/* determines the setup value */ int mp_reduce_2k_setup_l(mp_int *a, mp_int *d) { int res; mp_int tmp; if ((res = mp_init(&tmp)) != MP_OKAY) { return res; } if ((res = mp_2expt(&tmp, mp_count_bits(a))) != MP_OKAY) { goto ERR; } if ((res = s_mp_sub(&tmp, a, d)) != MP_OKAY) { goto ERR; } ERR: mp_clear(&tmp); return res; }
/* reduces a modulo n where n is of the form 2**p - d */ int mp_reduce_2k(mp_int *a, mp_int *n, mp_digit d) { mp_int q; int p, res; if ((res = mp_init(&q)) != MP_OKAY) { return res; } p = mp_count_bits(n); top: /* q = a/2**p, a = a mod 2**p */ if ((res = mp_div_2d(a, p, &q, a)) != MP_OKAY) { goto ERR; } if (d != 1) { /* q = q * d */ if ((res = mp_mul_d(&q, d, &q)) != MP_OKAY) { goto ERR; } } /* a = a + q */ if ((res = s_mp_add(a, &q, a)) != MP_OKAY) { goto ERR; } if (mp_cmp_mag(a, n) != MP_LT) { if ((res = s_mp_sub(a, n, a)) != MP_OKAY) { goto ERR; } goto top; } ERR: mp_clear(&q); return res; }
int mpf_normalize(mp_float *a) { long cb, diff; int err; mp_digit c; /* sanity */ if (a->radix < 2) { return MP_VAL; } cb = mp_count_bits(&(a->mantissa)); if (cb > a->radix) { diff = cb - a->radix; a->exp += diff; /* round it, add 1 after shift if diff-1'th bit is 1 */ c = a->mantissa.dp[diff/DIGIT_BIT] & (1U<<(diff%DIGIT_BIT)); if ((err = mp_div_2d(&(a->mantissa), diff, &(a->mantissa), NULL)) != MP_OKAY) { return err; } if (c != 0) { return mp_add_d(&(a->mantissa), 1, &(a->mantissa)); } else { return MP_OKAY; } } else if (cb < a->radix) { if (mp_iszero(&(a->mantissa)) == MP_YES) { return mpf_const_0(a); } else { diff = a->radix - cb; a->exp -= diff; return mp_mul_2d(&(a->mantissa), diff, &(a->mantissa)); } } return MP_OKAY; }
/* reduces a modulo n where n is of the form 2**p - d This differs from reduce_2k since "d" can be larger than a single digit. */ int mp_reduce_2k_l(mp_int *a, const mp_int *n, const mp_int *d) { mp_int q; int p, res; if ((res = mp_init(&q)) != MP_OKAY) { return res; } p = mp_count_bits(n); top: /* q = a/2**p, a = a mod 2**p */ if ((res = mp_div_2d(a, p, &q, a)) != MP_OKAY) { goto LBL_ERR; } /* q = q * d */ if ((res = mp_mul(&q, d, &q)) != MP_OKAY) { goto LBL_ERR; } /* a = a + q */ if ((res = s_mp_add(a, &q, a)) != MP_OKAY) { goto LBL_ERR; } if (mp_cmp_mag(a, n) != MP_LT) { if ((res = s_mp_sub(a, n, a)) != MP_OKAY) { goto LBL_ERR; } goto top; } LBL_ERR: mp_clear(&q); return res; }
/* A forced 64-bit version of mp_get_long, since on some platforms long is * not all that long. */ static MVMuint64 mp_get_int64(MVMThreadContext *tc, mp_int * a) { int i, bits; MVMuint64 res; if (a->used == 0) { return 0; } bits = mp_count_bits(a); if (bits > 64) { MVM_exception_throw_adhoc(tc, "Cannot unbox %d bit wide bigint into native integer", bits); } /* get number of digits of the lsb we have to read */ i = MIN(a->used,(int)((sizeof(MVMuint64)*CHAR_BIT+DIGIT_BIT-1)/DIGIT_BIT))-1; /* get most significant digit of result */ res = DIGIT(a,i); while (--i >= 0) { res = (res << DIGIT_BIT) | DIGIT(a,i); } return res; }
int main (void) { mp_int p, q; char buf[4096]; int k, li; clock_t t1; srand (time (NULL)); load_tab(); printf ("Enter # of bits: \n"); fgets (buf, sizeof (buf), stdin); sscanf (buf, "%d", &k); printf ("Enter number of bases to try (1 to 8):\n"); fgets (buf, sizeof (buf), stdin); sscanf (buf, "%d", &li); mp_init (&p); mp_init (&q); t1 = clock (); pprime (k, li, &p, &q); t1 = clock () - t1; printf ("\n\nTook %ld ticks, %d bits\n", t1, mp_count_bits (&p)); mp_toradix (&p, buf, 10); printf ("P == %s\n", buf); mp_toradix (&q, buf, 10); printf ("Q == %s\n", buf); return 0; }
/* determines the setup value */ int mp_reduce_2k_setup(mp_int *a, mp_digit *d) { int res, p; mp_int tmp; if ((res = mp_init(&tmp)) != MP_OKAY) { return res; } p = mp_count_bits(a); if ((res = mp_2expt(&tmp, p)) != MP_OKAY) { mp_clear(&tmp); return res; } if ((res = s_mp_sub(&tmp, a, &tmp)) != MP_OKAY) { mp_clear(&tmp); return res; } *d = tmp.dp[0]; mp_clear(&tmp); return MP_OKAY; }
/** PKCS #1 pad then sign @param in The hash to sign @param inlen The length of the hash to sign (octets) @param out [out] The signature @param outlen [in/out] The max size and resulting size of the signature @param padding Type of padding (LTC_PKCS_1_PSS or LTC_PKCS_1_V1_5) @param prng An active PRNG state @param prng_idx The index of the PRNG desired @param hash_idx The index of the hash desired @param saltlen The length of the salt desired (octets) @param key The private RSA key to use @return CRYPT_OK if successful */ int rsa_sign_hash_ex(const unsigned char *in, unsigned long inlen, unsigned char *out, unsigned long *outlen, int padding, prng_state *prng, int prng_idx, int hash_idx, unsigned long saltlen, rsa_key *key) { unsigned long modulus_bitlen, modulus_bytelen, x, y; int err; LTC_ARGCHK(in != NULL); LTC_ARGCHK(out != NULL); LTC_ARGCHK(outlen != NULL); LTC_ARGCHK(key != NULL); /* valid padding? */ if ((padding != LTC_PKCS_1_V1_5) && (padding != LTC_PKCS_1_PSS)) { return CRYPT_PK_INVALID_PADDING; } if (padding == LTC_PKCS_1_PSS) { /* valid prng and hash ? */ if ((err = prng_is_valid(prng_idx)) != CRYPT_OK) { return err; } if ((err = hash_is_valid(hash_idx)) != CRYPT_OK) { return err; } } /* get modulus len in bits */ modulus_bitlen = mp_count_bits((key->N)); /* outlen must be at least the size of the modulus */ modulus_bytelen = mp_unsigned_bin_size((key->N)); if (modulus_bytelen > *outlen) { *outlen = modulus_bytelen; return CRYPT_BUFFER_OVERFLOW; } if (padding == LTC_PKCS_1_PSS) { /* PSS pad the key */ x = *outlen; if ((err = pkcs_1_pss_encode(in, inlen, saltlen, prng, prng_idx, hash_idx, modulus_bitlen, out, &x)) != CRYPT_OK) { return err; } } else { /* PKCS #1 v1.5 pad the hash */ unsigned char *tmpin; ltc_asn1_list digestinfo[2], siginfo[2]; /* not all hashes have OIDs... so sad */ if (hash_descriptor[hash_idx].OIDlen == 0) { return CRYPT_INVALID_ARG; } /* construct the SEQUENCE SEQUENCE { SEQUENCE {hashoid OID blah NULL } hash OCTET STRING } */ LTC_SET_ASN1(digestinfo, 0, LTC_ASN1_OBJECT_IDENTIFIER, hash_descriptor[hash_idx].OID, hash_descriptor[hash_idx].OIDlen); LTC_SET_ASN1(digestinfo, 1, LTC_ASN1_NULL, NULL, 0); LTC_SET_ASN1(siginfo, 0, LTC_ASN1_SEQUENCE, digestinfo, 2); LTC_SET_ASN1(siginfo, 1, LTC_ASN1_OCTET_STRING, in, inlen); /* allocate memory for the encoding */ y = mp_unsigned_bin_size(key->N); tmpin = XMALLOC(y); if (tmpin == NULL) { return CRYPT_MEM; } if ((err = der_encode_sequence(siginfo, 2, tmpin, &y)) != CRYPT_OK) { XFREE(tmpin); return err; } x = *outlen; if ((err = pkcs_1_v1_5_encode(tmpin, y, LTC_PKCS_1_EMSA, modulus_bitlen, NULL, 0, out, &x)) != CRYPT_OK) { XFREE(tmpin); return err; } XFREE(tmpin); } /* RSA encode it */ return ltc_mp.rsa_me(out, x, out, outlen, PK_PRIVATE, key); }
int size() const { return mp_count_bits( const_cast< mp_int* >( &value ) ); }
int ppro_r5_rsa_encrypt_key_ex(const unsigned char *in, unsigned long inlen, unsigned char *out, unsigned long *outlen, const unsigned char *lparam, unsigned long lparamlen, prng_state *prng, int prng_idx, int hash_idx, int padding, rsa_key *key) { unsigned long modulus_bitlen, modulus_bytelen, x; int err; LTC_ARGCHK(in != NULL); LTC_ARGCHK(out != NULL); LTC_ARGCHK(outlen != NULL); LTC_ARGCHK(key != NULL); /* valid padding? */ if ((padding != LTC_PKCS_1_V1_5) && (padding != LTC_PKCS_1_OAEP)) { return CRYPT_PK_INVALID_PADDING; } /* valid prng? */ if ((err = prng_is_valid(prng_idx)) != CRYPT_OK) { return err; } if (padding == LTC_PKCS_1_OAEP) { /* valid hash? */ if ((err = hash_is_valid(hash_idx)) != CRYPT_OK) { return err; } } /* get modulus len in bits */ modulus_bitlen = mp_count_bits( (key->N)); /* outlen must be at least the size of the modulus */ modulus_bytelen = mp_unsigned_bin_size( (key->N)); if (modulus_bytelen > *outlen) { *outlen = modulus_bytelen; return CRYPT_BUFFER_OVERFLOW; } if (padding == LTC_PKCS_1_OAEP) { /* OAEP pad the key */ x = *outlen; if ((err = pkcs_1_oaep_encode(in, inlen, lparam, lparamlen, modulus_bitlen, prng, prng_idx, hash_idx, out, &x)) != CRYPT_OK) { return err; } } else { /* PKCS #1 v1.5 pad the key */ x = *outlen; if ((err = pkcs_1_v1_5_encode(in, inlen, LTC_PKCS_1_EME, modulus_bitlen, prng, prng_idx, out, &x)) != CRYPT_OK) { return err; } } /* rsa exptmod the OAEP or PKCS #1 v1.5 pad */ return ltc_mp.rsa_me(out, x, out, outlen, PK_PRIVATE, key); }
/** Compute an RSA modular exponentiation @param in The input data to send into RSA @param inlen The length of the input (octets) @param out [out] The destination @param outlen [in/out] The max size and resulting size of the output @param which Which exponent to use, e.g. PK_PRIVATE or PK_PUBLIC @param key The RSA key to use @return CRYPT_OK if successful */ int rsa_exptmod(const unsigned char *in, unsigned long inlen, unsigned char *out, unsigned long *outlen, int which, rsa_key *key) { void *tmp, *tmpa, *tmpb; #ifdef LTC_RSA_BLINDING void *rnd = NULL, *rndi = NULL /* inverse of rnd */; #endif unsigned long x; int err; LTC_ARGCHK(in != NULL); LTC_ARGCHK(out != NULL); LTC_ARGCHK(outlen != NULL); LTC_ARGCHK(key != NULL); /* is the key of the right type for the operation? */ if (which == PK_PRIVATE && (key->type != PK_PRIVATE)) { return CRYPT_PK_NOT_PRIVATE; } /* must be a private or public operation */ if (which != PK_PRIVATE && which != PK_PUBLIC) { return CRYPT_PK_INVALID_TYPE; } /* init and copy into tmp */ if ((err = mp_init_multi(&tmp, &tmpa, &tmpb, NULL)) != CRYPT_OK) { return err; } if ((err = mp_read_unsigned_bin(tmp, (unsigned char *)in, (int)inlen)) != CRYPT_OK) { goto error; } /* sanity check on the input */ if (mp_cmp(key->N, tmp) == LTC_MP_LT) { err = CRYPT_PK_INVALID_SIZE; goto error; } /* are we using the private exponent and is the key optimized? */ if (which == PK_PRIVATE) { #ifdef LTC_RSA_BLINDING if ((err = mp_init_multi(&rnd, &rndi, NULL)) != CRYPT_OK) { goto error; } /* do blinding */ err = mp_rand(rnd, mp_count_bits(key->N)); if (err != CRYPT_OK) { goto error_blind; } /* rndi = 1/rnd mod N */ err = mp_invmod(rnd, key->N, rndi); if (err != CRYPT_OK) { goto error_blind; } /* rnd = rnd^e */ err = mp_exptmod( rnd, key->e, key->N, rnd); if (err != CRYPT_OK) { goto error_blind; } /* tmp = tmp*rnd mod N */ err = mp_mulmod( tmp, rnd, key->N, tmp); if (err != CRYPT_OK) { goto error_blind; } #endif /* LTC_RSA_BLINDING */ /* tmpa = tmp^dP mod p */ if ((err = mp_exptmod(tmp, key->dP, key->p, tmpa)) != CRYPT_OK) { goto error_blind; } /* tmpb = tmp^dQ mod q */ if ((err = mp_exptmod(tmp, key->dQ, key->q, tmpb)) != CRYPT_OK) { goto error_blind; } /* tmp = (tmpa - tmpb) * qInv (mod p) */ if ((err = mp_sub(tmpa, tmpb, tmp)) != CRYPT_OK) { goto error_blind; } if ((err = mp_mulmod(tmp, key->qP, key->p, tmp)) != CRYPT_OK) { goto error_blind; } /* tmp = tmpb + q * tmp */ if ((err = mp_mul(tmp, key->q, tmp)) != CRYPT_OK) { goto error_blind; } if ((err = mp_add(tmp, tmpb, tmp)) != CRYPT_OK) { goto error_blind; } #ifdef LTC_RSA_BLINDING /* unblind */ err = mp_mulmod( tmp, rndi, key->N, tmp); if (err != CRYPT_OK) { goto error_blind; } #endif } else { /* exptmod it */ if ((err = mp_exptmod(tmp, key->e, key->N, tmp)) != CRYPT_OK) { goto error; } } /* read it back */ x = (unsigned long)mp_unsigned_bin_size(key->N); if (x > *outlen) { *outlen = x; err = CRYPT_BUFFER_OVERFLOW; goto error; } /* this should never happen ... */ if (mp_unsigned_bin_size(tmp) > mp_unsigned_bin_size(key->N)) { err = CRYPT_ERROR; goto error; } *outlen = x; /* convert it */ zeromem(out, x); if ((err = mp_to_unsigned_bin(tmp, out+(x-mp_unsigned_bin_size(tmp)))) != CRYPT_OK) { goto error; } /* clean up and return */ err = CRYPT_OK; error_blind: #ifdef LTC_RSA_BLINDING mp_clear_multi(rnd, rndi, NULL); #endif error: mp_clear_multi(tmp, tmpa, tmpb, NULL); return err; }
/* integer signed division. * c*b + d == a [e.g. a/b, c=quotient, d=remainder] * HAC pp.598 Algorithm 14.20 * * Note that the description in HAC is horribly * incomplete. For example, it doesn't consider * the case where digits are removed from 'x' in * the inner loop. It also doesn't consider the * case that y has fewer than three digits, etc.. * * The overall algorithm is as described as * 14.20 from HAC but fixed to treat these cases. */ int mp_div MPA(mp_int * a, mp_int * b, mp_int * c, mp_int * d) { mp_int q, x, y, t1, t2; int res, n, t, i, norm, neg; /* is divisor zero ? */ if (mp_iszero (b) == 1) { return MP_VAL; } /* if a < b then q=0, r = a */ if (mp_cmp_mag (a, b) == MP_LT) { if (d != NULL) { res = mp_copy (MPST, a, d); } else { res = MP_OKAY; } if (c != NULL) { mp_zero (c); } return res; } if ((res = mp_init_size (&q, a->used + 2)) != MP_OKAY) { return res; } q.used = a->used + 2; if ((res = mp_init (&t1)) != MP_OKAY) { goto LBL_Q; } if ((res = mp_init (&t2)) != MP_OKAY) { goto LBL_T1; } if ((res = mp_init_copy (MPST, &x, a)) != MP_OKAY) { goto LBL_T2; } if ((res = mp_init_copy (MPST, &y, b)) != MP_OKAY) { goto LBL_X; } /* fix the sign */ neg = (a->sign == b->sign) ? MP_ZPOS : MP_NEG; x.sign = y.sign = MP_ZPOS; /* normalize both x and y, ensure that y >= b/2, [b == 2**DIGIT_BIT] */ norm = mp_count_bits(&y) % DIGIT_BIT; if (norm < (int)(DIGIT_BIT-1)) { norm = (DIGIT_BIT-1) - norm; if ((res = mp_mul_2d (MPST, &x, norm, &x)) != MP_OKAY) { goto LBL_Y; } if ((res = mp_mul_2d (MPST, &y, norm, &y)) != MP_OKAY) { goto LBL_Y; } } else { norm = 0; } /* note hac does 0 based, so if used==5 then its 0,1,2,3,4, e.g. use 4 */ n = x.used - 1; t = y.used - 1; /* while (x >= y*b**n-t) do { q[n-t] += 1; x -= y*b**{n-t} } */ if ((res = mp_lshd (MPST, &y, n - t)) != MP_OKAY) { /* y = y*b**{n-t} */ goto LBL_Y; } while (mp_cmp (&x, &y) != MP_LT) { ++(q.dp[n - t]); if ((res = mp_sub (MPST, &x, &y, &x)) != MP_OKAY) { goto LBL_Y; } } /* reset y by shifting it back down */ mp_rshd (&y, n - t); /* step 3. for i from n down to (t + 1) */ for (i = n; i >= (t + 1); i--) { if (i > x.used) { continue; } /* step 3.1 if xi == yt then set q{i-t-1} to b-1, * otherwise set q{i-t-1} to (xi*b + x{i-1})/yt */ if (x.dp[i] == y.dp[t]) { q.dp[i - t - 1] = ((((mp_digit)1) << DIGIT_BIT) - 1); } else { mp_word tmp; tmp = ((mp_word) x.dp[i]) << ((mp_word) DIGIT_BIT); tmp |= ((mp_word) x.dp[i - 1]); tmp /= ((mp_word) y.dp[t]); if (tmp > (mp_word) MP_MASK) tmp = MP_MASK; q.dp[i - t - 1] = (mp_digit) (tmp & (mp_word) (MP_MASK)); } /* while (q{i-t-1} * (yt * b + y{t-1})) > xi * b**2 + xi-1 * b + xi-2 do q{i-t-1} -= 1; */ q.dp[i - t - 1] = (q.dp[i - t - 1] + 1) & MP_MASK; do { q.dp[i - t - 1] = (q.dp[i - t - 1] - 1) & MP_MASK; /* find left hand */ mp_zero (&t1); t1.dp[0] = (t - 1 < 0) ? 0 : y.dp[t - 1]; t1.dp[1] = y.dp[t]; t1.used = 2; if ((res = mp_mul_d (MPST, &t1, q.dp[i - t - 1], &t1)) != MP_OKAY) { goto LBL_Y; } /* find right hand */ t2.dp[0] = (i - 2 < 0) ? 0 : x.dp[i - 2]; t2.dp[1] = (i - 1 < 0) ? 0 : x.dp[i - 1]; t2.dp[2] = x.dp[i]; t2.used = 3; } while (mp_cmp_mag(&t1, &t2) == MP_GT); /* step 3.3 x = x - q{i-t-1} * y * b**{i-t-1} */ if ((res = mp_mul_d (MPST, &y, q.dp[i - t - 1], &t1)) != MP_OKAY) { goto LBL_Y; } if ((res = mp_lshd (MPST, &t1, i - t - 1)) != MP_OKAY) { goto LBL_Y; } if ((res = mp_sub (MPST, &x, &t1, &x)) != MP_OKAY) { goto LBL_Y; } /* if x < 0 then { x = x + y*b**{i-t-1}; q{i-t-1} -= 1; } */ if (x.sign == MP_NEG) { if ((res = mp_copy (MPST, &y, &t1)) != MP_OKAY) { goto LBL_Y; } if ((res = mp_lshd (MPST, &t1, i - t - 1)) != MP_OKAY) { goto LBL_Y; } if ((res = mp_add (MPST, &x, &t1, &x)) != MP_OKAY) { goto LBL_Y; } q.dp[i - t - 1] = (q.dp[i - t - 1] - 1UL) & MP_MASK; } } /* now q is the quotient and x is the remainder * [which we have to normalize] */ /* get sign before writing to c */ x.sign = x.used == 0 ? MP_ZPOS : a->sign; if (c != NULL) { mp_clamp (&q); mp_managed_copy (MPST, &q, c); c->sign = neg; } if (d != NULL) { mp_div_2d (MPST, &x, norm, &x, NULL); mp_managed_copy (MPST, &x, d); } res = MP_OKAY; LBL_Y:mp_clear (&y); LBL_X:mp_clear (&x); LBL_T2:mp_clear (&t2); LBL_T1:mp_clear (&t1); LBL_Q:mp_clear (&q); return res; }
/* returns size of ASCII reprensentation */ int mp_radix_size (mp_int * a, int radix, int *size) { int res, digs; mp_int t; mp_digit d; *size = 0; /* special case for binary */ if (radix == 2) { *size = mp_count_bits (a) + (a->sign == MP_NEG ? 1 : 0) + 1; return MP_OKAY; } /* make sure the radix is in range */ if (radix < 2 || radix > 64) { return MP_VAL; } if (mp_iszero(a) == MP_YES) { *size = 2; return MP_OKAY; } /* digs is the digit count */ digs = 0; /* if it's negative add one for the sign */ if (a->sign == MP_NEG) { ++digs; } /* init a copy of the input */ if ((res = mp_init_copy (&t, a)) != MP_OKAY) { return res; } /* force temp to positive */ t.sign = MP_ZPOS; /* fetch out all of the digits */ while (mp_iszero (&t) == MP_NO) { if ((res = mp_div_d (&t, (mp_digit) radix, &t, &d)) != MP_OKAY) { mp_clear (&t); return res; } ++digs; } mp_clear (&t); /* * return digs + 1, the 1 is for the NULL byte that would be required. * mp_toradix_n requires a minimum of 3 bytes, so never report less than * that. */ if ( digs >= 2 ) { *size = digs + 1; } else { *size = 3; } return MP_OKAY; }
int mp_exptmod_fast (mp_int * G, mp_int * X, mp_int * P, mp_int * Y, int redmode) { mp_int M[TAB_SIZE], res; mp_digit buf, mp; int err, bitbuf, bitcpy, bitcnt, mode, digidx, x, y, winsize; /* use a pointer to the reduction algorithm. This allows us to use * one of many reduction algorithms without modding the guts of * the code with if statements everywhere. */ int (*redux)(mp_int*,mp_int*,mp_digit); /* find window size */ x = mp_count_bits (X); if (x <= 7) { winsize = 2; } else if (x <= 36) { winsize = 3; } else if (x <= 140) { winsize = 4; } else if (x <= 450) { winsize = 5; } else if (x <= 1303) { winsize = 6; } else if (x <= 3529) { winsize = 7; } else { winsize = 8; } #ifdef MP_LOW_MEM if (winsize > 5) { winsize = 5; } #endif /* init M array */ /* init first cell */ if ((err = mp_init_size(&M[1], P->alloc)) != MP_OKAY) { return err; } /* now init the second half of the array */ for (x = 1<<(winsize-1); x < (1 << winsize); x++) { if ((err = mp_init_size(&M[x], P->alloc)) != MP_OKAY) { for (y = 1<<(winsize-1); y < x; y++) { mp_clear (&M[y]); } mp_clear(&M[1]); return err; } } /* determine and setup reduction code */ if (redmode == 0) { #ifdef BN_MP_MONTGOMERY_SETUP_C /* now setup montgomery */ if ((err = mp_montgomery_setup (P, &mp)) != MP_OKAY) { goto LBL_M; } #else err = MP_VAL; goto LBL_M; #endif /* automatically pick the comba one if available (saves quite a few calls/ifs) */ #ifdef BN_FAST_MP_MONTGOMERY_REDUCE_C if ((((P->used * 2) + 1) < MP_WARRAY) && (P->used < (1 << ((CHAR_BIT * sizeof(mp_word)) - (2 * DIGIT_BIT))))) { redux = fast_mp_montgomery_reduce; } else #endif { #ifdef BN_MP_MONTGOMERY_REDUCE_C /* use slower baseline Montgomery method */ redux = mp_montgomery_reduce; #else err = MP_VAL; goto LBL_M; #endif } } else if (redmode == 1) { #if defined(BN_MP_DR_SETUP_C) && defined(BN_MP_DR_REDUCE_C) /* setup DR reduction for moduli of the form B**k - b */ mp_dr_setup(P, &mp); redux = mp_dr_reduce; #else err = MP_VAL; goto LBL_M; #endif } else { #if defined(BN_MP_REDUCE_2K_SETUP_C) && defined(BN_MP_REDUCE_2K_C) /* setup DR reduction for moduli of the form 2**k - b */ if ((err = mp_reduce_2k_setup(P, &mp)) != MP_OKAY) { goto LBL_M; } redux = mp_reduce_2k; #else err = MP_VAL; goto LBL_M; #endif } /* setup result */ if ((err = mp_init_size (&res, P->alloc)) != MP_OKAY) { goto LBL_M; } /* create M table * * * The first half of the table is not computed though accept for M[0] and M[1] */ if (redmode == 0) { #ifdef BN_MP_MONTGOMERY_CALC_NORMALIZATION_C /* now we need R mod m */ if ((err = mp_montgomery_calc_normalization (&res, P)) != MP_OKAY) { goto LBL_RES; } /* now set M[1] to G * R mod m */ if ((err = mp_mulmod (G, &res, P, &M[1])) != MP_OKAY) { goto LBL_RES; } #else err = MP_VAL; goto LBL_RES; #endif } else { mp_set(&res, 1); if ((err = mp_mod(G, P, &M[1])) != MP_OKAY) { goto LBL_RES; } } /* compute the value at M[1<<(winsize-1)] by squaring M[1] (winsize-1) times */ if ((err = mp_copy (&M[1], &M[1 << (winsize - 1)])) != MP_OKAY) { goto LBL_RES; } for (x = 0; x < (winsize - 1); x++) { if ((err = mp_sqr (&M[1 << (winsize - 1)], &M[1 << (winsize - 1)])) != MP_OKAY) { goto LBL_RES; } if ((err = redux (&M[1 << (winsize - 1)], P, mp)) != MP_OKAY) { goto LBL_RES; } } /* create upper table */ for (x = (1 << (winsize - 1)) + 1; x < (1 << winsize); x++) { if ((err = mp_mul (&M[x - 1], &M[1], &M[x])) != MP_OKAY) { goto LBL_RES; } if ((err = redux (&M[x], P, mp)) != MP_OKAY) { goto LBL_RES; } } /* set initial mode and bit cnt */ mode = 0; bitcnt = 1; buf = 0; digidx = X->used - 1; bitcpy = 0; bitbuf = 0; for (;;) { /* grab next digit as required */ if (--bitcnt == 0) { /* if digidx == -1 we are out of digits so break */ if (digidx == -1) { break; } /* read next digit and reset bitcnt */ buf = X->dp[digidx--]; bitcnt = (int)DIGIT_BIT; } /* grab the next msb from the exponent */ y = (mp_digit)(buf >> (DIGIT_BIT - 1)) & 1; buf <<= (mp_digit)1; /* if the bit is zero and mode == 0 then we ignore it * These represent the leading zero bits before the first 1 bit * in the exponent. Technically this opt is not required but it * does lower the # of trivial squaring/reductions used */ if ((mode == 0) && (y == 0)) { continue; } /* if the bit is zero and mode == 1 then we square */ if ((mode == 1) && (y == 0)) { if ((err = mp_sqr (&res, &res)) != MP_OKAY) { goto LBL_RES; } if ((err = redux (&res, P, mp)) != MP_OKAY) { goto LBL_RES; } continue; } /* else we add it to the window */ bitbuf |= (y << (winsize - ++bitcpy)); mode = 2; if (bitcpy == winsize) { /* ok window is filled so square as required and multiply */ /* square first */ for (x = 0; x < winsize; x++) { if ((err = mp_sqr (&res, &res)) != MP_OKAY) { goto LBL_RES; } if ((err = redux (&res, P, mp)) != MP_OKAY) { goto LBL_RES; } } /* then multiply */ if ((err = mp_mul (&res, &M[bitbuf], &res)) != MP_OKAY) { goto LBL_RES; } if ((err = redux (&res, P, mp)) != MP_OKAY) { goto LBL_RES; } /* empty window and reset */ bitcpy = 0; bitbuf = 0; mode = 1; } } /* if bits remain then square/multiply */ if ((mode == 2) && (bitcpy > 0)) { /* square then multiply if the bit is set */ for (x = 0; x < bitcpy; x++) { if ((err = mp_sqr (&res, &res)) != MP_OKAY) { goto LBL_RES; } if ((err = redux (&res, P, mp)) != MP_OKAY) { goto LBL_RES; } /* get next bit of the window */ bitbuf <<= 1; if ((bitbuf & (1 << winsize)) != 0) { /* then multiply */ if ((err = mp_mul (&res, &M[1], &res)) != MP_OKAY) { goto LBL_RES; } if ((err = redux (&res, P, mp)) != MP_OKAY) { goto LBL_RES; } } } } if (redmode == 0) { /* fixup result if Montgomery reduction is used * recall that any value in a Montgomery system is * actually multiplied by R mod n. So we have * to reduce one more time to cancel out the factor * of R. */ if ((err = redux(&res, P, mp)) != MP_OKAY) { goto LBL_RES; } } /* swap res with Y */ mp_exch (&res, Y); err = MP_OKAY; LBL_RES:mp_clear (&res); LBL_M: mp_clear(&M[1]); for (x = 1<<(winsize-1); x < (1 << winsize); x++) { mp_clear (&M[x]); } return err; }
/** Read a mp_int integer @param in The DER encoded data @param inlen Size of DER encoded data @param num The first mp_int to decode @return CRYPT_OK if successful */ int der_decode_integer(const unsigned char *in, unsigned long inlen, void *num) { unsigned long x, y, z; int err; LTC_ARGCHK(num != NULL); LTC_ARGCHK(in != NULL); /* min DER INTEGER is 0x02 01 00 == 0 */ if (inlen < (1 + 1 + 1)) { return CRYPT_INVALID_PACKET; } /* ok expect 0x02 when we AND with 0001 1111 [1F] */ x = 0; if ((in[x++] & 0x1F) != 0x02) { return CRYPT_INVALID_PACKET; } /* now decode the len stuff */ z = in[x++]; if ((z & 0x80) == 0x00) { /* short form */ /* will it overflow? */ if (x + z > inlen) { return CRYPT_INVALID_PACKET; } /* no so read it */ if ((err = mp_read_unsigned_bin(num, (unsigned char *)in + x, z)) != CRYPT_OK) { return err; } } else { /* long form */ z &= 0x7F; /* will number of length bytes overflow? (or > 4) */ if (((x + z) > inlen) || (z > 4) || (z == 0)) { return CRYPT_INVALID_PACKET; } /* now read it in */ y = 0; while (z--) { y = ((unsigned long)(in[x++])) | (y << 8); } /* now will reading y bytes overrun? */ if ((x + y) > inlen) { return CRYPT_INVALID_PACKET; } /* no so read it */ if ((err = mp_read_unsigned_bin(num, (unsigned char *)in + x, y)) != CRYPT_OK) { return err; } } /* see if it's negative */ if (in[x] & 0x80) { void *tmp; if (mp_init(&tmp) != CRYPT_OK) { return CRYPT_MEM; } if (mp_2expt(tmp, mp_count_bits(num)) != CRYPT_OK || mp_sub(num, tmp, num) != CRYPT_OK) { mp_clear(tmp); return CRYPT_MEM; } mp_clear(tmp); } return CRYPT_OK; }
int wc_SrpSetParams(Srp* srp, const byte* N, word32 nSz, const byte* g, word32 gSz, const byte* salt, word32 saltSz) { SrpHash hash; byte digest1[SRP_MAX_DIGEST_SIZE]; byte digest2[SRP_MAX_DIGEST_SIZE]; byte pad = 0; int i, j, r; if (!srp || !N || !g || !salt || nSz < gSz) return BAD_FUNC_ARG; if (!srp->user) return SRP_CALL_ORDER_E; /* Set N */ if (mp_read_unsigned_bin(&srp->N, N, nSz) != MP_OKAY) return MP_READ_E; if (mp_count_bits(&srp->N) < SRP_MODULUS_MIN_BITS) return BAD_FUNC_ARG; /* Set g */ if (mp_read_unsigned_bin(&srp->g, g, gSz) != MP_OKAY) return MP_READ_E; if (mp_cmp(&srp->N, &srp->g) != MP_GT) return BAD_FUNC_ARG; /* Set salt */ if (srp->salt) { ForceZero(srp->salt, srp->saltSz); XFREE(srp->salt, srp->heap, DYNAMIC_TYPE_SRP); } srp->salt = (byte*)XMALLOC(saltSz, srp->heap, DYNAMIC_TYPE_SRP); if (srp->salt == NULL) return MEMORY_E; XMEMCPY(srp->salt, salt, saltSz); srp->saltSz = saltSz; /* Set k = H(N, g) */ r = SrpHashInit(&hash, srp->type); if (!r) r = SrpHashUpdate(&hash, (byte*) N, nSz); for (i = 0; (word32)i < nSz - gSz; i++) SrpHashUpdate(&hash, &pad, 1); if (!r) r = SrpHashUpdate(&hash, (byte*) g, gSz); if (!r) r = SrpHashFinal(&hash, srp->k); /* update client proof */ /* digest1 = H(N) */ if (!r) r = SrpHashInit(&hash, srp->type); if (!r) r = SrpHashUpdate(&hash, (byte*) N, nSz); if (!r) r = SrpHashFinal(&hash, digest1); /* digest2 = H(g) */ if (!r) r = SrpHashInit(&hash, srp->type); if (!r) r = SrpHashUpdate(&hash, (byte*) g, gSz); if (!r) r = SrpHashFinal(&hash, digest2); /* digest1 = H(N) ^ H(g) */ if (r == 0) { for (i = 0, j = SrpHashSize(srp->type); i < j; i++) digest1[i] ^= digest2[i]; } /* digest2 = H(user) */ if (!r) r = SrpHashInit(&hash, srp->type); if (!r) r = SrpHashUpdate(&hash, srp->user, srp->userSz); if (!r) r = SrpHashFinal(&hash, digest2); /* client proof = H( H(N) ^ H(g) | H(user) | salt) */ if (!r) r = SrpHashUpdate(&srp->client_proof, digest1, j); if (!r) r = SrpHashUpdate(&srp->client_proof, digest2, j); if (!r) r = SrpHashUpdate(&srp->client_proof, salt, saltSz); return r; }
int ecc_make_key_ex(prng_state *prng, int wprng, ecc_key *key, const ltc_ecc_set_type *dp) { int err; ecc_point *base; void *prime, *order, *a; unsigned char *buf; int keysize, orderbits; LTC_ARGCHK(key != NULL); LTC_ARGCHK(ltc_mp.name != NULL); LTC_ARGCHK(dp != NULL); /* good prng? */ if ((err = prng_is_valid(wprng)) != CRYPT_OK) { return err; } key->idx = -1; key->dp = dp; keysize = dp->size; /* allocate ram */ base = NULL; buf = XMALLOC(ECC_MAXSIZE); if (buf == NULL) { return CRYPT_MEM; } /* make up random string */ if (prng_descriptor[wprng].read(buf, (unsigned long)keysize, prng) != (unsigned long)keysize) { err = CRYPT_ERROR_READPRNG; goto ERR_BUF; } /* setup the key variables */ if ((err = mp_init_multi(&key->pubkey.x, &key->pubkey.y, &key->pubkey.z, &key->k, &prime, &order, &a, NULL)) != CRYPT_OK) { goto ERR_BUF; } base = ltc_ecc_new_point(); if (base == NULL) { err = CRYPT_MEM; goto errkey; } /* read in the specs for this key */ if ((err = mp_read_radix(prime, (char *)key->dp->prime, 16)) != CRYPT_OK) { goto errkey; } if ((err = mp_read_radix(order, (char *)key->dp->order, 16)) != CRYPT_OK) { goto errkey; } if ((err = mp_read_radix(base->x, (char *)key->dp->Gx, 16)) != CRYPT_OK) { goto errkey; } if ((err = mp_read_radix(base->y, (char *)key->dp->Gy, 16)) != CRYPT_OK) { goto errkey; } if ((err = mp_set(base->z, 1)) != CRYPT_OK) { goto errkey; } if ((err = mp_read_unsigned_bin(key->k, (unsigned char *)buf, keysize)) != CRYPT_OK) { goto errkey; } /* ECC key pair generation according to FIPS-186-4 (B.4.2 Key Pair Generation by Testing Candidates): * the generated private key k should be the range [1, order–1] * a/ N = bitlen(order) * b/ generate N random bits and convert them into big integer k * c/ if k not in [1, order-1] go to b/ * e/ Q = k*G */ orderbits = mp_count_bits(order); do { if ((err = rand_bn_bits(key->k, orderbits, prng, wprng)) != CRYPT_OK) { goto errkey; } } while (mp_iszero(key->k) || mp_cmp(key->k, order) != LTC_MP_LT); /* make the public key */ if ((err = mp_read_radix(a, (char *)key->dp->A, 16)) != CRYPT_OK) { goto errkey; } if ((err = ltc_mp.ecc_ptmul(key->k, base, &key->pubkey, a, prime, 1)) != CRYPT_OK) { goto errkey; } key->type = PK_PRIVATE; /* free up ram */ err = CRYPT_OK; goto cleanup; errkey: mp_clear_multi(key->pubkey.x, key->pubkey.y, key->pubkey.z, key->k, NULL); cleanup: ltc_ecc_del_point(base); mp_clear_multi(prime, order, a, NULL); ERR_BUF: #ifdef LTC_CLEAN_STACK zeromem(buf, ECC_MAXSIZE); #endif XFREE(buf); return err; }
int main(void) { mp_int a, b, c, d, e, f; unsigned long expt_n, add_n, sub_n, mul_n, div_n, sqr_n, mul2d_n, div2d_n, gcd_n, lcm_n, inv_n, div2_n, mul2_n, add_d_n, sub_d_n, t; unsigned rr; int i, n, err, cnt, ix, old_kara_m, old_kara_s; mp_digit mp; mp_init(&a); mp_init(&b); mp_init(&c); mp_init(&d); mp_init(&e); mp_init(&f); srand(time(NULL)); #if 0 // test montgomery printf("Testing montgomery...\n"); for (i = 1; i < 10; i++) { printf("Testing digit size: %d\n", i); for (n = 0; n < 1000; n++) { mp_rand(&a, i); a.dp[0] |= 1; // let's see if R is right mp_montgomery_calc_normalization(&b, &a); mp_montgomery_setup(&a, &mp); // now test a random reduction for (ix = 0; ix < 100; ix++) { mp_rand(&c, 1 + abs(rand()) % (2*i)); mp_copy(&c, &d); mp_copy(&c, &e); mp_mod(&d, &a, &d); mp_montgomery_reduce(&c, &a, mp); mp_mulmod(&c, &b, &a, &c); if (mp_cmp(&c, &d) != MP_EQ) { printf("d = e mod a, c = e MOD a\n"); mp_todecimal(&a, buf); printf("a = %s\n", buf); mp_todecimal(&e, buf); printf("e = %s\n", buf); mp_todecimal(&d, buf); printf("d = %s\n", buf); mp_todecimal(&c, buf); printf("c = %s\n", buf); printf("compare no compare!\n"); exit(EXIT_FAILURE); } } } } printf("done\n"); // test mp_get_int printf("Testing: mp_get_int\n"); for (i = 0; i < 1000; ++i) { t = ((unsigned long) rand() * rand() + 1) & 0xFFFFFFFF; mp_set_int(&a, t); if (t != mp_get_int(&a)) { printf("mp_get_int() bad result!\n"); return 1; } } mp_set_int(&a, 0); if (mp_get_int(&a) != 0) { printf("mp_get_int() bad result!\n"); return 1; } mp_set_int(&a, 0xffffffff); if (mp_get_int(&a) != 0xffffffff) { printf("mp_get_int() bad result!\n"); return 1; } // test mp_sqrt printf("Testing: mp_sqrt\n"); for (i = 0; i < 1000; ++i) { printf("%6d\r", i); fflush(stdout); n = (rand() & 15) + 1; mp_rand(&a, n); if (mp_sqrt(&a, &b) != MP_OKAY) { printf("mp_sqrt() error!\n"); return 1; } mp_n_root(&a, 2, &a); if (mp_cmp_mag(&b, &a) != MP_EQ) { printf("mp_sqrt() bad result!\n"); return 1; } } printf("\nTesting: mp_is_square\n"); for (i = 0; i < 1000; ++i) { printf("%6d\r", i); fflush(stdout); /* test mp_is_square false negatives */ n = (rand() & 7) + 1; mp_rand(&a, n); mp_sqr(&a, &a); if (mp_is_square(&a, &n) != MP_OKAY) { printf("fn:mp_is_square() error!\n"); return 1; } if (n == 0) { printf("fn:mp_is_square() bad result!\n"); return 1; } /* test for false positives */ mp_add_d(&a, 1, &a); if (mp_is_square(&a, &n) != MP_OKAY) { printf("fp:mp_is_square() error!\n"); return 1; } if (n == 1) { printf("fp:mp_is_square() bad result!\n"); return 1; } } printf("\n\n"); /* test for size */ for (ix = 10; ix < 128; ix++) { printf("Testing (not safe-prime): %9d bits \r", ix); fflush(stdout); err = mp_prime_random_ex(&a, 8, ix, (rand() & 1) ? LTM_PRIME_2MSB_OFF : LTM_PRIME_2MSB_ON, myrng, NULL); if (err != MP_OKAY) { printf("failed with err code %d\n", err); return EXIT_FAILURE; } if (mp_count_bits(&a) != ix) { printf("Prime is %d not %d bits!!!\n", mp_count_bits(&a), ix); return EXIT_FAILURE; } } for (ix = 16; ix < 128; ix++) { printf("Testing ( safe-prime): %9d bits \r", ix); fflush(stdout); err = mp_prime_random_ex(&a, 8, ix, ((rand() & 1) ? LTM_PRIME_2MSB_OFF : LTM_PRIME_2MSB_ON) | LTM_PRIME_SAFE, myrng, NULL); if (err != MP_OKAY) { printf("failed with err code %d\n", err); return EXIT_FAILURE; } if (mp_count_bits(&a) != ix) { printf("Prime is %d not %d bits!!!\n", mp_count_bits(&a), ix); return EXIT_FAILURE; } /* let's see if it's really a safe prime */ mp_sub_d(&a, 1, &a); mp_div_2(&a, &a); mp_prime_is_prime(&a, 8, &cnt); if (cnt != MP_YES) { printf("sub is not prime!\n"); return EXIT_FAILURE; } } printf("\n\n"); mp_read_radix(&a, "123456", 10); mp_toradix_n(&a, buf, 10, 3); printf("a == %s\n", buf); mp_toradix_n(&a, buf, 10, 4); printf("a == %s\n", buf); mp_toradix_n(&a, buf, 10, 30); printf("a == %s\n", buf); #if 0 for (;;) { fgets(buf, sizeof(buf), stdin); mp_read_radix(&a, buf, 10); mp_prime_next_prime(&a, 5, 1); mp_toradix(&a, buf, 10); printf("%s, %lu\n", buf, a.dp[0] & 3); } #endif /* test mp_cnt_lsb */ printf("testing mp_cnt_lsb...\n"); mp_set(&a, 1); for (ix = 0; ix < 1024; ix++) { if (mp_cnt_lsb(&a) != ix) { printf("Failed at %d, %d\n", ix, mp_cnt_lsb(&a)); return 0; } mp_mul_2(&a, &a); } /* test mp_reduce_2k */ printf("Testing mp_reduce_2k...\n"); for (cnt = 3; cnt <= 128; ++cnt) { mp_digit tmp; mp_2expt(&a, cnt); mp_sub_d(&a, 2, &a); /* a = 2**cnt - 2 */ printf("\nTesting %4d bits", cnt); printf("(%d)", mp_reduce_is_2k(&a)); mp_reduce_2k_setup(&a, &tmp); printf("(%d)", tmp); for (ix = 0; ix < 1000; ix++) { if (!(ix & 127)) { printf("."); fflush(stdout); } mp_rand(&b, (cnt / DIGIT_BIT + 1) * 2); mp_copy(&c, &b); mp_mod(&c, &a, &c); mp_reduce_2k(&b, &a, 2); if (mp_cmp(&c, &b)) { printf("FAILED\n"); exit(0); } } } /* test mp_div_3 */ printf("Testing mp_div_3...\n"); mp_set(&d, 3); for (cnt = 0; cnt < 10000;) { mp_digit r1, r2; if (!(++cnt & 127)) printf("%9d\r", cnt); mp_rand(&a, abs(rand()) % 128 + 1); mp_div(&a, &d, &b, &e); mp_div_3(&a, &c, &r2); if (mp_cmp(&b, &c) || mp_cmp_d(&e, r2)) { printf("\n\nmp_div_3 => Failure\n"); } } printf("\n\nPassed div_3 testing\n"); /* test the DR reduction */ printf("testing mp_dr_reduce...\n"); for (cnt = 2; cnt < 32; cnt++) { printf("%d digit modulus\n", cnt); mp_grow(&a, cnt); mp_zero(&a); for (ix = 1; ix < cnt; ix++) { a.dp[ix] = MP_MASK; } a.used = cnt; a.dp[0] = 3; mp_rand(&b, cnt - 1); mp_copy(&b, &c); rr = 0; do { if (!(rr & 127)) { printf("%9lu\r", rr); fflush(stdout); } mp_sqr(&b, &b); mp_add_d(&b, 1, &b); mp_copy(&b, &c); mp_mod(&b, &a, &b); mp_dr_reduce(&c, &a, (((mp_digit) 1) << DIGIT_BIT) - a.dp[0]); if (mp_cmp(&b, &c) != MP_EQ) { printf("Failed on trial %lu\n", rr); exit(-1); } } while (++rr < 500); printf("Passed DR test for %d digits\n", cnt); } #endif /* test the mp_reduce_2k_l code */ #if 0 #if 0 /* first load P with 2^1024 - 0x2A434 B9FDEC95 D8F9D550 FFFFFFFF FFFFFFFF */ mp_2expt(&a, 1024); mp_read_radix(&b, "2A434B9FDEC95D8F9D550FFFFFFFFFFFFFFFF", 16); mp_sub(&a, &b, &a); #elif 1 /* p = 2^2048 - 0x1 00000000 00000000 00000000 00000000 4945DDBF 8EA2A91D 5776399B B83E188F */ mp_2expt(&a, 2048); mp_read_radix(&b, "1000000000000000000000000000000004945DDBF8EA2A91D5776399BB83E188F", 16); mp_sub(&a, &b, &a); #endif mp_todecimal(&a, buf); printf("p==%s\n", buf); /* now mp_reduce_is_2k_l() should return */ if (mp_reduce_is_2k_l(&a) != 1) { printf("mp_reduce_is_2k_l() return 0, should be 1\n"); return EXIT_FAILURE; } mp_reduce_2k_setup_l(&a, &d); /* now do a million square+1 to see if it varies */ mp_rand(&b, 64); mp_mod(&b, &a, &b); mp_copy(&b, &c); printf("testing mp_reduce_2k_l..."); fflush(stdout); for (cnt = 0; cnt < (1UL << 20); cnt++) { mp_sqr(&b, &b); mp_add_d(&b, 1, &b); mp_reduce_2k_l(&b, &a, &d); mp_sqr(&c, &c); mp_add_d(&c, 1, &c); mp_mod(&c, &a, &c); if (mp_cmp(&b, &c) != MP_EQ) { printf("mp_reduce_2k_l() failed at step %lu\n", cnt); mp_tohex(&b, buf); printf("b == %s\n", buf); mp_tohex(&c, buf); printf("c == %s\n", buf); return EXIT_FAILURE; } } printf("...Passed\n"); #endif div2_n = mul2_n = inv_n = expt_n = lcm_n = gcd_n = add_n = sub_n = mul_n = div_n = sqr_n = mul2d_n = div2d_n = cnt = add_d_n = sub_d_n = 0; /* force KARA and TOOM to enable despite cutoffs */ KARATSUBA_SQR_CUTOFF = KARATSUBA_MUL_CUTOFF = 8; TOOM_SQR_CUTOFF = TOOM_MUL_CUTOFF = 16; for (;;) { /* randomly clear and re-init one variable, this has the affect of triming the alloc space */ switch (abs(rand()) % 7) { case 0: mp_clear(&a); mp_init(&a); break; case 1: mp_clear(&b); mp_init(&b); break; case 2: mp_clear(&c); mp_init(&c); break; case 3: mp_clear(&d); mp_init(&d); break; case 4: mp_clear(&e); mp_init(&e); break; case 5: mp_clear(&f); mp_init(&f); break; case 6: break; /* don't clear any */ } printf ("%4lu/%4lu/%4lu/%4lu/%4lu/%4lu/%4lu/%4lu/%4lu/%4lu/%4lu/%4lu/%4lu/%4lu/%4lu ", add_n, sub_n, mul_n, div_n, sqr_n, mul2d_n, div2d_n, gcd_n, lcm_n, expt_n, inv_n, div2_n, mul2_n, add_d_n, sub_d_n); fgets(cmd, 4095, stdin); cmd[strlen(cmd) - 1] = 0; printf("%s ]\r", cmd); fflush(stdout); if (!strcmp(cmd, "mul2d")) { ++mul2d_n; fgets(buf, 4095, stdin); mp_read_radix(&a, buf, 64); fgets(buf, 4095, stdin); sscanf(buf, "%d", &rr); fgets(buf, 4095, stdin); mp_read_radix(&b, buf, 64); mp_mul_2d(&a, rr, &a); a.sign = b.sign; if (mp_cmp(&a, &b) != MP_EQ) { printf("mul2d failed, rr == %d\n", rr); draw(&a); draw(&b); return 0; } } else if (!strcmp(cmd, "div2d")) { ++div2d_n; fgets(buf, 4095, stdin); mp_read_radix(&a, buf, 64); fgets(buf, 4095, stdin); sscanf(buf, "%d", &rr); fgets(buf, 4095, stdin); mp_read_radix(&b, buf, 64); mp_div_2d(&a, rr, &a, &e); a.sign = b.sign; if (a.used == b.used && a.used == 0) { a.sign = b.sign = MP_ZPOS; } if (mp_cmp(&a, &b) != MP_EQ) { printf("div2d failed, rr == %d\n", rr); draw(&a); draw(&b); return 0; } } else if (!strcmp(cmd, "add")) { ++add_n; fgets(buf, 4095, stdin); mp_read_radix(&a, buf, 64); fgets(buf, 4095, stdin); mp_read_radix(&b, buf, 64); fgets(buf, 4095, stdin); mp_read_radix(&c, buf, 64); mp_copy(&a, &d); mp_add(&d, &b, &d); if (mp_cmp(&c, &d) != MP_EQ) { printf("add %lu failure!\n", add_n); draw(&a); draw(&b); draw(&c); draw(&d); return 0; } /* test the sign/unsigned storage functions */ rr = mp_signed_bin_size(&c); mp_to_signed_bin(&c, (unsigned char *) cmd); memset(cmd + rr, rand() & 255, sizeof(cmd) - rr); mp_read_signed_bin(&d, (unsigned char *) cmd, rr); if (mp_cmp(&c, &d) != MP_EQ) { printf("mp_signed_bin failure!\n"); draw(&c); draw(&d); return 0; } rr = mp_unsigned_bin_size(&c); mp_to_unsigned_bin(&c, (unsigned char *) cmd); memset(cmd + rr, rand() & 255, sizeof(cmd) - rr); mp_read_unsigned_bin(&d, (unsigned char *) cmd, rr); if (mp_cmp_mag(&c, &d) != MP_EQ) { printf("mp_unsigned_bin failure!\n"); draw(&c); draw(&d); return 0; } } else if (!strcmp(cmd, "sub")) { ++sub_n; fgets(buf, 4095, stdin); mp_read_radix(&a, buf, 64); fgets(buf, 4095, stdin); mp_read_radix(&b, buf, 64); fgets(buf, 4095, stdin); mp_read_radix(&c, buf, 64); mp_copy(&a, &d); mp_sub(&d, &b, &d); if (mp_cmp(&c, &d) != MP_EQ) { printf("sub %lu failure!\n", sub_n); draw(&a); draw(&b); draw(&c); draw(&d); return 0; } } else if (!strcmp(cmd, "mul")) { ++mul_n; fgets(buf, 4095, stdin); mp_read_radix(&a, buf, 64); fgets(buf, 4095, stdin); mp_read_radix(&b, buf, 64); fgets(buf, 4095, stdin); mp_read_radix(&c, buf, 64); mp_copy(&a, &d); mp_mul(&d, &b, &d); if (mp_cmp(&c, &d) != MP_EQ) { printf("mul %lu failure!\n", mul_n); draw(&a); draw(&b); draw(&c); draw(&d); return 0; } } else if (!strcmp(cmd, "div")) { ++div_n; fgets(buf, 4095, stdin); mp_read_radix(&a, buf, 64); fgets(buf, 4095, stdin); mp_read_radix(&b, buf, 64); fgets(buf, 4095, stdin); mp_read_radix(&c, buf, 64); fgets(buf, 4095, stdin); mp_read_radix(&d, buf, 64); mp_div(&a, &b, &e, &f); if (mp_cmp(&c, &e) != MP_EQ || mp_cmp(&d, &f) != MP_EQ) { printf("div %lu %d, %d, failure!\n", div_n, mp_cmp(&c, &e), mp_cmp(&d, &f)); draw(&a); draw(&b); draw(&c); draw(&d); draw(&e); draw(&f); return 0; } } else if (!strcmp(cmd, "sqr")) { ++sqr_n; fgets(buf, 4095, stdin); mp_read_radix(&a, buf, 64); fgets(buf, 4095, stdin); mp_read_radix(&b, buf, 64); mp_copy(&a, &c); mp_sqr(&c, &c); if (mp_cmp(&b, &c) != MP_EQ) { printf("sqr %lu failure!\n", sqr_n); draw(&a); draw(&b); draw(&c); return 0; } } else if (!strcmp(cmd, "gcd")) { ++gcd_n; fgets(buf, 4095, stdin); mp_read_radix(&a, buf, 64); fgets(buf, 4095, stdin); mp_read_radix(&b, buf, 64); fgets(buf, 4095, stdin); mp_read_radix(&c, buf, 64); mp_copy(&a, &d); mp_gcd(&d, &b, &d); d.sign = c.sign; if (mp_cmp(&c, &d) != MP_EQ) { printf("gcd %lu failure!\n", gcd_n); draw(&a); draw(&b); draw(&c); draw(&d); return 0; } } else if (!strcmp(cmd, "lcm")) { ++lcm_n; fgets(buf, 4095, stdin); mp_read_radix(&a, buf, 64); fgets(buf, 4095, stdin); mp_read_radix(&b, buf, 64); fgets(buf, 4095, stdin); mp_read_radix(&c, buf, 64); mp_copy(&a, &d); mp_lcm(&d, &b, &d); d.sign = c.sign; if (mp_cmp(&c, &d) != MP_EQ) { printf("lcm %lu failure!\n", lcm_n); draw(&a); draw(&b); draw(&c); draw(&d); return 0; } } else if (!strcmp(cmd, "expt")) { ++expt_n; fgets(buf, 4095, stdin); mp_read_radix(&a, buf, 64); fgets(buf, 4095, stdin); mp_read_radix(&b, buf, 64); fgets(buf, 4095, stdin); mp_read_radix(&c, buf, 64); fgets(buf, 4095, stdin); mp_read_radix(&d, buf, 64); mp_copy(&a, &e); mp_exptmod(&e, &b, &c, &e); if (mp_cmp(&d, &e) != MP_EQ) { printf("expt %lu failure!\n", expt_n); draw(&a); draw(&b); draw(&c); draw(&d); draw(&e); return 0; } } else if (!strcmp(cmd, "invmod")) { ++inv_n; fgets(buf, 4095, stdin); mp_read_radix(&a, buf, 64); fgets(buf, 4095, stdin); mp_read_radix(&b, buf, 64); fgets(buf, 4095, stdin); mp_read_radix(&c, buf, 64); mp_invmod(&a, &b, &d); mp_mulmod(&d, &a, &b, &e); if (mp_cmp_d(&e, 1) != MP_EQ) { printf("inv [wrong value from MPI?!] failure\n"); draw(&a); draw(&b); draw(&c); draw(&d); mp_gcd(&a, &b, &e); draw(&e); return 0; } } else if (!strcmp(cmd, "div2")) { ++div2_n; fgets(buf, 4095, stdin); mp_read_radix(&a, buf, 64); fgets(buf, 4095, stdin); mp_read_radix(&b, buf, 64); mp_div_2(&a, &c); if (mp_cmp(&c, &b) != MP_EQ) { printf("div_2 %lu failure\n", div2_n); draw(&a); draw(&b); draw(&c); return 0; } } else if (!strcmp(cmd, "mul2")) { ++mul2_n; fgets(buf, 4095, stdin); mp_read_radix(&a, buf, 64); fgets(buf, 4095, stdin); mp_read_radix(&b, buf, 64); mp_mul_2(&a, &c); if (mp_cmp(&c, &b) != MP_EQ) { printf("mul_2 %lu failure\n", mul2_n); draw(&a); draw(&b); draw(&c); return 0; } } else if (!strcmp(cmd, "add_d")) { ++add_d_n; fgets(buf, 4095, stdin); mp_read_radix(&a, buf, 64); fgets(buf, 4095, stdin); sscanf(buf, "%d", &ix); fgets(buf, 4095, stdin); mp_read_radix(&b, buf, 64); mp_add_d(&a, ix, &c); if (mp_cmp(&b, &c) != MP_EQ) { printf("add_d %lu failure\n", add_d_n); draw(&a); draw(&b); draw(&c); printf("d == %d\n", ix); return 0; } } else if (!strcmp(cmd, "sub_d")) { ++sub_d_n; fgets(buf, 4095, stdin); mp_read_radix(&a, buf, 64); fgets(buf, 4095, stdin); sscanf(buf, "%d", &ix); fgets(buf, 4095, stdin); mp_read_radix(&b, buf, 64); mp_sub_d(&a, ix, &c); if (mp_cmp(&b, &c) != MP_EQ) { printf("sub_d %lu failure\n", sub_d_n); draw(&a); draw(&b); draw(&c); printf("d == %d\n", ix); return 0; } } } return 0; }
int main(void) { ulong64 tt, gg, CLK_PER_SEC; FILE *log, *logb, *logc, *logd; mp_int a, b, c, d, e, f; int n, cnt, ix, old_kara_m, old_kara_s; unsigned rr; mp_init(&a); mp_init(&b); mp_init(&c); mp_init(&d); mp_init(&e); mp_init(&f); srand(time(NULL)); /* temp. turn off TOOM */ TOOM_MUL_CUTOFF = TOOM_SQR_CUTOFF = 100000; CLK_PER_SEC = TIMFUNC(); sleep(1); CLK_PER_SEC = TIMFUNC() - CLK_PER_SEC; printf("CLK_PER_SEC == %llu\n", CLK_PER_SEC); goto exptmod; log = fopen("logs/add.log", "w"); for (cnt = 8; cnt <= 128; cnt += 8) { SLEEP; mp_rand(&a, cnt); mp_rand(&b, cnt); rr = 0; tt = -1; do { gg = TIMFUNC(); DO(mp_add(&a, &b, &c)); gg = (TIMFUNC() - gg) >> 1; if (tt > gg) tt = gg; } while (++rr < 100000); printf("Adding\t\t%4d-bit => %9llu/sec, %9llu cycles\n", mp_count_bits(&a), CLK_PER_SEC / tt, tt); fprintf(log, "%d %9llu\n", cnt * DIGIT_BIT, tt); fflush(log); } fclose(log); log = fopen("logs/sub.log", "w"); for (cnt = 8; cnt <= 128; cnt += 8) { SLEEP; mp_rand(&a, cnt); mp_rand(&b, cnt); rr = 0; tt = -1; do { gg = TIMFUNC(); DO(mp_sub(&a, &b, &c)); gg = (TIMFUNC() - gg) >> 1; if (tt > gg) tt = gg; } while (++rr < 100000); printf("Subtracting\t\t%4d-bit => %9llu/sec, %9llu cycles\n", mp_count_bits(&a), CLK_PER_SEC / tt, tt); fprintf(log, "%d %9llu\n", cnt * DIGIT_BIT, tt); fflush(log); } fclose(log); /* do mult/square twice, first without karatsuba and second with */ multtest: old_kara_m = KARATSUBA_MUL_CUTOFF; old_kara_s = KARATSUBA_SQR_CUTOFF; for (ix = 0; ix < 2; ix++) { printf("With%s Karatsuba\n", (ix == 0) ? "out" : ""); KARATSUBA_MUL_CUTOFF = (ix == 0) ? 9999 : old_kara_m; KARATSUBA_SQR_CUTOFF = (ix == 0) ? 9999 : old_kara_s; log = fopen((ix == 0) ? "logs/mult.log" : "logs/mult_kara.log", "w"); for (cnt = 4; cnt <= 10240 / DIGIT_BIT; cnt += 2) { SLEEP; mp_rand(&a, cnt); mp_rand(&b, cnt); rr = 0; tt = -1; do { gg = TIMFUNC(); DO(mp_mul(&a, &b, &c)); gg = (TIMFUNC() - gg) >> 1; if (tt > gg) tt = gg; } while (++rr < 100); printf("Multiplying\t%4d-bit => %9llu/sec, %9llu cycles\n", mp_count_bits(&a), CLK_PER_SEC / tt, tt); fprintf(log, "%d %9llu\n", mp_count_bits(&a), tt); fflush(log); } fclose(log); log = fopen((ix == 0) ? "logs/sqr.log" : "logs/sqr_kara.log", "w"); for (cnt = 4; cnt <= 10240 / DIGIT_BIT; cnt += 2) { SLEEP; mp_rand(&a, cnt); rr = 0; tt = -1; do { gg = TIMFUNC(); DO(mp_sqr(&a, &b)); gg = (TIMFUNC() - gg) >> 1; if (tt > gg) tt = gg; } while (++rr < 100); printf("Squaring\t%4d-bit => %9llu/sec, %9llu cycles\n", mp_count_bits(&a), CLK_PER_SEC / tt, tt); fprintf(log, "%d %9llu\n", mp_count_bits(&a), tt); fflush(log); } fclose(log); } exptmod: { char *primes[] = { /* 2K large moduli */ "179769313486231590772930519078902473361797697894230657273430081157732675805500963132708477322407536021120113879871393357658789768814416622492847430639474124377767893424865485276302219601246094119453082952085005768838150682342462881473913110540827237163350510684586239334100047359817950870678242457666208137217", "32317006071311007300714876688669951960444102669715484032130345427524655138867890893197201411522913463688717960921898019494119559150490921095088152386448283120630877367300996091750197750389652106796057638384067568276792218642619756161838094338476170470581645852036305042887575891541065808607552399123930385521914333389668342420684974786564569494856176035326322058077805659331026192708460314150258592864177116725943603718461857357598351152301645904403697613233287231227125684710820209725157101726931323469678542580656697935045997268352998638099733077152121140120031150424541696791951097529546801429027668869927491725169", "1044388881413152506691752710716624382579964249047383780384233483283953907971557456848826811934997558340890106714439262837987573438185793607263236087851365277945956976543709998340361590134383718314428070011855946226376318839397712745672334684344586617496807908705803704071284048740118609114467977783598029006686938976881787785946905630190260940599579453432823469303026696443059025015972399867714215541693835559885291486318237914434496734087811872639496475100189041349008417061675093668333850551032972088269550769983616369411933015213796825837188091833656751221318492846368125550225998300412344784862595674492194617023806505913245610825731835380087608622102834270197698202313169017678006675195485079921636419370285375124784014907159135459982790513399611551794271106831134090584272884279791554849782954323534517065223269061394905987693002122963395687782878948440616007412945674919823050571642377154816321380631045902916136926708342856440730447899971901781465763473223850267253059899795996090799469201774624817718449867455659250178329070473119433165550807568221846571746373296884912819520317457002440926616910874148385078411929804522981857338977648103126085902995208257421855249796721729039744118165938433694823325696642096892124547425283", /* 2K moduli mersenne primes */ "6864797660130609714981900799081393217269435300143305409394463459185543183397656052122559640661454554977296311391480858037121987999716643812574028291115057151", "531137992816767098689588206552468627329593117727031923199444138200403559860852242739162502265229285668889329486246501015346579337652707239409519978766587351943831270835393219031728127", "10407932194664399081925240327364085538615262247266704805319112350403608059673360298012239441732324184842421613954281007791383566248323464908139906605677320762924129509389220345773183349661583550472959420547689811211693677147548478866962501384438260291732348885311160828538416585028255604666224831890918801847068222203140521026698435488732958028878050869736186900714720710555703168729087", "1475979915214180235084898622737381736312066145333169775147771216478570297878078949377407337049389289382748507531496480477281264838760259191814463365330269540496961201113430156902396093989090226259326935025281409614983499388222831448598601834318536230923772641390209490231836446899608210795482963763094236630945410832793769905399982457186322944729636418890623372171723742105636440368218459649632948538696905872650486914434637457507280441823676813517852099348660847172579408422316678097670224011990280170474894487426924742108823536808485072502240519452587542875349976558572670229633962575212637477897785501552646522609988869914013540483809865681250419497686697771007", "259117086013202627776246767922441530941818887553125427303974923161874019266586362086201209516800483406550695241733194177441689509238807017410377709597512042313066624082916353517952311186154862265604547691127595848775610568757931191017711408826252153849035830401185072116424747461823031471398340229288074545677907941037288235820705892351068433882986888616658650280927692080339605869308790500409503709875902119018371991620994002568935113136548829739112656797303241986517250116412703509705427773477972349821676443446668383119322540099648994051790241624056519054483690809616061625743042361721863339415852426431208737266591962061753535748892894599629195183082621860853400937932839420261866586142503251450773096274235376822938649407127700846077124211823080804139298087057504713825264571448379371125032081826126566649084251699453951887789613650248405739378594599444335231188280123660406262468609212150349937584782292237144339628858485938215738821232393687046160677362909315071", "190797007524439073807468042969529173669356994749940177394741882673528979787005053706368049835514900244303495954950709725762186311224148828811920216904542206960744666169364221195289538436845390250168663932838805192055137154390912666527533007309292687539092257043362517857366624699975402375462954490293259233303137330643531556539739921926201438606439020075174723029056838272505051571967594608350063404495977660656269020823960825567012344189908927956646011998057988548630107637380993519826582389781888135705408653045219655801758081251164080554609057468028203308718724654081055323215860189611391296030471108443146745671967766308925858547271507311563765171008318248647110097614890313562856541784154881743146033909602737947385055355960331855614540900081456378659068370317267696980001187750995491090350108417050917991562167972281070161305972518044872048331306383715094854938415738549894606070722584737978176686422134354526989443028353644037187375385397838259511833166416134323695660367676897722287918773420968982326089026150031515424165462111337527431154890666327374921446276833564519776797633875503548665093914556482031482248883127023777039667707976559857333357013727342079099064400455741830654320379350833236245819348824064783585692924881021978332974949906122664421376034687815350484991", /* DR moduli */ "14059105607947488696282932836518693308967803494693489478439861164411992439598399594747002144074658928593502845729752797260025831423419686528151609940203368612079", "101745825697019260773923519755878567461315282017759829107608914364075275235254395622580447400994175578963163918967182013639660669771108475957692810857098847138903161308502419410142185759152435680068435915159402496058513611411688900243039", "736335108039604595805923406147184530889923370574768772191969612422073040099331944991573923112581267542507986451953227192970402893063850485730703075899286013451337291468249027691733891486704001513279827771740183629161065194874727962517148100775228363421083691764065477590823919364012917984605619526140821797602431", "38564998830736521417281865696453025806593491967131023221754800625044118265468851210705360385717536794615180260494208076605798671660719333199513807806252394423283413430106003596332513246682903994829528690198205120921557533726473585751382193953592127439965050261476810842071573684505878854588706623484573925925903505747545471088867712185004135201289273405614415899438276535626346098904241020877974002916168099951885406379295536200413493190419727789712076165162175783", "542189391331696172661670440619180536749994166415993334151601745392193484590296600979602378676624808129613777993466242203025054573692562689251250471628358318743978285860720148446448885701001277560572526947619392551574490839286458454994488665744991822837769918095117129546414124448777033941223565831420390846864429504774477949153794689948747680362212954278693335653935890352619041936727463717926744868338358149568368643403037768649616778526013610493696186055899318268339432671541328195724261329606699831016666359440874843103020666106568222401047720269951530296879490444224546654729111504346660859907296364097126834834235287147", "1487259134814709264092032648525971038895865645148901180585340454985524155135260217788758027400478312256339496385275012465661575576202252063145698732079880294664220579764848767704076761853197216563262660046602703973050798218246170835962005598561669706844469447435461092542265792444947706769615695252256130901271870341005768912974433684521436211263358097522726462083917939091760026658925757076733484173202927141441492573799914240222628795405623953109131594523623353044898339481494120112723445689647986475279242446083151413667587008191682564376412347964146113898565886683139407005941383669325997475076910488086663256335689181157957571445067490187939553165903773554290260531009121879044170766615232300936675369451260747671432073394867530820527479172464106442450727640226503746586340279816318821395210726268291535648506190714616083163403189943334431056876038286530365757187367147446004855912033137386225053275419626102417236133948503", "1095121115716677802856811290392395128588168592409109494900178008967955253005183831872715423151551999734857184538199864469605657805519106717529655044054833197687459782636297255219742994736751541815269727940751860670268774903340296040006114013971309257028332849679096824800250742691718610670812374272414086863715763724622797509437062518082383056050144624962776302147890521249477060215148275163688301275847155316042279405557632639366066847442861422164832655874655824221577849928863023018366835675399949740429332468186340518172487073360822220449055340582568461568645259954873303616953776393853174845132081121976327462740354930744487429617202585015510744298530101547706821590188733515880733527449780963163909830077616357506845523215289297624086914545378511082534229620116563260168494523906566709418166011112754529766183554579321224940951177394088465596712620076240067370589036924024728375076210477267488679008016579588696191194060127319035195370137160936882402244399699172017835144537488486396906144217720028992863941288217185353914991583400421682751000603596655790990815525126154394344641336397793791497068253936771017031980867706707490224041075826337383538651825493679503771934836094655802776331664261631740148281763487765852746577808019633679", /* generic unrestricted moduli */ "17933601194860113372237070562165128350027320072176844226673287945873370751245439587792371960615073855669274087805055507977323024886880985062002853331424203", "2893527720709661239493896562339544088620375736490408468011883030469939904368086092336458298221245707898933583190713188177399401852627749210994595974791782790253946539043962213027074922559572312141181787434278708783207966459019479487", "347743159439876626079252796797422223177535447388206607607181663903045907591201940478223621722118173270898487582987137708656414344685816179420855160986340457973820182883508387588163122354089264395604796675278966117567294812714812796820596564876450716066283126720010859041484786529056457896367683122960411136319", "47266428956356393164697365098120418976400602706072312735924071745438532218237979333351774907308168340693326687317443721193266215155735814510792148768576498491199122744351399489453533553203833318691678263241941706256996197460424029012419012634671862283532342656309677173602509498417976091509154360039893165037637034737020327399910409885798185771003505320583967737293415979917317338985837385734747478364242020380416892056650841470869294527543597349250299539682430605173321029026555546832473048600327036845781970289288898317888427517364945316709081173840186150794397479045034008257793436817683392375274635794835245695887", "436463808505957768574894870394349739623346440601945961161254440072143298152040105676491048248110146278752857839930515766167441407021501229924721335644557342265864606569000117714935185566842453630868849121480179691838399545644365571106757731317371758557990781880691336695584799313313687287468894148823761785582982549586183756806449017542622267874275103877481475534991201849912222670102069951687572917937634467778042874315463238062009202992087620963771759666448266532858079402669920025224220613419441069718482837399612644978839925207109870840278194042158748845445131729137117098529028886770063736487420613144045836803985635654192482395882603511950547826439092832800532152534003936926017612446606135655146445620623395788978726744728503058670046885876251527122350275750995227", "11424167473351836398078306042624362277956429440521137061889702611766348760692206243140413411077394583180726863277012016602279290144126785129569474909173584789822341986742719230331946072730319555984484911716797058875905400999504305877245849119687509023232790273637466821052576859232452982061831009770786031785669030271542286603956118755585683996118896215213488875253101894663403069677745948305893849505434201763745232895780711972432011344857521691017896316861403206449421332243658855453435784006517202894181640562433575390821384210960117518650374602256601091379644034244332285065935413233557998331562749140202965844219336298970011513882564935538704289446968322281451907487362046511461221329799897350993370560697505809686438782036235372137015731304779072430260986460269894522159103008260495503005267165927542949439526272736586626709581721032189532726389643625590680105784844246152702670169304203783072275089194754889511973916207", "1214855636816562637502584060163403830270705000634713483015101384881871978446801224798536155406895823305035467591632531067547890948695117172076954220727075688048751022421198712032848890056357845974246560748347918630050853933697792254955890439720297560693579400297062396904306270145886830719309296352765295712183040773146419022875165382778007040109957609739589875590885701126197906063620133954893216612678838507540777138437797705602453719559017633986486649523611975865005712371194067612263330335590526176087004421363598470302731349138773205901447704682181517904064735636518462452242791676541725292378925568296858010151852326316777511935037531017413910506921922450666933202278489024521263798482237150056835746454842662048692127173834433089016107854491097456725016327709663199738238442164843147132789153725513257167915555162094970853584447993125488607696008169807374736711297007473812256272245489405898470297178738029484459690836250560495461579533254473316340608217876781986188705928270735695752830825527963838355419762516246028680280988020401914551825487349990306976304093109384451438813251211051597392127491464898797406789175453067960072008590614886532333015881171367104445044718144312416815712216611576221546455968770801413440778423979", NULL }; log = fopen("logs/expt.log", "w"); logb = fopen("logs/expt_dr.log", "w"); logc = fopen("logs/expt_2k.log", "w"); logd = fopen("logs/expt_2kl.log", "w"); for (n = 0; primes[n]; n++) { SLEEP; mp_read_radix(&a, primes[n], 10); mp_zero(&b); for (rr = 0; rr < (unsigned) mp_count_bits(&a); rr++) { mp_mul_2(&b, &b); b.dp[0] |= lbit(); b.used += 1; } mp_sub_d(&a, 1, &c); mp_mod(&b, &c, &b); mp_set(&c, 3); rr = 0; tt = -1; do { gg = TIMFUNC(); DO(mp_exptmod(&c, &b, &a, &d)); gg = (TIMFUNC() - gg) >> 1; if (tt > gg) tt = gg; } while (++rr < 10); mp_sub_d(&a, 1, &e); mp_sub(&e, &b, &b); mp_exptmod(&c, &b, &a, &e); /* c^(p-1-b) mod a */ mp_mulmod(&e, &d, &a, &d); /* c^b * c^(p-1-b) == c^p-1 == 1 */ if (mp_cmp_d(&d, 1)) { printf("Different (%d)!!!\n", mp_count_bits(&a)); draw(&d); exit(0); } printf("Exponentiating\t%4d-bit => %9llu/sec, %9llu cycles\n", mp_count_bits(&a), CLK_PER_SEC / tt, tt); fprintf(n < 4 ? logd : (n < 9) ? logc : (n < 16) ? logb : log, "%d %9llu\n", mp_count_bits(&a), tt); } } fclose(log); fclose(logb); fclose(logc); fclose(logd); log = fopen("logs/invmod.log", "w"); for (cnt = 4; cnt <= 128; cnt += 4) { SLEEP; mp_rand(&a, cnt); mp_rand(&b, cnt); do { mp_add_d(&b, 1, &b); mp_gcd(&a, &b, &c); } while (mp_cmp_d(&c, 1) != MP_EQ); rr = 0; tt = -1; do { gg = TIMFUNC(); DO(mp_invmod(&b, &a, &c)); gg = (TIMFUNC() - gg) >> 1; if (tt > gg) tt = gg; } while (++rr < 1000); mp_mulmod(&b, &c, &a, &d); if (mp_cmp_d(&d, 1) != MP_EQ) { printf("Failed to invert\n"); return 0; } printf("Inverting mod\t%4d-bit => %9llu/sec, %9llu cycles\n", mp_count_bits(&a), CLK_PER_SEC / tt, tt); fprintf(log, "%d %9llu\n", cnt * DIGIT_BIT, tt); } fclose(log); return 0; }
C4Err ECC_Import_Info( void *in, size_t inlen, bool *isPrivate, bool *isANSIx963, size_t *keySizeOut ) { C4Err err = kC4Err_NoErr; int status = CRYPT_OK; uint8_t* inByte = in; unsigned long key_size = 0; int key_type = PK_PUBLIC; bool ANSIx963 = false; void *x = NULL; LTC_ARGCHK(in != NULL); LTC_ARGCHK(ltc_mp.name != NULL); if (inByte[0] != 4 && inByte[0] != 6 && inByte[0] != 7) { /* find out what type of key it is */ unsigned char flags[1]; unsigned long key_bytes = 0; status = der_decode_sequence_multi(in, inlen, LTC_ASN1_BIT_STRING, 1UL, &flags, LTC_ASN1_SHORT_INTEGER, 1UL, &key_bytes, LTC_ASN1_EOL, 0UL, NULL); CKSTAT; key_size = key_bytes * 8; key_type = (flags[0] == 1)?PK_PRIVATE:PK_PUBLIC; } else { mp_init(&x); status = mp_read_unsigned_bin(x, (unsigned char *)inByte+1, (inlen-1)>>1); CKSTAT; ANSIx963 = true; key_type = PK_PUBLIC; key_size = mp_count_bits(x); } if(isPrivate) *isPrivate = key_type == PK_PRIVATE; if(keySizeOut) *keySizeOut = (size_t) key_size; if(isANSIx963) *isANSIx963 = ANSIx963 ; done: if(status != CRYPT_OK) { err = sCrypt2C4Err(status); } if(x) mp_clear(x); return (err); }
/* get the size for an unsigned equivalent */ int mp_unsigned_bin_size (mp_int * a) { int size = mp_count_bits (a); return (size / 8 + ((size & 7) != 0 ? 1 : 0)); }
/* two complement or */ int mp_tc_or(const mp_int *a, const mp_int *b, mp_int *c) { int res = MP_OKAY, bits; int as = mp_isneg(a), bs = mp_isneg(b); mp_int *mx = NULL, _mx, acpy, bcpy; if ((as != MP_NO) || (bs != MP_NO)) { bits = MAX(mp_count_bits(a), mp_count_bits(b)); res = mp_init_set_int(&_mx, 1uL); if (res != MP_OKAY) { goto end; } mx = &_mx; res = mp_mul_2d(mx, bits + 1, mx); if (res != MP_OKAY) { goto end; } if (as != MP_NO) { res = mp_init(&acpy); if (res != MP_OKAY) { goto end; } res = mp_add(mx, a, &acpy); if (res != MP_OKAY) { mp_clear(&acpy); goto end; } a = &acpy; } if (bs != MP_NO) { res = mp_init(&bcpy); if (res != MP_OKAY) { goto end; } res = mp_add(mx, b, &bcpy); if (res != MP_OKAY) { mp_clear(&bcpy); goto end; } b = &bcpy; } } res = mp_or(a, b, c); if (((as != MP_NO) || (bs != MP_NO)) && (res == MP_OKAY)) { res = mp_sub(c, mx, c); } end: if (a == &acpy) { mp_clear(&acpy); } if (b == &bcpy) { mp_clear(&bcpy); } if (mx == &_mx) { mp_clear(mx); } return res; }
static int count_bits(void *a) { LTC_ARGCHK(a != NULL); return mp_count_bits(a); }
int rsa_test(void) { unsigned char in[1024], out[1024], tmp[1024]; rsa_key key, privKey, pubKey; int hash_idx, prng_idx, stat, stat2; unsigned long rsa_msgsize, len, len2, cnt; static unsigned char lparam[] = { 0x01, 0x02, 0x03, 0x04 }; if (rsa_compat_test() != 0) { return 1; } hash_idx = find_hash("sha1"); prng_idx = find_prng("yarrow"); if (hash_idx == -1 || prng_idx == -1) { fprintf(stderr, "rsa_test requires LTC_SHA1 and yarrow"); return 1; } /* make 10 random key */ for (cnt = 0; cnt < 10; cnt++) { DO(rsa_make_key(&yarrow_prng, prng_idx, 1024/8, 65537, &key)); if (mp_count_bits(key.N) != 1024) { fprintf(stderr, "rsa_1024 key modulus has %d bits\n", mp_count_bits(key.N)); len = mp_unsigned_bin_size(key.N); mp_to_unsigned_bin(key.N, tmp); fprintf(stderr, "N == \n"); for (cnt = 0; cnt < len; ) { fprintf(stderr, "%02x ", tmp[cnt]); if (!(++cnt & 15)) fprintf(stderr, "\n"); } len = mp_unsigned_bin_size(key.p); mp_to_unsigned_bin(key.p, tmp); fprintf(stderr, "p == \n"); for (cnt = 0; cnt < len; ) { fprintf(stderr, "%02x ", tmp[cnt]); if (!(++cnt & 15)) fprintf(stderr, "\n"); } len = mp_unsigned_bin_size(key.q); mp_to_unsigned_bin(key.q, tmp); fprintf(stderr, "\nq == \n"); for (cnt = 0; cnt < len; ) { fprintf(stderr, "%02x ", tmp[cnt]); if (!(++cnt & 15)) fprintf(stderr, "\n"); } fprintf(stderr, "\n"); return 1; } if (cnt != 9) { rsa_free(&key); } } /* encrypt the key (without lparam) */ for (cnt = 0; cnt < 4; cnt++) { for (rsa_msgsize = 1; rsa_msgsize <= 86; rsa_msgsize++) { /* make a random key/msg */ yarrow_read(in, rsa_msgsize, &yarrow_prng); len = sizeof(out); len2 = rsa_msgsize; DO(rsa_encrypt_key(in, rsa_msgsize, out, &len, NULL, 0, &yarrow_prng, prng_idx, hash_idx, &key)); /* change a byte */ out[8] ^= 1; DO(rsa_decrypt_key(out, len, tmp, &len2, NULL, 0, hash_idx, &stat2, &key)); /* change a byte back */ out[8] ^= 1; if (len2 != rsa_msgsize) { fprintf(stderr, "\nrsa_decrypt_key mismatch len %lu (first decrypt)", len2); return 1; } len2 = rsa_msgsize; DO(rsa_decrypt_key(out, len, tmp, &len2, NULL, 0, hash_idx, &stat, &key)); if (!(stat == 1 && stat2 == 0)) { fprintf(stderr, "rsa_decrypt_key failed"); return 1; } if (len2 != rsa_msgsize || memcmp(tmp, in, rsa_msgsize)) { unsigned long x; fprintf(stderr, "\nrsa_decrypt_key mismatch, len %lu (second decrypt)\n", len2); fprintf(stderr, "Original contents: \n"); for (x = 0; x < rsa_msgsize; ) { fprintf(stderr, "%02x ", in[x]); if (!(++x % 16)) { fprintf(stderr, "\n"); } } fprintf(stderr, "\n"); fprintf(stderr, "Output contents: \n"); for (x = 0; x < rsa_msgsize; ) { fprintf(stderr, "%02x ", out[x]); if (!(++x % 16)) { fprintf(stderr, "\n"); } } fprintf(stderr, "\n"); return 1; } } } /* encrypt the key (with lparam) */ for (rsa_msgsize = 1; rsa_msgsize <= 86; rsa_msgsize++) { len = sizeof(out); len2 = rsa_msgsize; DO(rsa_encrypt_key(in, rsa_msgsize, out, &len, lparam, sizeof(lparam), &yarrow_prng, prng_idx, hash_idx, &key)); /* change a byte */ out[8] ^= 1; DO(rsa_decrypt_key(out, len, tmp, &len2, lparam, sizeof(lparam), hash_idx, &stat2, &key)); if (len2 != rsa_msgsize) { fprintf(stderr, "\nrsa_decrypt_key mismatch len %lu (first decrypt)", len2); return 1; } /* change a byte back */ out[8] ^= 1; len2 = rsa_msgsize; DO(rsa_decrypt_key(out, len, tmp, &len2, lparam, sizeof(lparam), hash_idx, &stat, &key)); if (!(stat == 1 && stat2 == 0)) { fprintf(stderr, "rsa_decrypt_key failed"); return 1; } if (len2 != rsa_msgsize || memcmp(tmp, in, rsa_msgsize)) { fprintf(stderr, "rsa_decrypt_key mismatch len %lu", len2); return 1; } } /* encrypt the key LTC_PKCS #1 v1.5 (payload from 1 to 117 bytes) */ for (rsa_msgsize = 1; rsa_msgsize <= 117; rsa_msgsize++) { len = sizeof(out); len2 = rsa_msgsize; DO(rsa_encrypt_key_ex(in, rsa_msgsize, out, &len, NULL, 0, &yarrow_prng, prng_idx, 0, LTC_PKCS_1_V1_5, &key)); len2 = rsa_msgsize; DO(rsa_decrypt_key_ex(out, len, tmp, &len2, NULL, 0, 0, LTC_PKCS_1_V1_5, &stat, &key)); if (!(stat == 1 && stat2 == 0)) { fprintf(stderr, "rsa_decrypt_key_ex failed, %d, %d", stat, stat2); return 1; } if (len2 != rsa_msgsize || memcmp(tmp, in, rsa_msgsize)) { fprintf(stderr, "rsa_decrypt_key_ex mismatch len %lu", len2); return 1; } } /* sign a message (unsalted, lower cholestorol and Atkins approved) now */ len = sizeof(out); DO(rsa_sign_hash(in, 20, out, &len, &yarrow_prng, prng_idx, hash_idx, 0, &key)); /* export key and import as both private and public */ len2 = sizeof(tmp); DO(rsa_export(tmp, &len2, PK_PRIVATE, &key)); DO(rsa_import(tmp, len2, &privKey)); len2 = sizeof(tmp); DO(rsa_export(tmp, &len2, PK_PUBLIC, &key)); DO(rsa_import(tmp, len2, &pubKey)); /* verify with original */ DO(rsa_verify_hash(out, len, in, 20, hash_idx, 0, &stat, &key)); /* change a byte */ in[0] ^= 1; DO(rsa_verify_hash(out, len, in, 20, hash_idx, 0, &stat2, &key)); if (!(stat == 1 && stat2 == 0)) { fprintf(stderr, "rsa_verify_hash (unsalted, origKey) failed, %d, %d", stat, stat2); rsa_free(&key); rsa_free(&pubKey); rsa_free(&privKey); return 1; } /* verify with privKey */ /* change a byte */ in[0] ^= 1; DO(rsa_verify_hash(out, len, in, 20, hash_idx, 0, &stat, &privKey)); /* change a byte */ in[0] ^= 1; DO(rsa_verify_hash(out, len, in, 20, hash_idx, 0, &stat2, &privKey)); if (!(stat == 1 && stat2 == 0)) { fprintf(stderr, "rsa_verify_hash (unsalted, privKey) failed, %d, %d", stat, stat2); rsa_free(&key); rsa_free(&pubKey); rsa_free(&privKey); return 1; } /* verify with pubKey */ /* change a byte */ in[0] ^= 1; DO(rsa_verify_hash(out, len, in, 20, hash_idx, 0, &stat, &pubKey)); /* change a byte */ in[0] ^= 1; DO(rsa_verify_hash(out, len, in, 20, hash_idx, 0, &stat2, &pubKey)); if (!(stat == 1 && stat2 == 0)) { fprintf(stderr, "rsa_verify_hash (unsalted, pubkey) failed, %d, %d", stat, stat2); rsa_free(&key); rsa_free(&pubKey); rsa_free(&privKey); return 1; } /* sign a message (salted) now (use privKey to make, pubKey to verify) */ len = sizeof(out); DO(rsa_sign_hash(in, 20, out, &len, &yarrow_prng, prng_idx, hash_idx, 8, &privKey)); DO(rsa_verify_hash(out, len, in, 20, hash_idx, 8, &stat, &pubKey)); /* change a byte */ in[0] ^= 1; DO(rsa_verify_hash(out, len, in, 20, hash_idx, 8, &stat2, &pubKey)); if (!(stat == 1 && stat2 == 0)) { fprintf(stderr, "rsa_verify_hash (salted) failed, %d, %d", stat, stat2); rsa_free(&key); rsa_free(&pubKey); rsa_free(&privKey); return 1; } /* sign a message with LTC_PKCS #1 v1.5 */ len = sizeof(out); DO(rsa_sign_hash_ex(in, 20, out, &len, LTC_PKCS_1_V1_5, &yarrow_prng, prng_idx, hash_idx, 8, &privKey)); DO(rsa_verify_hash_ex(out, len, in, 20, LTC_PKCS_1_V1_5, hash_idx, 8, &stat, &pubKey)); /* change a byte */ in[0] ^= 1; DO(rsa_verify_hash_ex(out, len, in, 20, LTC_PKCS_1_V1_5, hash_idx, 8, &stat2, &pubKey)); if (!(stat == 1 && stat2 == 0)) { fprintf(stderr, "rsa_verify_hash_ex failed, %d, %d", stat, stat2); rsa_free(&key); rsa_free(&pubKey); rsa_free(&privKey); return 1; } /* free the key and return */ rsa_free(&key); rsa_free(&pubKey); rsa_free(&privKey); return 0; }
/* makes a prime of at least k bits */ int pprime (int k, int li, mp_int * p, mp_int * q) { mp_int a, b, c, n, x, y, z, v; int res, ii; static const mp_digit bases[] = { 2, 3, 5, 7, 11, 13, 17, 19 }; /* single digit ? */ if (k <= (int) DIGIT_BIT) { mp_set (p, prime_digit ()); return MP_OKAY; } if ((res = mp_init (&c)) != MP_OKAY) { return res; } if ((res = mp_init (&v)) != MP_OKAY) { goto LBL_C; } /* product of first 50 primes */ if ((res = mp_read_radix (&v, "19078266889580195013601891820992757757219839668357012055907516904309700014933909014729740190", 10)) != MP_OKAY) { goto LBL_V; } if ((res = mp_init (&a)) != MP_OKAY) { goto LBL_V; } /* set the prime */ mp_set (&a, prime_digit ()); if ((res = mp_init (&b)) != MP_OKAY) { goto LBL_A; } if ((res = mp_init (&n)) != MP_OKAY) { goto LBL_B; } if ((res = mp_init (&x)) != MP_OKAY) { goto LBL_N; } if ((res = mp_init (&y)) != MP_OKAY) { goto LBL_X; } if ((res = mp_init (&z)) != MP_OKAY) { goto LBL_Y; } /* now loop making the single digit */ while (mp_count_bits (&a) < k) { fprintf (stderr, "prime has %4d bits left\r", k - mp_count_bits (&a)); fflush (stderr); top: mp_set (&b, prime_digit ()); /* now compute z = a * b * 2 */ if ((res = mp_mul (&a, &b, &z)) != MP_OKAY) { /* z = a * b */ goto LBL_Z; } if ((res = mp_copy (&z, &c)) != MP_OKAY) { /* c = a * b */ goto LBL_Z; } if ((res = mp_mul_2 (&z, &z)) != MP_OKAY) { /* z = 2 * a * b */ goto LBL_Z; } /* n = z + 1 */ if ((res = mp_add_d (&z, 1, &n)) != MP_OKAY) { /* n = z + 1 */ goto LBL_Z; } /* check (n, v) == 1 */ if ((res = mp_gcd (&n, &v, &y)) != MP_OKAY) { /* y = (n, v) */ goto LBL_Z; } if (mp_cmp_d (&y, 1) != MP_EQ) goto top; /* now try base x=bases[ii] */ for (ii = 0; ii < li; ii++) { mp_set (&x, bases[ii]); /* compute x^a mod n */ if ((res = mp_exptmod (&x, &a, &n, &y)) != MP_OKAY) { /* y = x^a mod n */ goto LBL_Z; } /* if y == 1 loop */ if (mp_cmp_d (&y, 1) == MP_EQ) continue; /* now x^2a mod n */ if ((res = mp_sqrmod (&y, &n, &y)) != MP_OKAY) { /* y = x^2a mod n */ goto LBL_Z; } if (mp_cmp_d (&y, 1) == MP_EQ) continue; /* compute x^b mod n */ if ((res = mp_exptmod (&x, &b, &n, &y)) != MP_OKAY) { /* y = x^b mod n */ goto LBL_Z; } /* if y == 1 loop */ if (mp_cmp_d (&y, 1) == MP_EQ) continue; /* now x^2b mod n */ if ((res = mp_sqrmod (&y, &n, &y)) != MP_OKAY) { /* y = x^2b mod n */ goto LBL_Z; } if (mp_cmp_d (&y, 1) == MP_EQ) continue; /* compute x^c mod n == x^ab mod n */ if ((res = mp_exptmod (&x, &c, &n, &y)) != MP_OKAY) { /* y = x^ab mod n */ goto LBL_Z; } /* if y == 1 loop */ if (mp_cmp_d (&y, 1) == MP_EQ) continue; /* now compute (x^c mod n)^2 */ if ((res = mp_sqrmod (&y, &n, &y)) != MP_OKAY) { /* y = x^2ab mod n */ goto LBL_Z; } /* y should be 1 */ if (mp_cmp_d (&y, 1) != MP_EQ) continue; break; } /* no bases worked? */ if (ii == li) goto top; { char buf[4096]; mp_toradix(&n, buf, 10); printf("Certificate of primality for:\n%s\n\n", buf); mp_toradix(&a, buf, 10); printf("A == \n%s\n\n", buf); mp_toradix(&b, buf, 10); printf("B == \n%s\n\nG == %d\n", buf, bases[ii]); printf("----------------------------------------------------------------\n"); } /* a = n */ mp_copy (&n, &a); } /* get q to be the order of the large prime subgroup */ mp_sub_d (&n, 1, q); mp_div_2 (q, q); mp_div (q, &b, q, NULL); mp_exch (&n, p); res = MP_OKAY; LBL_Z:mp_clear (&z); LBL_Y:mp_clear (&y); LBL_X:mp_clear (&x); LBL_N:mp_clear (&n); LBL_B:mp_clear (&b); LBL_A:mp_clear (&a); LBL_V:mp_clear (&v); LBL_C:mp_clear (&c); return res; }
/** LTC_PKCS #1 decrypt then v1.5 or OAEP depad @param in The ciphertext @param inlen The length of the ciphertext (octets) @param out [out] The plaintext @param outlen [in/out] The max size and resulting size of the plaintext (octets) @param lparam The system "lparam" value @param lparamlen The length of the lparam value (octets) @param hash_idx The index of the hash desired @param padding Type of padding (LTC_LTC_PKCS_1_OAEP or LTC_LTC_PKCS_1_V1_5) @param stat [out] Result of the decryption, 1==valid, 0==invalid @param key The corresponding private RSA key @return CRYPT_OK if succcessul (even if invalid) */ int rsa_decrypt_key_ex(const unsigned char *in, unsigned long inlen, unsigned char *out, unsigned long *outlen, const unsigned char *lparam, unsigned long lparamlen, int hash_idx, int padding, int *stat, rsa_key *key) { unsigned long modulus_bitlen, modulus_bytelen, x; int err; unsigned char *tmp; LTC_ARGCHK(out != NULL); LTC_ARGCHK(outlen != NULL); LTC_ARGCHK(key != NULL); LTC_ARGCHK(stat != NULL); /* default to invalid */ *stat = 0; /* valid padding? */ if ((padding != LTC_LTC_PKCS_1_V1_5) && (padding != LTC_LTC_PKCS_1_OAEP)) { return CRYPT_PK_INVALID_PADDING; } if (padding == LTC_LTC_PKCS_1_OAEP) { /* valid hash ? */ if ((err = hash_is_valid(hash_idx)) != CRYPT_OK) { return err; } } /* get modulus len in bits */ modulus_bitlen = mp_count_bits( (key->N)); /* outlen must be at least the size of the modulus */ modulus_bytelen = mp_unsigned_bin_size( (key->N)); if (modulus_bytelen != inlen) { return CRYPT_INVALID_PACKET; } /* allocate ram */ tmp = XMALLOC(inlen); if (tmp == NULL) { return CRYPT_MEM; } /* rsa decode the packet */ x = inlen; if ((err = ltc_mp.rsa_me(in, inlen, tmp, &x, PK_PUBLIC, key)) != CRYPT_OK) { XFREE(tmp); return err; } if (padding == LTC_LTC_PKCS_1_OAEP) { /* now OAEP decode the packet */ err = pkcs_1_oaep_decode(tmp, x, lparam, lparamlen, modulus_bitlen, hash_idx, out, outlen, stat); } else { /* now LTC_PKCS #1 v1.5 depad the packet */ err = pkcs_1_v1_5_decode(tmp, x, LTC_LTC_PKCS_1_EME, modulus_bitlen, out, outlen, stat); } XFREE(tmp); return err; }
/** This will export either an RSAPublicKey or RSAPrivateKey [defined in PKCS #1 v2.1] @param out [out] Destination of the packet @param outlen [in/out] The max size and resulting size of the packet @param type The type of exported key (PK_PRIVATE or PK_PUBLIC) @param key The RSA key to export @return CRYPT_OK if successful */ int rsa_export(unsigned char *out, unsigned long *outlen, int type, rsa_key *key) { unsigned long zero=0; int err; LTC_ARGCHK(out != NULL); LTC_ARGCHK(outlen != NULL); LTC_ARGCHK(key != NULL); /* type valid? */ if (!(key->type == PK_PRIVATE) && (type == PK_PRIVATE)) { return CRYPT_PK_INVALID_TYPE; } if (type == PK_PRIVATE) { /* private key */ /* output is Version, n, e, d, p, q, d mod (p-1), d mod (q - 1), 1/q mod p */ return der_encode_sequence_multi(out, outlen, LTC_ASN1_SHORT_INTEGER, 1UL, &zero, LTC_ASN1_INTEGER, 1UL, key->N, LTC_ASN1_INTEGER, 1UL, key->e, LTC_ASN1_INTEGER, 1UL, key->d, LTC_ASN1_INTEGER, 1UL, key->p, LTC_ASN1_INTEGER, 1UL, key->q, LTC_ASN1_INTEGER, 1UL, key->dP, LTC_ASN1_INTEGER, 1UL, key->dQ, LTC_ASN1_INTEGER, 1UL, key->qP, LTC_ASN1_EOL, 0UL, NULL); } else { /* public key */ unsigned long tmplen, *ptmplen; unsigned char* tmp = NULL; if (type & PK_STD) { tmplen = (mp_count_bits(key->N)/8)*2+8; tmp = XMALLOC(tmplen); ptmplen = &tmplen; if (tmp == NULL) { return CRYPT_MEM; } } else { tmp = out; ptmplen = outlen; } err = der_encode_sequence_multi(tmp, ptmplen, LTC_ASN1_INTEGER, 1UL, key->N, LTC_ASN1_INTEGER, 1UL, key->e, LTC_ASN1_EOL, 0UL, NULL); if ((err != CRYPT_OK) || !(type & PK_STD)) { goto finish; } err = der_encode_subject_public_key_info(out, outlen, PKA_RSA, tmp, tmplen, LTC_ASN1_NULL, NULL, 0); finish: if (tmp != out) XFREE(tmp); return err; } }
/** Create DSA parameters (INTERNAL ONLY, not part of public API) @param prng An active PRNG state @param wprng The index of the PRNG desired @param group_size Size of the multiplicative group (octets) @param modulus_size Size of the modulus (octets) @param p [out] bignum where generated 'p' is stored (must be initialized by caller) @param q [out] bignum where generated 'q' is stored (must be initialized by caller) @param g [out] bignum where generated 'g' is stored (must be initialized by caller) @return CRYPT_OK if successful, upon error this function will free all allocated memory */ static int _dsa_make_params(prng_state *prng, int wprng, int group_size, int modulus_size, void *p, void *q, void *g) { unsigned long L, N, n, outbytes, seedbytes, counter, j, i; int err, res, mr_tests_q, mr_tests_p, found_p, found_q, hash; unsigned char *wbuf, *sbuf, digest[MAXBLOCKSIZE]; void *t2L1, *t2N1, *t2q, *t2seedlen, *U, *W, *X, *c, *h, *e, *seedinc; /* check size */ if (group_size >= LTC_MDSA_MAX_GROUP || group_size < 1 || group_size >= modulus_size) { return CRYPT_INVALID_ARG; } /* FIPS-186-4 A.1.1.2 Generation of the Probable Primes p and q Using an Approved Hash Function * * L = The desired length of the prime p (in bits e.g. L = 1024) * N = The desired length of the prime q (in bits e.g. N = 160) * seedlen = The desired bit length of the domain parameter seed; seedlen shallbe equal to or greater than N * outlen = The bit length of Hash function * * 1. Check that the (L, N) * 2. If (seedlen <N), then return INVALID. * 3. n = ceil(L / outlen) - 1 * 4. b = L- 1 - (n * outlen) * 5. domain_parameter_seed = an arbitrary sequence of seedlen bits * 6. U = Hash (domain_parameter_seed) mod 2^(N-1) * 7. q = 2^(N-1) + U + 1 - (U mod 2) * 8. Test whether or not q is prime as specified in Appendix C.3 * 9. If qis not a prime, then go to step 5. * 10. offset = 1 * 11. For counter = 0 to (4L- 1) do { * For j=0 to n do { * Vj = Hash ((domain_parameter_seed+ offset + j) mod 2^seedlen * } * W = V0 + (V1 *2^outlen) + ... + (Vn-1 * 2^((n-1) * outlen)) + ((Vn mod 2^b) * 2^(n * outlen)) * X = W + 2^(L-1) Comment: 0 <= W < 2^(L-1); hence 2^(L-1) <= X < 2^L * c = X mod 2*q * p = X - (c - 1) Comment: p ~ 1 (mod 2*q) * If (p >= 2^(L-1)) { * Test whether or not p is prime as specified in Appendix C.3. * If p is determined to be prime, then return VALID and the values of p, qand (optionally) the values of domain_parameter_seed and counter * } * offset = offset + n + 1 Comment: Increment offset * } */ seedbytes = group_size; L = (unsigned long)modulus_size * 8; N = (unsigned long)group_size * 8; /* XXX-TODO no Lucas test */ #ifdef LTC_MPI_HAS_LUCAS_TEST /* M-R tests (when followed by one Lucas test) according FIPS-186-4 - Appendix C.3 - table C.1 */ mr_tests_p = (L <= 2048) ? 3 : 2; if (N <= 160) { mr_tests_q = 19; } else if (N <= 224) { mr_tests_q = 24; } else { mr_tests_q = 27; } #else /* M-R tests (without Lucas test) according FIPS-186-4 - Appendix C.3 - table C.1 */ if (L <= 1024) { mr_tests_p = 40; } else if (L <= 2048) { mr_tests_p = 56; } else { mr_tests_p = 64; } if (N <= 160) { mr_tests_q = 40; } else if (N <= 224) { mr_tests_q = 56; } else { mr_tests_q = 64; } #endif if (N <= 256) { hash = register_hash(&sha256_desc); } else if (N <= 384) { hash = register_hash(&sha384_desc); } else if (N <= 512) { hash = register_hash(&sha512_desc); } else { return CRYPT_INVALID_ARG; /* group_size too big */ } if ((err = hash_is_valid(hash)) != CRYPT_OK) { return err; } outbytes = hash_descriptor[hash].hashsize; n = ((L + outbytes*8 - 1) / (outbytes*8)) - 1; if ((wbuf = XMALLOC((n+1)*outbytes)) == NULL) { err = CRYPT_MEM; goto cleanup3; } if ((sbuf = XMALLOC(seedbytes)) == NULL) { err = CRYPT_MEM; goto cleanup2; } err = mp_init_multi(&t2L1, &t2N1, &t2q, &t2seedlen, &U, &W, &X, &c, &h, &e, &seedinc, NULL); if (err != CRYPT_OK) { goto cleanup1; } if ((err = mp_2expt(t2L1, L-1)) != CRYPT_OK) { goto cleanup; } /* t2L1 = 2^(L-1) */ if ((err = mp_2expt(t2N1, N-1)) != CRYPT_OK) { goto cleanup; } /* t2N1 = 2^(N-1) */ if ((err = mp_2expt(t2seedlen, seedbytes*8)) != CRYPT_OK) { goto cleanup; } /* t2seedlen = 2^seedlen */ for(found_p=0; !found_p;) { /* q */ for(found_q=0; !found_q;) { if (prng_descriptor[wprng].read(sbuf, seedbytes, prng) != seedbytes) { err = CRYPT_ERROR_READPRNG; goto cleanup; } i = outbytes; if ((err = hash_memory(hash, sbuf, seedbytes, digest, &i)) != CRYPT_OK) { goto cleanup; } if ((err = mp_read_unsigned_bin(U, digest, outbytes)) != CRYPT_OK) { goto cleanup; } if ((err = mp_mod(U, t2N1, U)) != CRYPT_OK) { goto cleanup; } if ((err = mp_add(t2N1, U, q)) != CRYPT_OK) { goto cleanup; } if (!mp_isodd(q)) mp_add_d(q, 1, q); if ((err = mp_prime_is_prime(q, mr_tests_q, &res)) != CRYPT_OK) { goto cleanup; } if (res == LTC_MP_YES) found_q = 1; } /* p */ if ((err = mp_read_unsigned_bin(seedinc, sbuf, seedbytes)) != CRYPT_OK) { goto cleanup; } if ((err = mp_add(q, q, t2q)) != CRYPT_OK) { goto cleanup; } for(counter=0; counter < 4*L && !found_p; counter++) { for(j=0; j<=n; j++) { if ((err = mp_add_d(seedinc, 1, seedinc)) != CRYPT_OK) { goto cleanup; } if ((err = mp_mod(seedinc, t2seedlen, seedinc)) != CRYPT_OK) { goto cleanup; } /* seedinc = (seedinc+1) % 2^seed_bitlen */ if ((i = mp_unsigned_bin_size(seedinc)) > seedbytes) { err = CRYPT_INVALID_ARG; goto cleanup; } zeromem(sbuf, seedbytes); if ((err = mp_to_unsigned_bin(seedinc, sbuf + seedbytes-i)) != CRYPT_OK) { goto cleanup; } i = outbytes; err = hash_memory(hash, sbuf, seedbytes, wbuf+(n-j)*outbytes, &i); if (err != CRYPT_OK) { goto cleanup; } } if ((err = mp_read_unsigned_bin(W, wbuf, (n+1)*outbytes)) != CRYPT_OK) { goto cleanup; } if ((err = mp_mod(W, t2L1, W)) != CRYPT_OK) { goto cleanup; } if ((err = mp_add(W, t2L1, X)) != CRYPT_OK) { goto cleanup; } if ((err = mp_mod(X, t2q, c)) != CRYPT_OK) { goto cleanup; } if ((err = mp_sub_d(c, 1, p)) != CRYPT_OK) { goto cleanup; } if ((err = mp_sub(X, p, p)) != CRYPT_OK) { goto cleanup; } if (mp_cmp(p, t2L1) != LTC_MP_LT) { /* p >= 2^(L-1) */ if ((err = mp_prime_is_prime(p, mr_tests_p, &res)) != CRYPT_OK) { goto cleanup; } if (res == LTC_MP_YES) { found_p = 1; } } } } /* FIPS-186-4 A.2.1 Unverifiable Generation of the Generator g * 1. e = (p - 1)/q * 2. h = any integer satisfying: 1 < h < (p - 1) * h could be obtained from a random number generator or from a counter that changes after each use * 3. g = h^e mod p * 4. if (g == 1), then go to step 2. * */ if ((err = mp_sub_d(p, 1, e)) != CRYPT_OK) { goto cleanup; } if ((err = mp_div(e, q, e, c)) != CRYPT_OK) { goto cleanup; } /* e = (p - 1)/q */ i = mp_count_bits(p); do { do { if ((err = rand_bn_bits(h, i, prng, wprng)) != CRYPT_OK) { goto cleanup; } } while (mp_cmp(h, p) != LTC_MP_LT || mp_cmp_d(h, 2) != LTC_MP_GT); if ((err = mp_sub_d(h, 1, h)) != CRYPT_OK) { goto cleanup; } /* h is randon and 1 < h < (p-1) */ if ((err = mp_exptmod(h, e, p, g)) != CRYPT_OK) { goto cleanup; } } while (mp_cmp_d(g, 1) == LTC_MP_EQ); err = CRYPT_OK; cleanup: mp_clear_multi(t2L1, t2N1, t2q, t2seedlen, U, W, X, c, h, e, seedinc, NULL); cleanup1: XFREE(sbuf); cleanup2: XFREE(wbuf); cleanup3: return err; }
/* slower bit-bang division... also smaller */ int mp_div MPA(mp_int * a, mp_int * b, mp_int * c, mp_int * d) { mp_int ta, tb, tq, q; int res, n, n2; /* is divisor zero ? */ if (mp_iszero (b) == 1) { return MP_VAL; } /* if a < b then q=0, r = a */ if (mp_cmp_mag (a, b) == MP_LT) { if (d != NULL) { res = mp_copy (a, d); } else { res = MP_OKAY; } if (c != NULL) { mp_zero (c); } return res; } /* init our temps */ if ((res = mp_init_multi(&ta, &tb, &tq, &q, NULL) != MP_OKAY)) { return res; } mp_set(&tq, 1); n = mp_count_bits(a) - mp_count_bits(b); if (((res = mp_abs(a, &ta)) != MP_OKAY) || ((res = mp_abs(b, &tb)) != MP_OKAY) || ((res = mp_mul_2d(&tb, n, &tb)) != MP_OKAY) || ((res = mp_mul_2d(&tq, n, &tq)) != MP_OKAY)) { goto LBL_ERR; } while (n-- >= 0) { if (mp_cmp(&tb, &ta) != MP_GT) { if (((res = mp_sub(&ta, &tb, &ta)) != MP_OKAY) || ((res = mp_add(&q, &tq, &q)) != MP_OKAY)) { goto LBL_ERR; } } if (((res = mp_div_2d(&tb, 1, &tb, NULL)) != MP_OKAY) || ((res = mp_div_2d(&tq, 1, &tq, NULL)) != MP_OKAY)) { goto LBL_ERR; } } /* now q == quotient and ta == remainder */ n = a->sign; n2 = (a->sign == b->sign ? MP_ZPOS : MP_NEG); if (c != NULL) { mp_exch(c, &q); c->sign = (mp_iszero(c) == MP_YES) ? MP_ZPOS : n2; } if (d != NULL) { mp_exch(d, &ta); d->sign = (mp_iszero(d) == MP_YES) ? MP_ZPOS : n; } LBL_ERR: mp_clear_multi(&ta, &tb, &tq, &q, NULL); return res; }
/** Encrypt a symmetric key with DSA @param in The symmetric key you want to encrypt @param inlen The length of the key to encrypt (octets) @param out [out] The destination for the ciphertext @param outlen [in/out] The max size and resulting size of the ciphertext @param prng An active PRNG state @param wprng The index of the PRNG you wish to use @param hash The index of the hash you want to use @param key The DSA key you want to encrypt to @return CRYPT_OK if successful */ int dsa_encrypt_key(const unsigned char *in, unsigned long inlen, unsigned char *out, unsigned long *outlen, prng_state *prng, int wprng, int hash, dsa_key *key) { unsigned char *expt, *skey; void *g_pub, *g_priv; unsigned long x, y; int err, qbits; LTC_ARGCHK(in != NULL); LTC_ARGCHK(out != NULL); LTC_ARGCHK(outlen != NULL); LTC_ARGCHK(key != NULL); /* check that wprng/cipher/hash are not invalid */ if ((err = prng_is_valid(wprng)) != CRYPT_OK) { return err; } if ((err = hash_is_valid(hash)) != CRYPT_OK) { return err; } if (inlen > hash_descriptor[hash]->hashsize) { return CRYPT_INVALID_HASH; } /* make a random key and export the public copy */ if ((err = mp_init_multi(&g_pub, &g_priv, NULL)) != CRYPT_OK) { return err; } expt = XMALLOC(mp_unsigned_bin_size(key->p) + 1); skey = XMALLOC(MAXBLOCKSIZE); if (expt == NULL || skey == NULL) { if (expt != NULL) { XFREE(expt); } if (skey != NULL) { XFREE(skey); } mp_clear_multi(g_pub, g_priv, NULL); return CRYPT_MEM; } /* make a random g_priv, g_pub = g^x pair */ qbits = mp_count_bits(key->q); do { if ((err = rand_bn_bits(g_priv, qbits, prng, wprng)) != CRYPT_OK) { goto LBL_ERR; } /* private key x should be from range: 1 <= x <= q-1 (see FIPS 186-4 B.1.2) */ } while (mp_cmp_d(g_priv, 0) != LTC_MP_GT || mp_cmp(g_priv, key->q) != LTC_MP_LT); /* compute y */ if ((err = mp_exptmod(key->g, g_priv, key->p, g_pub)) != CRYPT_OK) { goto LBL_ERR; } /* make random key */ x = mp_unsigned_bin_size(key->p) + 1; if ((err = dsa_shared_secret(g_priv, key->y, key, expt, &x)) != CRYPT_OK) { goto LBL_ERR; } y = MAXBLOCKSIZE; if ((err = hash_memory(hash, expt, x, skey, &y)) != CRYPT_OK) { goto LBL_ERR; } /* Encrypt key */ for (x = 0; x < inlen; x++) { skey[x] ^= in[x]; } err = der_encode_sequence_multi(out, outlen, LTC_ASN1_OBJECT_IDENTIFIER, hash_descriptor[hash]->OIDlen, hash_descriptor[hash]->OID, LTC_ASN1_INTEGER, 1UL, g_pub, LTC_ASN1_OCTET_STRING, inlen, skey, LTC_ASN1_EOL, 0UL, NULL); LBL_ERR: #ifdef LTC_CLEAN_STACK /* clean up */ zeromem(expt, mp_unsigned_bin_size(key->p) + 1); zeromem(skey, MAXBLOCKSIZE); #endif XFREE(skey); XFREE(expt); mp_clear_multi(g_pub, g_priv, NULL); return err; }