Ejemplo n.º 1
0
static int jr_hw_reset(void)
{
	struct jr_regs *regs = (struct jr_regs *)CONFIG_SYS_FSL_JR0_ADDR;
	uint32_t timeout = 100000;
	uint32_t jrint, jrcr;

	sec_out32(&regs->jrcr, JRCR_RESET);
	do {
		jrint = sec_in32(&regs->jrint);
	} while (((jrint & JRINT_ERR_HALT_MASK) ==
		  JRINT_ERR_HALT_INPROGRESS) && --timeout);

	jrint = sec_in32(&regs->jrint);
	if (((jrint & JRINT_ERR_HALT_MASK) !=
	     JRINT_ERR_HALT_INPROGRESS) && timeout == 0)
		return -1;

	timeout = 100000;
	sec_out32(&regs->jrcr, JRCR_RESET);
	do {
		jrcr = sec_in32(&regs->jrcr);
	} while ((jrcr & JRCR_RESET) && --timeout);

	if (timeout == 0)
		return -1;

	return 0;
}
Ejemplo n.º 2
0
int sec_reset(void)
{
	ccsr_sec_t *sec = (void *)CONFIG_SYS_FSL_SEC_ADDR;
	uint32_t mcfgr = sec_in32(&sec->mcfgr);
	uint32_t timeout = 100000;

	mcfgr |= MCFGR_SWRST;
	sec_out32(&sec->mcfgr, mcfgr);

	mcfgr |= MCFGR_DMA_RST;
	sec_out32(&sec->mcfgr, mcfgr);
	do {
		mcfgr = sec_in32(&sec->mcfgr);
	} while ((mcfgr & MCFGR_DMA_RST) == MCFGR_DMA_RST && --timeout);

	if (timeout == 0)
		return -1;

	timeout = 100000;
	do {
		mcfgr = sec_in32(&sec->mcfgr);
	} while ((mcfgr & MCFGR_SWRST) == MCFGR_SWRST && --timeout);

	if (timeout == 0)
		return -1;

	return 0;
}
Ejemplo n.º 3
0
/*
 * By default, the TRNG runs for 200 clocks per sample;
 * 1200 clocks per sample generates better entropy.
 */
static void kick_trng(int ent_delay)
{
	ccsr_sec_t __iomem *sec =
			(ccsr_sec_t __iomem *)CONFIG_SYS_FSL_SEC_ADDR;
	struct rng4tst __iomem *rng =
			(struct rng4tst __iomem *)&sec->rng;
	u32 val;

	/* put RNG4 into program mode */
	sec_setbits32(&rng->rtmctl, RTMCTL_PRGM);
	/* rtsdctl bits 0-15 contain "Entropy Delay, which defines the
	 * length (in system clocks) of each Entropy sample taken
	 * */
	val = sec_in32(&rng->rtsdctl);
	val = (val & ~RTSDCTL_ENT_DLY_MASK) |
	      (ent_delay << RTSDCTL_ENT_DLY_SHIFT);
	sec_out32(&rng->rtsdctl, val);
	/* min. freq. count, equal to 1/4 of the entropy sample length */
	sec_out32(&rng->rtfreqmin, ent_delay >> 2);
	/* disable maximum frequency count */
	sec_out32(&rng->rtfreqmax, RTFRQMAX_DISABLE);
	/* read the control register */
	val = sec_in32(&rng->rtmctl);
	/*
	 * select raw sampling in both entropy shifter
	 * and statistical checker
	 */
	sec_setbits32(&val, RTMCTL_SAMP_MODE_RAW_ES_SC);
	/* put RNG4 into run mode */
	sec_clrbits32(&val, RTMCTL_PRGM);
	/* write back the control register */
	sec_out32(&rng->rtmctl, val);
}
Ejemplo n.º 4
0
/*!
 * CAAM page allocation:
 * Allocates a partition from secure memory, with the id
 * equal to partion_num. This will de-allocate the page
 * if it is already allocated. The partition will have
 * full access permissions. The permissions are set before,
 * running a job descriptor. A memory page of secure RAM
 * is allocated for the partition.
 *
 * @param   page  Number of the page to allocate.
 * @param   partition  Number of the partition to allocate.
 * @return  0 on success, ERROR_IN_PAGE_ALLOC otherwise
 */
int caam_page_alloc(uint8_t page_num, uint8_t partition_num)
{
	uint32_t temp_reg;

	ccsr_sec_t *sec = (void *)CONFIG_SYS_FSL_SEC_ADDR;
	uint32_t sm_vid = SM_VERSION(sec_in32(&sec->smvid));
	uint32_t jr_id = 0;

	/*
	 * De-Allocate partition_num if already allocated to ARM core
	 */
	if (sec_in32(CAAM_SMPO_0) & PARTITION_OWNER(partition_num)) {
		temp_reg = secmem_set_cmd(PARTITION(partition_num) |
						CMD_PART_DEALLOC);
		if (temp_reg & SMCSJR_AERR) {
			printf("Error: De-allocation status 0x%X\n", temp_reg);
			return ERROR_IN_PAGE_ALLOC;
		}
	}

	/* set the access rights to allow full access */
	sec_out32(CAAM_SMAG1JR(sm_vid, jr_id, partition_num), 0xF);
	sec_out32(CAAM_SMAG2JR(sm_vid, jr_id, partition_num), 0xF);
	sec_out32(CAAM_SMAPJR(sm_vid, jr_id, partition_num), 0xFF);

	/* Now need to allocate partition_num of secure RAM. */
	/* De-Allocate page_num by starting with a page inquiry command */
	temp_reg = secmem_set_cmd(PAGE(page_num) | CMD_INQUIRY);

	/* if the page is owned, de-allocate it */
	if ((temp_reg & SMCSJR_PO) == PAGE_OWNED) {
		temp_reg = secmem_set_cmd(PAGE(page_num) | CMD_PAGE_DEALLOC);
		if (temp_reg & SMCSJR_AERR) {
			printf("Error: Allocation status 0x%X\n", temp_reg);
			return ERROR_IN_PAGE_ALLOC;
		}
	}

	/* Allocate page_num to partition_num */
	temp_reg = secmem_set_cmd(PAGE(page_num) | PARTITION(partition_num)
						| CMD_PAGE_ALLOC);
	if (temp_reg & SMCSJR_AERR) {
		printf("Error: Allocation status 0x%X\n", temp_reg);
		return ERROR_IN_PAGE_ALLOC;
	}
	/* page inquiry command to ensure that the page was allocated */
	temp_reg = secmem_set_cmd(PAGE(page_num) | CMD_INQUIRY);

	/* if the page is not owned => problem */
	if ((temp_reg & SMCSJR_PO) != PAGE_OWNED) {
		printf("Allocation of page %d in partition %d failed 0x%X\n",
		       temp_reg, page_num, partition_num);

		return ERROR_IN_PAGE_ALLOC;
	}

	return 0;
}
Ejemplo n.º 5
0
/*!
 * Secure memory run command
 *
 * @param   sec_mem_cmd  Secure memory command register
 * @return  cmd_status  Secure memory command status register
 */
uint32_t secmem_set_cmd(uint32_t sec_mem_cmd)
{
	uint32_t temp_reg;

	ccsr_sec_t *sec = (void *)CONFIG_SYS_FSL_SEC_ADDR;
	uint32_t sm_vid = SM_VERSION(sec_in32(&sec->smvid));
	uint32_t jr_id = 0;

	sec_out32(CAAM_SMCJR(sm_vid, jr_id), sec_mem_cmd);

	do {
		temp_reg = sec_in32(CAAM_SMCSJR(sm_vid, jr_id));
	} while (temp_reg & CMD_COMPLETE);

	return temp_reg;
}
Ejemplo n.º 6
0
/* -1 --- error, can't enqueue -- no space available */
static int jr_enqueue(uint32_t *desc_addr,
	       void (*callback)(uint32_t desc, uint32_t status, void *arg),
	       void *arg)
{
	struct jr_regs *regs = (struct jr_regs *)CONFIG_SYS_FSL_JR0_ADDR;
	int head = jr.head;
	dma_addr_t desc_phys_addr = virt_to_phys(desc_addr);

	if (sec_in32(&regs->irsa) == 0 ||
	    CIRC_SPACE(jr.head, jr.tail, jr.size) <= 0)
		return -1;

	jr.input_ring[head] = desc_phys_addr;
	jr.info[head].desc_phys_addr = desc_phys_addr;
	jr.info[head].desc_addr = (uint32_t)desc_addr;
	jr.info[head].callback = (void *)callback;
	jr.info[head].arg = arg;
	jr.info[head].op_done = 0;

	jr.head = (head + 1) & (jr.size - 1);

	sec_out32(&regs->irja, 1);

	return 0;
}
Ejemplo n.º 7
0
static int instantiate_rng(void)
{
	struct result op;
	u32 *desc;
	u32 rdsta_val;
	int ret = 0;
	ccsr_sec_t __iomem *sec =
			(ccsr_sec_t __iomem *)CONFIG_SYS_FSL_SEC_ADDR;
	struct rng4tst __iomem *rng =
			(struct rng4tst __iomem *)&sec->rng;

	memset(&op, 0, sizeof(struct result));

	desc = malloc(sizeof(int) * 6);
	if (!desc) {
		printf("cannot allocate RNG init descriptor memory\n");
		return -1;
	}

	inline_cnstr_jobdesc_rng_instantiation(desc);
	ret = run_descriptor_jr(desc);

	if (ret)
		printf("RNG: Instantiation failed with error %x\n", ret);

	rdsta_val = sec_in32(&rng->rdsta);
	if (op.status || !(rdsta_val & RNG_STATE0_HANDLE_INSTANTIATED))
		return -1;

	return ret;
}
Ejemplo n.º 8
0
static int instantiate_rng(void)
{
	struct result op;
	u32 *desc;
	u32 rdsta_val;
	int ret = 0;
	ccsr_sec_t __iomem *sec =
			(ccsr_sec_t __iomem *)CONFIG_SYS_FSL_SEC_ADDR;
	struct rng4tst __iomem *rng =
			(struct rng4tst __iomem *)&sec->rng;

	memset(&op, 0, sizeof(struct result));

	desc = memalign(ARCH_DMA_MINALIGN, sizeof(uint32_t) * 6);
	if (!desc) {
		printf("cannot allocate RNG init descriptor memory\n");
		return -1;
	}

	inline_cnstr_jobdesc_rng_instantiation(desc);
	int size = roundup(sizeof(uint32_t) * 6, ARCH_DMA_MINALIGN);
	flush_dcache_range((unsigned long)desc,
			   (unsigned long)desc + size);

	ret = run_descriptor_jr(desc);

	if (ret)
		printf("RNG: Instantiation failed with error %x\n", ret);

	rdsta_val = sec_in32(&rng->rdsta);
	if (op.status || !(rdsta_val & RNG_STATE0_HANDLE_INSTANTIATED))
		return -1;

	return ret;
}
Ejemplo n.º 9
0
static u8 get_rng_vid(void)
{
	ccsr_sec_t *sec = (void *)CONFIG_SYS_FSL_SEC_ADDR;
	u32 cha_vid = sec_in32(&sec->chavid_ls);

	return (cha_vid & SEC_CHAVID_RNG_LS_MASK) >> SEC_CHAVID_LS_RNG_SHIFT;
}
Ejemplo n.º 10
0
int sec_init(void)
{
	int ret = 0;

#ifdef CONFIG_PHYS_64BIT
	ccsr_sec_t *sec = (void *)CONFIG_SYS_FSL_SEC_ADDR;
	uint32_t mcr = sec_in32(&sec->mcfgr);

	sec_out32(&sec->mcfgr, mcr | 1 << MCFGR_PS_SHIFT);
#endif
	ret = jr_init();
	if (ret < 0) {
		printf("SEC initialization failed\n");
		return -1;
	}

	if (get_rng_vid() >= 4) {
		if (rng_init() < 0) {
			printf("RNG instantiation failed\n");
			return -1;
		}
		printf("SEC: RNG instantiated\n");
	}

	return ret;
}
Ejemplo n.º 11
0
static inline void jr_disable_irq(void)
{
	struct jr_regs *regs = (struct jr_regs *)CONFIG_SYS_FSL_JR0_ADDR;
	uint32_t jrcfg = sec_in32(&regs->jrcfg1);

	jrcfg = jrcfg | JR_INTMASK;

	sec_out32(&regs->jrcfg1, jrcfg);
}
Ejemplo n.º 12
0
	/* else we got called for possible uprev */
	for (sec_idx = 0; sec_idx < ARRAY_SIZE(sec_rev_prop_list); sec_idx++)
		if (sec_rev_prop_list[sec_idx].sec_rev == sec_rev)
			break;

	if (sec_idx == ARRAY_SIZE(sec_rev_prop_list)) {
		puts("warning: unknown SEC revision number\n");
		return;
	}

	val = cpu_to_fdt32(sec_rev_prop_list[sec_idx].num_channels);
	err = fdt_setprop(blob, crypto_node, "fsl,num-channels", &val, 4);
	if (err < 0)
		printf("WARNING: could not set crypto property: %s\n",
		       fdt_strerror(err));

	val = cpu_to_fdt32(sec_rev_prop_list[sec_idx].descriptor_types_mask);
	err = fdt_setprop(blob, crypto_node, "fsl,descriptor-types-mask", &val, 4);
	if (err < 0)
		printf("WARNING: could not set crypto property: %s\n",
		       fdt_strerror(err));

	val = cpu_to_fdt32(sec_rev_prop_list[sec_idx].exec_units_mask);
	err = fdt_setprop(blob, crypto_node, "fsl,exec-units-mask", &val, 4);
	if (err < 0)
		printf("WARNING: could not set crypto property: %s\n",
		       fdt_strerror(err));

	val = cpu_to_fdt32(sec_rev_prop_list[sec_idx].channel_fifo_len);
	err = fdt_setprop(blob, crypto_node, "fsl,channel-fifo-len", &val, 4);
	if (err < 0)
		printf("WARNING: could not set crypto property: %s\n",
		       fdt_strerror(err));

	val = 0;
	while (sec_idx >= 0) {
		p = compat_strlist + val;
		val += sprintf(p, "fsl,sec%d.%d",
			(sec_rev_prop_list[sec_idx].sec_rev & 0xff00) >> 8,
			sec_rev_prop_list[sec_idx].sec_rev & 0x00ff) + 1;
		sec_idx--;
	}
	err = fdt_setprop(blob, crypto_node, "compatible", &compat_strlist, val);
	if (err < 0)
		printf("WARNING: could not set crypto property: %s\n",
		       fdt_strerror(err));
}
#elif CONFIG_SYS_FSL_SEC_COMPAT >= 4  /* SEC4 */
static u8 caam_get_era(void)
{
	static const struct {
		u16 ip_id;
		u8 maj_rev;
		u8 era;
	} caam_eras[] = {
		{0x0A10, 1, 1},
		{0x0A10, 2, 2},
		{0x0A12, 1, 3},
		{0x0A14, 1, 3},
		{0x0A14, 2, 4},
		{0x0A16, 1, 4},
		{0x0A10, 3, 4},
		{0x0A11, 1, 4},
		{0x0A18, 1, 4},
		{0x0A11, 2, 5},
		{0x0A12, 2, 5},
		{0x0A13, 1, 5},
		{0x0A1C, 1, 5}
	};

	ccsr_sec_t __iomem *sec = (void __iomem *)CONFIG_SYS_FSL_SEC_ADDR;
	u32 secvid_ms = sec_in32(&sec->secvid_ms);
	u32 ccbvid = sec_in32(&sec->ccbvid);
	u16 ip_id = (secvid_ms & SEC_SECVID_MS_IPID_MASK) >>
				SEC_SECVID_MS_IPID_SHIFT;
	u8 maj_rev = (secvid_ms & SEC_SECVID_MS_MAJ_REV_MASK) >>
				SEC_SECVID_MS_MAJ_REV_SHIFT;
	u8 era = (ccbvid & SEC_CCBVID_ERA_MASK) >> SEC_CCBVID_ERA_SHIFT;

	int i;

	if (era)	/* This is '0' prior to CAAM ERA-6 */
		return era;

	for (i = 0; i < ARRAY_SIZE(caam_eras); i++)
		if (caam_eras[i].ip_id == ip_id &&
		    caam_eras[i].maj_rev == maj_rev)
			return caam_eras[i].era;

	return 0;
}
Ejemplo n.º 13
0
void ft_cpu_setup(void *blob, bd_t *bd)
{
	struct ccsr_gur __iomem *gur = (void *)(CONFIG_SYS_FSL_GUTS_ADDR);
	unsigned int svr = gur_in32(&gur->svr);

	/* delete crypto node if not on an E-processor */
	if (!IS_E_PROCESSOR(svr))
		fdt_fixup_crypto_node(blob, 0);
#if CONFIG_SYS_FSL_SEC_COMPAT >= 4
	else {
		ccsr_sec_t __iomem *sec;

#ifdef CONFIG_ARMV8_SEC_FIRMWARE_SUPPORT
		if (fdt_fixup_kaslr(blob))
			fdt_fixup_remove_jr(blob);
#endif

		sec = (void __iomem *)CONFIG_SYS_FSL_SEC_ADDR;
		fdt_fixup_crypto_node(blob, sec_in32(&sec->secvid_ms));
	}
#endif

#ifdef CONFIG_MP
	ft_fixup_cpu(blob);
#endif

#ifdef CONFIG_SYS_NS16550
	do_fixup_by_compat_u32(blob, "fsl,ns16550",
			       "clock-frequency", CONFIG_SYS_NS16550_CLK, 1);
#endif

	do_fixup_by_path_u32(blob, "/sysclk", "clock-frequency",
			     CONFIG_SYS_CLK_FREQ, 1);

#ifdef CONFIG_PCI
	ft_pci_setup(blob, bd);
#endif

#ifdef CONFIG_FSL_ESDHC
	fdt_fixup_esdhc(blob, bd);
#endif

#ifdef CONFIG_SYS_DPAA_FMAN
	fdt_fixup_fman_firmware(blob);
#endif
#ifndef CONFIG_ARCH_LS1012A
	fsl_fdt_disable_usb(blob);
#endif
#ifdef CONFIG_HAS_FEATURE_GIC64K_ALIGN
	fdt_fixup_gic(blob);
#endif
#ifdef CONFIG_HAS_FEATURE_ENHANCED_MSI
	fdt_fixup_msi(blob);
#endif
}
Ejemplo n.º 14
0
static inline void start_jr0(void)
{
	ccsr_sec_t *sec = (void *)CONFIG_SYS_FSL_SEC_ADDR;
	u32 ctpr_ms = sec_in32(&sec->ctpr_ms);
	u32 scfgr = sec_in32(&sec->scfgr);

	if (ctpr_ms & SEC_CTPR_MS_VIRT_EN_INCL) {
		/* VIRT_EN_INCL = 1 & VIRT_EN_POR = 1 or
		 * VIRT_EN_INCL = 1 & VIRT_EN_POR = 0 & SEC_SCFGR_VIRT_EN = 1
		 */
		if ((ctpr_ms & SEC_CTPR_MS_VIRT_EN_POR) ||
		    (!(ctpr_ms & SEC_CTPR_MS_VIRT_EN_POR) &&
					(scfgr & SEC_SCFGR_VIRT_EN)))
			sec_out32(&sec->jrstartr, CONFIG_JRSTARTR_JR0);
	} else {
		/* VIRT_EN_INCL = 0 && VIRT_EN_POR_VALUE = 1 */
		if (ctpr_ms & SEC_CTPR_MS_VIRT_EN_POR)
			sec_out32(&sec->jrstartr, CONFIG_JRSTARTR_JR0);
	}
}
Ejemplo n.º 15
0
static int jr_dequeue(void)
{
	struct jr_regs *regs = (struct jr_regs *)CONFIG_SYS_FSL_JR0_ADDR;
	int head = jr.head;
	int tail = jr.tail;
	int idx, i, found;
	void (*callback)(uint32_t desc, uint32_t status, void *arg);
	void *arg = NULL;

	while (sec_in32(&regs->orsf) && CIRC_CNT(jr.head, jr.tail, jr.size)) {
		found = 0;

		dma_addr_t op_desc = jr.output_ring[jr.tail].desc;
		uint32_t status = jr.output_ring[jr.tail].status;
		uint32_t desc_virt;

		for (i = 0; CIRC_CNT(head, tail + i, jr.size) >= 1; i++) {
			idx = (tail + i) & (jr.size - 1);
			if (op_desc == jr.info[idx].desc_phys_addr) {
				desc_virt = jr.info[idx].desc_addr;
				found = 1;
				break;
			}
		}

		/* Error condition if match not found */
		if (!found)
			return -1;

		jr.info[idx].op_done = 1;
		callback = (void *)jr.info[idx].callback;
		arg = jr.info[idx].arg;

		/* When the job on tail idx gets done, increment
		 * tail till the point where job completed out of oredr has
		 * been taken into account
		 */
		if (idx == tail)
			do {
				tail = (tail + 1) & (jr.size - 1);
			} while (jr.info[tail].op_done);

		jr.tail = tail;
		jr.read_idx = (jr.read_idx + 1) & (jr.size - 1);

		sec_out32(&regs->orjr, 1);
		jr.info[idx].op_done = 0;

		callback(desc_virt, status, arg);
	}

	return 0;
}
Ejemplo n.º 16
0
void ft_cpu_setup(void *blob, bd_t *bd)
{
#ifdef CONFIG_FSL_LSCH2
	struct ccsr_gur __iomem *gur = (void *)(CONFIG_SYS_FSL_GUTS_ADDR);
	unsigned int svr = in_be32(&gur->svr);

	/* delete crypto node if not on an E-processor */
	if (!IS_E_PROCESSOR(svr))
		fdt_fixup_crypto_node(blob, 0);
#if CONFIG_SYS_FSL_SEC_COMPAT >= 4
	else {
		ccsr_sec_t __iomem *sec;

		sec = (void __iomem *)CONFIG_SYS_FSL_SEC_ADDR;
		fdt_fixup_crypto_node(blob, sec_in32(&sec->secvid_ms));
	}
#endif
#endif

#ifdef CONFIG_MP
	ft_fixup_cpu(blob);
#endif

#ifdef CONFIG_SYS_NS16550
	do_fixup_by_compat_u32(blob, "fsl,ns16550",
			       "clock-frequency", CONFIG_SYS_NS16550_CLK, 1);
#endif

	do_fixup_by_compat_u32(blob, "fixed-clock",
			       "clock-frequency", CONFIG_SYS_CLK_FREQ, 1);

#ifdef CONFIG_PCI
	ft_pci_setup(blob, bd);
#endif

#ifdef CONFIG_FSL_ESDHC
	fdt_fixup_esdhc(blob, bd);
#endif

#ifdef CONFIG_SYS_DPAA_FMAN
	fdt_fixup_fman_firmware(blob);
#endif
	fsl_fdt_disable_usb(blob);

}
Ejemplo n.º 17
0
static int rng_init(void)
{
	int ret, ent_delay = RTSDCTL_ENT_DLY_MIN;
	ccsr_sec_t __iomem *sec =
			(ccsr_sec_t __iomem *)CONFIG_SYS_FSL_SEC_ADDR;
	struct rng4tst __iomem *rng =
			(struct rng4tst __iomem *)&sec->rng;

	u32 rdsta = sec_in32(&rng->rdsta);

	/* Check if RNG state 0 handler is already instantiated */
	if (rdsta & RNG_STATE0_HANDLE_INSTANTIATED)
		return 0;

	do {
		/*
		 * If either of the SH's were instantiated by somebody else
		 * then it is assumed that the entropy
		 * parameters are properly set and thus the function
		 * setting these (kick_trng(...)) is skipped.
		 * Also, if a handle was instantiated, do not change
		 * the TRNG parameters.
		 */
		kick_trng(ent_delay);
		ent_delay += 400;
		/*
		 * if instantiate_rng(...) fails, the loop will rerun
		 * and the kick_trng(...) function will modfiy the
		 * upper and lower limits of the entropy sampling
		 * interval, leading to a sucessful initialization of
		 * the RNG.
		 */
		ret = instantiate_rng();
	} while ((ret == -1) && (ent_delay < RTSDCTL_ENT_DLY_MAX));
	if (ret) {
		printf("RNG: Failed to instantiate RNG\n");
		return ret;
	}

	 /* Enable RDB bit so that RNG works faster */
	sec_setbits32(&sec->scfgr, SEC_SCFGR_RDBENABLE);

	return ret;
}
Ejemplo n.º 18
0
/**
* blob_dek() - Encapsulate the DEK as a blob using CAM's Key
* @src: - Address of data to be encapsulated
* @dst: - Desination address of encapsulated data
* @len: - Size of data to be encapsulated
*
* Returns zero on success,and negative on error.
*/
static int blob_encap_dek(const u8 *src, u8 *dst, u32 len)
{
	int ret = 0;
	u32 jr_size = 4;

	u32 out_jr_size = sec_in32(CONFIG_SYS_FSL_JR0_ADDR + 0x102c);
	if (out_jr_size != jr_size) {
		hab_caam_clock_enable(1);
		sec_init();
	}

	if (!((len == 128) | (len == 192) | (len == 256))) {
		debug("Invalid DEK size. Valid sizes are 128, 192 and 256b\n");
		return -1;
	}

	len /= 8;
	ret = blob_dek(src, dst, len);

	return ret;
}
Ejemplo n.º 19
0
/*
 * By default, the TRNG runs for 200 clocks per sample;
 * 1200 clocks per sample generates better entropy.
 */
static void kick_trng(int ent_delay)
{
	ccsr_sec_t __iomem *sec =
			(ccsr_sec_t __iomem *)CONFIG_SYS_FSL_SEC_ADDR;
	struct rng4tst __iomem *rng =
			(struct rng4tst __iomem *)&sec->rng;
	u32 val;

	/* put RNG4 into program mode */
	sec_setbits32(&rng->rtmctl, RTMCTL_PRGM);
	/* rtsdctl bits 0-15 contain "Entropy Delay, which defines the
	 * length (in system clocks) of each Entropy sample taken
	 * */
	val = sec_in32(&rng->rtsdctl);
	val = (val & ~RTSDCTL_ENT_DLY_MASK) |
	      (ent_delay << RTSDCTL_ENT_DLY_SHIFT);
	sec_out32(&rng->rtsdctl, val);
	/* min. freq. count, equal to 1/4 of the entropy sample length */
	sec_out32(&rng->rtfreqmin, ent_delay >> 2);
	/* max. freq. count, equal to 8 times the entropy sample length */
	sec_out32(&rng->rtfreqmax, ent_delay << 3);
	/* put RNG4 into run mode */
	sec_clrbits32(&rng->rtmctl, RTMCTL_PRGM);
}
Ejemplo n.º 20
0
/* -1 --- error, can't enqueue -- no space available */
static int jr_enqueue(uint32_t *desc_addr,
	       void (*callback)(uint32_t status, void *arg),
	       void *arg)
{
	struct jr_regs *regs = (struct jr_regs *)CONFIG_SYS_FSL_JR0_ADDR;
	int head = jr.head;
	uint32_t desc_word;
	int length = desc_len(desc_addr);
	int i;
#ifdef CONFIG_PHYS_64BIT
	uint32_t *addr_hi, *addr_lo;
#endif

	/* The descriptor must be submitted to SEC block as per endianness
	 * of the SEC Block.
	 * So, if the endianness of Core and SEC block is different, each word
	 * of the descriptor will be byte-swapped.
	 */
	for (i = 0; i < length; i++) {
		desc_word = desc_addr[i];
		sec_out32((uint32_t *)&desc_addr[i], desc_word);
	}

	phys_addr_t desc_phys_addr = virt_to_phys(desc_addr);

	if (sec_in32(&regs->irsa) == 0 ||
	    CIRC_SPACE(jr.head, jr.tail, jr.size) <= 0)
		return -1;

	jr.info[head].desc_phys_addr = desc_phys_addr;
	jr.info[head].callback = (void *)callback;
	jr.info[head].arg = arg;
	jr.info[head].op_done = 0;

	unsigned long start = (unsigned long)&jr.info[head] &
					~(ARCH_DMA_MINALIGN - 1);
	unsigned long end = ALIGN((unsigned long)&jr.info[head] +
				  sizeof(struct jr_info), ARCH_DMA_MINALIGN);
	flush_dcache_range(start, end);

#ifdef CONFIG_PHYS_64BIT
	/* Write the 64 bit Descriptor address on Input Ring.
	 * The 32 bit hign and low part of the address will
	 * depend on endianness of SEC block.
	 */
#ifdef CONFIG_SYS_FSL_SEC_LE
	addr_lo = (uint32_t *)(&jr.input_ring[head]);
	addr_hi = (uint32_t *)(&jr.input_ring[head]) + 1;
#elif defined(CONFIG_SYS_FSL_SEC_BE)
	addr_hi = (uint32_t *)(&jr.input_ring[head]);
	addr_lo = (uint32_t *)(&jr.input_ring[head]) + 1;
#endif /* ifdef CONFIG_SYS_FSL_SEC_LE */

	sec_out32(addr_hi, (uint32_t)(desc_phys_addr >> 32));
	sec_out32(addr_lo, (uint32_t)(desc_phys_addr));

#else
	/* Write the 32 bit Descriptor address on Input Ring. */
	sec_out32(&jr.input_ring[head], desc_phys_addr);
#endif /* ifdef CONFIG_PHYS_64BIT */

	start = (unsigned long)&jr.input_ring[head] & ~(ARCH_DMA_MINALIGN - 1);
	end = ALIGN((unsigned long)&jr.input_ring[head] +
		     sizeof(dma_addr_t), ARCH_DMA_MINALIGN);
	flush_dcache_range(start, end);

	jr.head = (head + 1) & (jr.size - 1);

	/* Invalidate output ring */
	start = (unsigned long)jr.output_ring &
					~(ARCH_DMA_MINALIGN - 1);
	end = ALIGN((unsigned long)jr.output_ring + jr.op_size,
		     ARCH_DMA_MINALIGN);
	invalidate_dcache_range(start, end);

	sec_out32(&regs->irja, 1);

	return 0;
}
Ejemplo n.º 21
0
static int jr_dequeue(void)
{
	struct jr_regs *regs = (struct jr_regs *)CONFIG_SYS_FSL_JR0_ADDR;
	int head = jr.head;
	int tail = jr.tail;
	int idx, i, found;
	void (*callback)(uint32_t status, void *arg);
	void *arg = NULL;
#ifdef CONFIG_PHYS_64BIT
	uint32_t *addr_hi, *addr_lo;
#else
	uint32_t *addr;
#endif

	while (sec_in32(&regs->orsf) && CIRC_CNT(jr.head, jr.tail, jr.size)) {

		found = 0;

		phys_addr_t op_desc;
	#ifdef CONFIG_PHYS_64BIT
		/* Read the 64 bit Descriptor address from Output Ring.
		 * The 32 bit hign and low part of the address will
		 * depend on endianness of SEC block.
		 */
	#ifdef CONFIG_SYS_FSL_SEC_LE
		addr_lo = (uint32_t *)(&jr.output_ring[jr.tail].desc);
		addr_hi = (uint32_t *)(&jr.output_ring[jr.tail].desc) + 1;
	#elif defined(CONFIG_SYS_FSL_SEC_BE)
		addr_hi = (uint32_t *)(&jr.output_ring[jr.tail].desc);
		addr_lo = (uint32_t *)(&jr.output_ring[jr.tail].desc) + 1;
	#endif /* ifdef CONFIG_SYS_FSL_SEC_LE */

		op_desc = ((u64)sec_in32(addr_hi) << 32) |
			  ((u64)sec_in32(addr_lo));

	#else
		/* Read the 32 bit Descriptor address from Output Ring. */
		addr = (uint32_t *)&jr.output_ring[jr.tail].desc;
		op_desc = sec_in32(addr);
	#endif /* ifdef CONFIG_PHYS_64BIT */

		uint32_t status = sec_in32(&jr.output_ring[jr.tail].status);

		for (i = 0; CIRC_CNT(head, tail + i, jr.size) >= 1; i++) {
			idx = (tail + i) & (jr.size - 1);
			if (op_desc == jr.info[idx].desc_phys_addr) {
				found = 1;
				break;
			}
		}

		/* Error condition if match not found */
		if (!found)
			return -1;

		jr.info[idx].op_done = 1;
		callback = (void *)jr.info[idx].callback;
		arg = jr.info[idx].arg;

		/* When the job on tail idx gets done, increment
		 * tail till the point where job completed out of oredr has
		 * been taken into account
		 */
		if (idx == tail)
			do {
				tail = (tail + 1) & (jr.size - 1);
			} while (jr.info[tail].op_done);

		jr.tail = tail;
		jr.read_idx = (jr.read_idx + 1) & (jr.size - 1);

		sec_out32(&regs->orjr, 1);
		jr.info[idx].op_done = 0;

		callback(status, arg);
	}

	return 0;
}
Ejemplo n.º 22
0
int sec_init(void)
{
	ccsr_sec_t *sec = (void *)CONFIG_SYS_FSL_SEC_ADDR;
	uint32_t mcr = sec_in32(&sec->mcfgr);
	int ret = 0;

#ifdef CONFIG_FSL_CORENET
	uint32_t liodnr;
	uint32_t liodn_ns;
	uint32_t liodn_s;
#endif

	/*
	 * Modifying CAAM Read/Write Attributes
	 * For LS2080A
	 * For AXI Write - Cacheable, Write Back, Write allocate
	 * For AXI Read - Cacheable, Read allocate
	 * Only For LS2080a, to solve CAAM coherency issues
	 */
#ifdef CONFIG_LS2080A
	mcr = (mcr & ~MCFGR_AWCACHE_MASK) | (0xb << MCFGR_AWCACHE_SHIFT);
	mcr = (mcr & ~MCFGR_ARCACHE_MASK) | (0x6 << MCFGR_ARCACHE_SHIFT);
#else
	mcr = (mcr & ~MCFGR_AWCACHE_MASK) | (0x2 << MCFGR_AWCACHE_SHIFT);
#endif

#ifdef CONFIG_PHYS_64BIT
	mcr |= (1 << MCFGR_PS_SHIFT);
#endif
	sec_out32(&sec->mcfgr, mcr);

#ifdef CONFIG_FSL_CORENET
	liodnr = sec_in32(&sec->jrliodnr[0].ls);
	liodn_ns = (liodnr & JRNSLIODN_MASK) >> JRNSLIODN_SHIFT;
	liodn_s = (liodnr & JRSLIODN_MASK) >> JRSLIODN_SHIFT;
#endif

	ret = jr_init();
	if (ret < 0) {
		printf("SEC initialization failed\n");
		return -1;
	}

#ifdef CONFIG_FSL_CORENET
	ret = sec_config_pamu_table(liodn_ns, liodn_s);
	if (ret < 0)
		return -1;

	pamu_enable();
#endif

	if (get_rng_vid() >= 4) {
		if (rng_init() < 0) {
			printf("RNG instantiation failed\n");
			return -1;
		}
		printf("SEC: RNG instantiated\n");
	}

	return ret;
}
Ejemplo n.º 23
0
int inline_cnstr_jobdesc_blob_dek(uint32_t *desc, const uint8_t *plain_txt,
				       uint8_t *dek_blob, uint32_t in_sz)
{
	ccsr_sec_t *sec = (void *)CONFIG_SYS_FSL_SEC_ADDR;
	uint32_t sm_vid = SM_VERSION(sec_in32(&sec->smvid));
	uint32_t jr_id = 0;

	uint32_t ret = 0;
	u32 aad_w1, aad_w2;
	/* output blob will have 32 bytes key blob in beginning and
	 * 16 byte HMAC identifier at end of data blob */
	uint32_t out_sz = in_sz + KEY_BLOB_SIZE + MAC_SIZE;
	/* Setting HDR for blob */
	uint8_t wrapped_key_hdr[8] = {HDR_TAG, 0x00, WRP_HDR_SIZE + out_sz,
			     HDR_PAR, HAB_MOD, HAB_ALG, in_sz, HAB_FLG};

	/* initialize the blob array */
	memset(dek_blob, 0, out_sz + 8);
	/* Copy the header into the DEK blob buffer */
	memcpy(dek_blob, wrapped_key_hdr, sizeof(wrapped_key_hdr));

	/* allocating secure memory */
	ret = caam_page_alloc(PAGE_1, PARTITION_1);
	if (ret)
		return ret;

	/* Write DEK to secure memory */
	memcpy((uint32_t *)SEC_MEM_PAGE1, (uint32_t *)plain_txt, in_sz);

	unsigned long start = (unsigned long)SEC_MEM_PAGE1 &
				~(ARCH_DMA_MINALIGN - 1);
	unsigned long end = ALIGN(start + 0x1000, ARCH_DMA_MINALIGN);
	flush_dcache_range(start, end);

	/* Now configure the access rights of the partition */
	sec_out32(CAAM_SMAG1JR(sm_vid, jr_id, PARTITION_1), KS_G1);
	sec_out32(CAAM_SMAG2JR(sm_vid, jr_id, PARTITION_1), 0);
	sec_out32(CAAM_SMAPJR(sm_vid, jr_id, PARTITION_1), PERM);

	/* construct aad for AES */
	aad_w1 = (in_sz << OP_ALG_ALGSEL_SHIFT) | KEY_AES_SRC | LD_CCM_MODE;
	aad_w2 = 0x0;

	init_job_desc(desc, 0);

	append_cmd(desc, CMD_LOAD | CLASS_2 | KEY_IMM | KEY_ENC |
				(0x0c << LDST_OFFSET_SHIFT) | 0x08);

	append_u32(desc, aad_w1);

	append_u32(desc, aad_w2);

	append_cmd_ptr(desc, (dma_addr_t)SEC_MEM_PAGE1, in_sz, CMD_SEQ_IN_PTR);

	append_cmd_ptr(desc, (dma_addr_t)dek_blob + 8, out_sz, CMD_SEQ_OUT_PTR);

	append_operation(desc, OP_TYPE_ENCAP_PROTOCOL | OP_PCLID_BLOB |
						OP_PCLID_SECMEM);

	return ret;
}
Ejemplo n.º 24
0
void ft_cpu_setup(void *blob, bd_t *bd)
{
	int off;
	int val;
	const char *sysclk_path;
	struct ccsr_gur __iomem *gur = (void *)(CONFIG_SYS_FSL_GUTS_ADDR);
	unsigned int svr;
	svr = in_be32(&gur->svr);

	unsigned long busclk = get_bus_freq(0);

	/* delete crypto node if not on an E-processor */
	if (!IS_E_PROCESSOR(svr))
		fdt_fixup_crypto_node(blob, 0);
#if CONFIG_SYS_FSL_SEC_COMPAT >= 4
	else {
		ccsr_sec_t __iomem *sec;

		sec = (void __iomem *)CONFIG_SYS_FSL_SEC_ADDR;
		fdt_fixup_crypto_node(blob, sec_in32(&sec->secvid_ms));
	}
#endif

	off = fdt_node_offset_by_prop_value(blob, -1, "device_type", "cpu", 4);
	while (off != -FDT_ERR_NOTFOUND) {
		val = gd->cpu_clk;
		fdt_setprop(blob, off, "clock-frequency", &val, 4);
		off = fdt_node_offset_by_prop_value(blob, off,
						    "device_type", "cpu", 4);
	}

	do_fixup_by_prop_u32(blob, "device_type", "soc",
			     4, "bus-frequency", busclk, 1);

	ft_fixup_enet_phy_connect_type(blob);

#ifdef CONFIG_SYS_NS16550
	do_fixup_by_compat_u32(blob, "fsl,16550-FIFO64",
			       "clock-frequency", CONFIG_SYS_NS16550_CLK, 1);
#endif

	sysclk_path = fdt_get_alias(blob, "sysclk");
	if (sysclk_path)
		do_fixup_by_path_u32(blob, sysclk_path, "clock-frequency",
				     CONFIG_SYS_CLK_FREQ, 1);
	do_fixup_by_compat_u32(blob, "fsl,qoriq-sysclk-2.0",
			       "clock-frequency", CONFIG_SYS_CLK_FREQ, 1);

#if defined(CONFIG_DEEP_SLEEP) && defined(CONFIG_SD_BOOT)
#define UBOOT_HEAD_LEN	0x1000
	/*
	 * Reserved memory in SD boot deep sleep case.
	 * Second stage uboot binary and malloc space should be reserved.
	 * If the memory they occupied has not been reserved, then this
	 * space would be used by kernel and overwritten in uboot when
	 * deep sleep resume, which cause deep sleep failed.
	 * Since second uboot binary has a head, that space need to be
	 * reserved either(assuming its size is less than 0x1000).
	 */
	off = fdt_add_mem_rsv(blob, CONFIG_SYS_TEXT_BASE - UBOOT_HEAD_LEN,
			CONFIG_SYS_MONITOR_LEN + CONFIG_SYS_SPL_MALLOC_SIZE +
			UBOOT_HEAD_LEN);
	if (off < 0)
		printf("Failed to reserve memory for SD boot deep sleep: %s\n",
		       fdt_strerror(off));
#endif

#if defined(CONFIG_FSL_ESDHC)
	fdt_fixup_esdhc(blob, bd);
#endif

	/*
	 * platform bus clock = system bus clock/2
	 * Here busclk = system bus clock
	 * We are using the platform bus clock as 1588 Timer reference
	 * clock source select
	 */
	do_fixup_by_compat_u32(blob, "fsl, gianfar-ptp-timer",
			       "timer-frequency", busclk / 2, 1);

	/*
	 * clock-freq should change to clock-frequency and
	 * flexcan-v1.0 should change to p1010-flexcan respectively
	 * in the future.
	 */
	do_fixup_by_compat_u32(blob, "fsl, flexcan-v1.0",
			       "clock_freq", busclk / 2, 1);

	do_fixup_by_compat_u32(blob, "fsl, flexcan-v1.0",
			       "clock-frequency", busclk / 2, 1);

	do_fixup_by_compat_u32(blob, "fsl, ls1021a-flexcan",
			       "clock-frequency", busclk / 2, 1);

#if defined(CONFIG_QSPI_BOOT) || defined(CONFIG_SD_BOOT_QSPI)
	off = fdt_node_offset_by_compat_reg(blob, FSL_IFC_COMPAT,
					    CONFIG_SYS_IFC_ADDR);
	fdt_set_node_status(blob, off, FDT_STATUS_DISABLED, 0);
#else
	off = fdt_node_offset_by_compat_reg(blob, FSL_QSPI_COMPAT,
					    QSPI0_BASE_ADDR);
	fdt_set_node_status(blob, off, FDT_STATUS_DISABLED, 0);
	off = fdt_node_offset_by_compat_reg(blob, FSL_DSPI_COMPAT,
					    DSPI1_BASE_ADDR);
	fdt_set_node_status(blob, off, FDT_STATUS_DISABLED, 0);
#endif
}