT_OK)      { goto cleanup; }
    if ((err = mp_add(q, q, t2q)) != CRYPT_OK)                                   { goto cleanup; }
    for(counter=0; counter < 4*L && !found_p; counter++) {
      for(j=0; j<=n; j++) {
        if ((err = mp_add_d(seedinc, 1, seedinc)) != CRYPT_OK)                   { goto cleanup; }
        if ((err = mp_mod(seedinc, t2seedlen, seedinc)) != CRYPT_OK)             { goto cleanup; }
        /* seedinc = (seedinc+1) % 2^seed_bitlen */
        if ((i = mp_unsigned_bin_size(seedinc)) > seedbytes)                     { err = CRYPT_INVALID_ARG; goto cleanup; }
        zeromem(sbuf, seedbytes);
        if ((err = mp_to_unsigned_bin(seedinc, sbuf + seedbytes-i)) != CRYPT_OK) { goto cleanup; }
        i = outbytes;
        err = hash_memory(hash, sbuf, seedbytes, wbuf+(n-j)*outbytes, &i);
        if (err != CRYPT_OK)                                                     { goto cleanup; }
      }
      if ((err = mp_read_unsigned_bin(W, wbuf, (n+1)*outbytes)) != CRYPT_OK)     { goto cleanup; }
      if ((err = mp_mod(W, t2L1, W)) != CRYPT_OK)                                { goto cleanup; }
      if ((err = mp_add(W, t2L1, X)) != CRYPT_OK)                                { goto cleanup; }
      if ((err = mp_mod(X, t2q, c))  != CRYPT_OK)                                { goto cleanup; }
      if ((err = mp_sub_d(c, 1, p))  != CRYPT_OK)                                { goto cleanup; }
      if ((err = mp_sub(X, p, p))    != CRYPT_OK)                                { goto cleanup; }
      if (mp_cmp(p, t2L1) != LTC_MP_LT) {
        /* p >= 2^(L-1) */
        if ((err = mp_prime_is_prime(p, mr_tests_p, &res)) != CRYPT_OK)          { goto cleanup; }
        if (res == LTC_MP_YES) {
          found_p = 1;
        }
      }
    }
  }

 /* FIPS-186-4 A.2.1 Unverifiable Generation of the Generator g
  * 1. e = (p - 1)/q
  * 2. h = any integer satisfying: 1 < h < (p - 1)
  *    h could be obtained from a random number generator or from a counter that changes after each use
  * 3. g = h^e mod p
  * 4. if (g == 1), then go to step 2.
  *
  */

  if ((err = mp_sub_d(p, 1, e)) != CRYPT_OK)                                     { goto cleanup; }
  if ((err = mp_div(e, q, e, c)) != CRYPT_OK)                                    { goto cleanup; }
  /* e = (p - 1)/q */
  i = mp_count_bits(p);
  do {
    do {
      if ((err = rand_bn_bits(h, i, prng, wprng)) != CRYPT_OK)                   { goto cleanup; }
    } while (mp_cmp(h, p) != LTC_MP_LT || mp_cmp_d(h, 2) != LTC_MP_GT);
    if ((err = mp_sub_d(h, 1, h)) != CRYPT_OK)                                   { goto cleanup; }
    /* h is randon and 1 < h < (p-1) */
    if ((err = mp_exptmod(h, e, p, g)) != CRYPT_OK)                              { goto cleanup; }
  } while (mp_cmp_d(g, 1) == LTC_MP_EQ);

  err = CRYPT_OK;
cleanup:
  mp_clear_multi(t2L1, t2N1, t2q, t2seedlen, U, W, X, c, h, e, seedinc, NULL);
cleanup1:
  XFREE(sbuf);
cleanup2:
  XFREE(wbuf);
cleanup3:
  return err;
}
Ejemplo n.º 29
0
/* slower bit-bang division... also smaller */
int mp_div MPA(mp_int * a, mp_int * b, mp_int * c, mp_int * d)
{
   mp_int ta, tb, tq, q;
   int    res, n, n2;

  /* is divisor zero ? */
  if (mp_iszero (b) == 1) {
    return MP_VAL;
  }

  /* if a < b then q=0, r = a */
  if (mp_cmp_mag (a, b) == MP_LT) {
    if (d != NULL) {
      res = mp_copy (a, d);
    } else {
      res = MP_OKAY;
    }
    if (c != NULL) {
      mp_zero (c);
    }
    return res;
  }
	
  /* init our temps */
  if ((res = mp_init_multi(&ta, &tb, &tq, &q, NULL) != MP_OKAY)) {
     return res;
  }


  mp_set(&tq, 1);
  n = mp_count_bits(a) - mp_count_bits(b);
  if (((res = mp_abs(a, &ta)) != MP_OKAY) ||
      ((res = mp_abs(b, &tb)) != MP_OKAY) || 
      ((res = mp_mul_2d(&tb, n, &tb)) != MP_OKAY) ||
      ((res = mp_mul_2d(&tq, n, &tq)) != MP_OKAY)) {
      goto LBL_ERR;
  }

  while (n-- >= 0) {
     if (mp_cmp(&tb, &ta) != MP_GT) {
        if (((res = mp_sub(&ta, &tb, &ta)) != MP_OKAY) ||
            ((res = mp_add(&q, &tq, &q)) != MP_OKAY)) {
           goto LBL_ERR;
        }
     }
     if (((res = mp_div_2d(&tb, 1, &tb, NULL)) != MP_OKAY) ||
         ((res = mp_div_2d(&tq, 1, &tq, NULL)) != MP_OKAY)) {
           goto LBL_ERR;
     }
  }

  /* now q == quotient and ta == remainder */
  n  = a->sign;
  n2 = (a->sign == b->sign ? MP_ZPOS : MP_NEG);
  if (c != NULL) {
     mp_exch(c, &q);
     c->sign  = (mp_iszero(c) == MP_YES) ? MP_ZPOS : n2;
  }
  if (d != NULL) {
     mp_exch(d, &ta);
     d->sign = (mp_iszero(d) == MP_YES) ? MP_ZPOS : n;
  }
LBL_ERR:
   mp_clear_multi(&ta, &tb, &tq, &q, NULL);
   return res;
}
Ejemplo n.º 30
0
/**
  Encrypt a symmetric key with DSA
  @param in         The symmetric key you want to encrypt
  @param inlen      The length of the key to encrypt (octets)
  @param out        [out] The destination for the ciphertext
  @param outlen     [in/out] The max size and resulting size of the ciphertext
  @param prng       An active PRNG state
  @param wprng      The index of the PRNG you wish to use 
  @param hash       The index of the hash you want to use 
  @param key        The DSA key you want to encrypt to
  @return CRYPT_OK if successful
*/
int dsa_encrypt_key(const unsigned char *in,   unsigned long inlen,
                          unsigned char *out,  unsigned long *outlen, 
                          prng_state *prng, int wprng, int hash, 
                          dsa_key *key)
{
    unsigned char *expt, *skey;
    void          *g_pub, *g_priv;
    unsigned long  x, y;
    int            err, qbits;

    LTC_ARGCHK(in      != NULL);
    LTC_ARGCHK(out     != NULL);
    LTC_ARGCHK(outlen  != NULL);
    LTC_ARGCHK(key     != NULL);

    /* check that wprng/cipher/hash are not invalid */
    if ((err = prng_is_valid(wprng)) != CRYPT_OK) {
       return err;
    }

    if ((err = hash_is_valid(hash)) != CRYPT_OK) {
       return err;
    }

    if (inlen > hash_descriptor[hash]->hashsize) {
       return CRYPT_INVALID_HASH;
    }

    /* make a random key and export the public copy */
    if ((err = mp_init_multi(&g_pub, &g_priv, NULL)) != CRYPT_OK) {
       return err;
    }
   
    expt       = XMALLOC(mp_unsigned_bin_size(key->p) + 1);
    skey       = XMALLOC(MAXBLOCKSIZE);
    if (expt == NULL  || skey == NULL) {
       if (expt != NULL) {
          XFREE(expt);
       }
       if (skey != NULL) {
          XFREE(skey);
       }
       mp_clear_multi(g_pub, g_priv, NULL);
       return CRYPT_MEM;
    }
    
    /* make a random g_priv, g_pub = g^x pair */
    qbits = mp_count_bits(key->q);
    do {
      if ((err = rand_bn_bits(g_priv, qbits, prng, wprng)) != CRYPT_OK) {
        goto LBL_ERR;
      }
      /* private key x should be from range: 1 <= x <= q-1 (see FIPS 186-4 B.1.2) */
    } while (mp_cmp_d(g_priv, 0) != LTC_MP_GT || mp_cmp(g_priv, key->q) != LTC_MP_LT);

    /* compute y */
    if ((err = mp_exptmod(key->g, g_priv, key->p, g_pub)) != CRYPT_OK) {
       goto LBL_ERR;
    }
    
    /* make random key */
    x        = mp_unsigned_bin_size(key->p) + 1;
    if ((err = dsa_shared_secret(g_priv, key->y, key, expt, &x)) != CRYPT_OK) {
       goto LBL_ERR;
    }

    y = MAXBLOCKSIZE;
    if ((err = hash_memory(hash, expt, x, skey, &y)) != CRYPT_OK) {
       goto LBL_ERR;
    }
    
    /* Encrypt key */
    for (x = 0; x < inlen; x++) {
      skey[x] ^= in[x];
    }

    err = der_encode_sequence_multi(out, outlen,
                                    LTC_ASN1_OBJECT_IDENTIFIER,  hash_descriptor[hash]->OIDlen,   hash_descriptor[hash]->OID,
                                    LTC_ASN1_INTEGER,            1UL,                            g_pub,
                                    LTC_ASN1_OCTET_STRING,       inlen,                          skey,
                                    LTC_ASN1_EOL,                0UL,                            NULL);

LBL_ERR:
#ifdef LTC_CLEAN_STACK
    /* clean up */
    zeromem(expt,   mp_unsigned_bin_size(key->p) + 1);
    zeromem(skey,   MAXBLOCKSIZE);
#endif

    XFREE(skey);
    XFREE(expt);
    
    mp_clear_multi(g_pub, g_priv, NULL);
    return err;
}