static int jr_hw_reset(void) { struct jr_regs *regs = (struct jr_regs *)CONFIG_SYS_FSL_JR0_ADDR; uint32_t timeout = 100000; uint32_t jrint, jrcr; sec_out32(®s->jrcr, JRCR_RESET); do { jrint = sec_in32(®s->jrint); } while (((jrint & JRINT_ERR_HALT_MASK) == JRINT_ERR_HALT_INPROGRESS) && --timeout); jrint = sec_in32(®s->jrint); if (((jrint & JRINT_ERR_HALT_MASK) != JRINT_ERR_HALT_INPROGRESS) && timeout == 0) return -1; timeout = 100000; sec_out32(®s->jrcr, JRCR_RESET); do { jrcr = sec_in32(®s->jrcr); } while ((jrcr & JRCR_RESET) && --timeout); if (timeout == 0) return -1; return 0; }
int sec_reset(void) { ccsr_sec_t *sec = (void *)CONFIG_SYS_FSL_SEC_ADDR; uint32_t mcfgr = sec_in32(&sec->mcfgr); uint32_t timeout = 100000; mcfgr |= MCFGR_SWRST; sec_out32(&sec->mcfgr, mcfgr); mcfgr |= MCFGR_DMA_RST; sec_out32(&sec->mcfgr, mcfgr); do { mcfgr = sec_in32(&sec->mcfgr); } while ((mcfgr & MCFGR_DMA_RST) == MCFGR_DMA_RST && --timeout); if (timeout == 0) return -1; timeout = 100000; do { mcfgr = sec_in32(&sec->mcfgr); } while ((mcfgr & MCFGR_SWRST) == MCFGR_SWRST && --timeout); if (timeout == 0) return -1; return 0; }
/* * By default, the TRNG runs for 200 clocks per sample; * 1200 clocks per sample generates better entropy. */ static void kick_trng(int ent_delay) { ccsr_sec_t __iomem *sec = (ccsr_sec_t __iomem *)CONFIG_SYS_FSL_SEC_ADDR; struct rng4tst __iomem *rng = (struct rng4tst __iomem *)&sec->rng; u32 val; /* put RNG4 into program mode */ sec_setbits32(&rng->rtmctl, RTMCTL_PRGM); /* rtsdctl bits 0-15 contain "Entropy Delay, which defines the * length (in system clocks) of each Entropy sample taken * */ val = sec_in32(&rng->rtsdctl); val = (val & ~RTSDCTL_ENT_DLY_MASK) | (ent_delay << RTSDCTL_ENT_DLY_SHIFT); sec_out32(&rng->rtsdctl, val); /* min. freq. count, equal to 1/4 of the entropy sample length */ sec_out32(&rng->rtfreqmin, ent_delay >> 2); /* disable maximum frequency count */ sec_out32(&rng->rtfreqmax, RTFRQMAX_DISABLE); /* read the control register */ val = sec_in32(&rng->rtmctl); /* * select raw sampling in both entropy shifter * and statistical checker */ sec_setbits32(&val, RTMCTL_SAMP_MODE_RAW_ES_SC); /* put RNG4 into run mode */ sec_clrbits32(&val, RTMCTL_PRGM); /* write back the control register */ sec_out32(&rng->rtmctl, val); }
/*! * CAAM page allocation: * Allocates a partition from secure memory, with the id * equal to partion_num. This will de-allocate the page * if it is already allocated. The partition will have * full access permissions. The permissions are set before, * running a job descriptor. A memory page of secure RAM * is allocated for the partition. * * @param page Number of the page to allocate. * @param partition Number of the partition to allocate. * @return 0 on success, ERROR_IN_PAGE_ALLOC otherwise */ int caam_page_alloc(uint8_t page_num, uint8_t partition_num) { uint32_t temp_reg; ccsr_sec_t *sec = (void *)CONFIG_SYS_FSL_SEC_ADDR; uint32_t sm_vid = SM_VERSION(sec_in32(&sec->smvid)); uint32_t jr_id = 0; /* * De-Allocate partition_num if already allocated to ARM core */ if (sec_in32(CAAM_SMPO_0) & PARTITION_OWNER(partition_num)) { temp_reg = secmem_set_cmd(PARTITION(partition_num) | CMD_PART_DEALLOC); if (temp_reg & SMCSJR_AERR) { printf("Error: De-allocation status 0x%X\n", temp_reg); return ERROR_IN_PAGE_ALLOC; } } /* set the access rights to allow full access */ sec_out32(CAAM_SMAG1JR(sm_vid, jr_id, partition_num), 0xF); sec_out32(CAAM_SMAG2JR(sm_vid, jr_id, partition_num), 0xF); sec_out32(CAAM_SMAPJR(sm_vid, jr_id, partition_num), 0xFF); /* Now need to allocate partition_num of secure RAM. */ /* De-Allocate page_num by starting with a page inquiry command */ temp_reg = secmem_set_cmd(PAGE(page_num) | CMD_INQUIRY); /* if the page is owned, de-allocate it */ if ((temp_reg & SMCSJR_PO) == PAGE_OWNED) { temp_reg = secmem_set_cmd(PAGE(page_num) | CMD_PAGE_DEALLOC); if (temp_reg & SMCSJR_AERR) { printf("Error: Allocation status 0x%X\n", temp_reg); return ERROR_IN_PAGE_ALLOC; } } /* Allocate page_num to partition_num */ temp_reg = secmem_set_cmd(PAGE(page_num) | PARTITION(partition_num) | CMD_PAGE_ALLOC); if (temp_reg & SMCSJR_AERR) { printf("Error: Allocation status 0x%X\n", temp_reg); return ERROR_IN_PAGE_ALLOC; } /* page inquiry command to ensure that the page was allocated */ temp_reg = secmem_set_cmd(PAGE(page_num) | CMD_INQUIRY); /* if the page is not owned => problem */ if ((temp_reg & SMCSJR_PO) != PAGE_OWNED) { printf("Allocation of page %d in partition %d failed 0x%X\n", temp_reg, page_num, partition_num); return ERROR_IN_PAGE_ALLOC; } return 0; }
/*! * Secure memory run command * * @param sec_mem_cmd Secure memory command register * @return cmd_status Secure memory command status register */ uint32_t secmem_set_cmd(uint32_t sec_mem_cmd) { uint32_t temp_reg; ccsr_sec_t *sec = (void *)CONFIG_SYS_FSL_SEC_ADDR; uint32_t sm_vid = SM_VERSION(sec_in32(&sec->smvid)); uint32_t jr_id = 0; sec_out32(CAAM_SMCJR(sm_vid, jr_id), sec_mem_cmd); do { temp_reg = sec_in32(CAAM_SMCSJR(sm_vid, jr_id)); } while (temp_reg & CMD_COMPLETE); return temp_reg; }
/* -1 --- error, can't enqueue -- no space available */ static int jr_enqueue(uint32_t *desc_addr, void (*callback)(uint32_t desc, uint32_t status, void *arg), void *arg) { struct jr_regs *regs = (struct jr_regs *)CONFIG_SYS_FSL_JR0_ADDR; int head = jr.head; dma_addr_t desc_phys_addr = virt_to_phys(desc_addr); if (sec_in32(®s->irsa) == 0 || CIRC_SPACE(jr.head, jr.tail, jr.size) <= 0) return -1; jr.input_ring[head] = desc_phys_addr; jr.info[head].desc_phys_addr = desc_phys_addr; jr.info[head].desc_addr = (uint32_t)desc_addr; jr.info[head].callback = (void *)callback; jr.info[head].arg = arg; jr.info[head].op_done = 0; jr.head = (head + 1) & (jr.size - 1); sec_out32(®s->irja, 1); return 0; }
static int instantiate_rng(void) { struct result op; u32 *desc; u32 rdsta_val; int ret = 0; ccsr_sec_t __iomem *sec = (ccsr_sec_t __iomem *)CONFIG_SYS_FSL_SEC_ADDR; struct rng4tst __iomem *rng = (struct rng4tst __iomem *)&sec->rng; memset(&op, 0, sizeof(struct result)); desc = malloc(sizeof(int) * 6); if (!desc) { printf("cannot allocate RNG init descriptor memory\n"); return -1; } inline_cnstr_jobdesc_rng_instantiation(desc); ret = run_descriptor_jr(desc); if (ret) printf("RNG: Instantiation failed with error %x\n", ret); rdsta_val = sec_in32(&rng->rdsta); if (op.status || !(rdsta_val & RNG_STATE0_HANDLE_INSTANTIATED)) return -1; return ret; }
static int instantiate_rng(void) { struct result op; u32 *desc; u32 rdsta_val; int ret = 0; ccsr_sec_t __iomem *sec = (ccsr_sec_t __iomem *)CONFIG_SYS_FSL_SEC_ADDR; struct rng4tst __iomem *rng = (struct rng4tst __iomem *)&sec->rng; memset(&op, 0, sizeof(struct result)); desc = memalign(ARCH_DMA_MINALIGN, sizeof(uint32_t) * 6); if (!desc) { printf("cannot allocate RNG init descriptor memory\n"); return -1; } inline_cnstr_jobdesc_rng_instantiation(desc); int size = roundup(sizeof(uint32_t) * 6, ARCH_DMA_MINALIGN); flush_dcache_range((unsigned long)desc, (unsigned long)desc + size); ret = run_descriptor_jr(desc); if (ret) printf("RNG: Instantiation failed with error %x\n", ret); rdsta_val = sec_in32(&rng->rdsta); if (op.status || !(rdsta_val & RNG_STATE0_HANDLE_INSTANTIATED)) return -1; return ret; }
static u8 get_rng_vid(void) { ccsr_sec_t *sec = (void *)CONFIG_SYS_FSL_SEC_ADDR; u32 cha_vid = sec_in32(&sec->chavid_ls); return (cha_vid & SEC_CHAVID_RNG_LS_MASK) >> SEC_CHAVID_LS_RNG_SHIFT; }
int sec_init(void) { int ret = 0; #ifdef CONFIG_PHYS_64BIT ccsr_sec_t *sec = (void *)CONFIG_SYS_FSL_SEC_ADDR; uint32_t mcr = sec_in32(&sec->mcfgr); sec_out32(&sec->mcfgr, mcr | 1 << MCFGR_PS_SHIFT); #endif ret = jr_init(); if (ret < 0) { printf("SEC initialization failed\n"); return -1; } if (get_rng_vid() >= 4) { if (rng_init() < 0) { printf("RNG instantiation failed\n"); return -1; } printf("SEC: RNG instantiated\n"); } return ret; }
static inline void jr_disable_irq(void) { struct jr_regs *regs = (struct jr_regs *)CONFIG_SYS_FSL_JR0_ADDR; uint32_t jrcfg = sec_in32(®s->jrcfg1); jrcfg = jrcfg | JR_INTMASK; sec_out32(®s->jrcfg1, jrcfg); }
/* else we got called for possible uprev */ for (sec_idx = 0; sec_idx < ARRAY_SIZE(sec_rev_prop_list); sec_idx++) if (sec_rev_prop_list[sec_idx].sec_rev == sec_rev) break; if (sec_idx == ARRAY_SIZE(sec_rev_prop_list)) { puts("warning: unknown SEC revision number\n"); return; } val = cpu_to_fdt32(sec_rev_prop_list[sec_idx].num_channels); err = fdt_setprop(blob, crypto_node, "fsl,num-channels", &val, 4); if (err < 0) printf("WARNING: could not set crypto property: %s\n", fdt_strerror(err)); val = cpu_to_fdt32(sec_rev_prop_list[sec_idx].descriptor_types_mask); err = fdt_setprop(blob, crypto_node, "fsl,descriptor-types-mask", &val, 4); if (err < 0) printf("WARNING: could not set crypto property: %s\n", fdt_strerror(err)); val = cpu_to_fdt32(sec_rev_prop_list[sec_idx].exec_units_mask); err = fdt_setprop(blob, crypto_node, "fsl,exec-units-mask", &val, 4); if (err < 0) printf("WARNING: could not set crypto property: %s\n", fdt_strerror(err)); val = cpu_to_fdt32(sec_rev_prop_list[sec_idx].channel_fifo_len); err = fdt_setprop(blob, crypto_node, "fsl,channel-fifo-len", &val, 4); if (err < 0) printf("WARNING: could not set crypto property: %s\n", fdt_strerror(err)); val = 0; while (sec_idx >= 0) { p = compat_strlist + val; val += sprintf(p, "fsl,sec%d.%d", (sec_rev_prop_list[sec_idx].sec_rev & 0xff00) >> 8, sec_rev_prop_list[sec_idx].sec_rev & 0x00ff) + 1; sec_idx--; } err = fdt_setprop(blob, crypto_node, "compatible", &compat_strlist, val); if (err < 0) printf("WARNING: could not set crypto property: %s\n", fdt_strerror(err)); } #elif CONFIG_SYS_FSL_SEC_COMPAT >= 4 /* SEC4 */ static u8 caam_get_era(void) { static const struct { u16 ip_id; u8 maj_rev; u8 era; } caam_eras[] = { {0x0A10, 1, 1}, {0x0A10, 2, 2}, {0x0A12, 1, 3}, {0x0A14, 1, 3}, {0x0A14, 2, 4}, {0x0A16, 1, 4}, {0x0A10, 3, 4}, {0x0A11, 1, 4}, {0x0A18, 1, 4}, {0x0A11, 2, 5}, {0x0A12, 2, 5}, {0x0A13, 1, 5}, {0x0A1C, 1, 5} }; ccsr_sec_t __iomem *sec = (void __iomem *)CONFIG_SYS_FSL_SEC_ADDR; u32 secvid_ms = sec_in32(&sec->secvid_ms); u32 ccbvid = sec_in32(&sec->ccbvid); u16 ip_id = (secvid_ms & SEC_SECVID_MS_IPID_MASK) >> SEC_SECVID_MS_IPID_SHIFT; u8 maj_rev = (secvid_ms & SEC_SECVID_MS_MAJ_REV_MASK) >> SEC_SECVID_MS_MAJ_REV_SHIFT; u8 era = (ccbvid & SEC_CCBVID_ERA_MASK) >> SEC_CCBVID_ERA_SHIFT; int i; if (era) /* This is '0' prior to CAAM ERA-6 */ return era; for (i = 0; i < ARRAY_SIZE(caam_eras); i++) if (caam_eras[i].ip_id == ip_id && caam_eras[i].maj_rev == maj_rev) return caam_eras[i].era; return 0; }
void ft_cpu_setup(void *blob, bd_t *bd) { struct ccsr_gur __iomem *gur = (void *)(CONFIG_SYS_FSL_GUTS_ADDR); unsigned int svr = gur_in32(&gur->svr); /* delete crypto node if not on an E-processor */ if (!IS_E_PROCESSOR(svr)) fdt_fixup_crypto_node(blob, 0); #if CONFIG_SYS_FSL_SEC_COMPAT >= 4 else { ccsr_sec_t __iomem *sec; #ifdef CONFIG_ARMV8_SEC_FIRMWARE_SUPPORT if (fdt_fixup_kaslr(blob)) fdt_fixup_remove_jr(blob); #endif sec = (void __iomem *)CONFIG_SYS_FSL_SEC_ADDR; fdt_fixup_crypto_node(blob, sec_in32(&sec->secvid_ms)); } #endif #ifdef CONFIG_MP ft_fixup_cpu(blob); #endif #ifdef CONFIG_SYS_NS16550 do_fixup_by_compat_u32(blob, "fsl,ns16550", "clock-frequency", CONFIG_SYS_NS16550_CLK, 1); #endif do_fixup_by_path_u32(blob, "/sysclk", "clock-frequency", CONFIG_SYS_CLK_FREQ, 1); #ifdef CONFIG_PCI ft_pci_setup(blob, bd); #endif #ifdef CONFIG_FSL_ESDHC fdt_fixup_esdhc(blob, bd); #endif #ifdef CONFIG_SYS_DPAA_FMAN fdt_fixup_fman_firmware(blob); #endif #ifndef CONFIG_ARCH_LS1012A fsl_fdt_disable_usb(blob); #endif #ifdef CONFIG_HAS_FEATURE_GIC64K_ALIGN fdt_fixup_gic(blob); #endif #ifdef CONFIG_HAS_FEATURE_ENHANCED_MSI fdt_fixup_msi(blob); #endif }
static inline void start_jr0(void) { ccsr_sec_t *sec = (void *)CONFIG_SYS_FSL_SEC_ADDR; u32 ctpr_ms = sec_in32(&sec->ctpr_ms); u32 scfgr = sec_in32(&sec->scfgr); if (ctpr_ms & SEC_CTPR_MS_VIRT_EN_INCL) { /* VIRT_EN_INCL = 1 & VIRT_EN_POR = 1 or * VIRT_EN_INCL = 1 & VIRT_EN_POR = 0 & SEC_SCFGR_VIRT_EN = 1 */ if ((ctpr_ms & SEC_CTPR_MS_VIRT_EN_POR) || (!(ctpr_ms & SEC_CTPR_MS_VIRT_EN_POR) && (scfgr & SEC_SCFGR_VIRT_EN))) sec_out32(&sec->jrstartr, CONFIG_JRSTARTR_JR0); } else { /* VIRT_EN_INCL = 0 && VIRT_EN_POR_VALUE = 1 */ if (ctpr_ms & SEC_CTPR_MS_VIRT_EN_POR) sec_out32(&sec->jrstartr, CONFIG_JRSTARTR_JR0); } }
static int jr_dequeue(void) { struct jr_regs *regs = (struct jr_regs *)CONFIG_SYS_FSL_JR0_ADDR; int head = jr.head; int tail = jr.tail; int idx, i, found; void (*callback)(uint32_t desc, uint32_t status, void *arg); void *arg = NULL; while (sec_in32(®s->orsf) && CIRC_CNT(jr.head, jr.tail, jr.size)) { found = 0; dma_addr_t op_desc = jr.output_ring[jr.tail].desc; uint32_t status = jr.output_ring[jr.tail].status; uint32_t desc_virt; for (i = 0; CIRC_CNT(head, tail + i, jr.size) >= 1; i++) { idx = (tail + i) & (jr.size - 1); if (op_desc == jr.info[idx].desc_phys_addr) { desc_virt = jr.info[idx].desc_addr; found = 1; break; } } /* Error condition if match not found */ if (!found) return -1; jr.info[idx].op_done = 1; callback = (void *)jr.info[idx].callback; arg = jr.info[idx].arg; /* When the job on tail idx gets done, increment * tail till the point where job completed out of oredr has * been taken into account */ if (idx == tail) do { tail = (tail + 1) & (jr.size - 1); } while (jr.info[tail].op_done); jr.tail = tail; jr.read_idx = (jr.read_idx + 1) & (jr.size - 1); sec_out32(®s->orjr, 1); jr.info[idx].op_done = 0; callback(desc_virt, status, arg); } return 0; }
void ft_cpu_setup(void *blob, bd_t *bd) { #ifdef CONFIG_FSL_LSCH2 struct ccsr_gur __iomem *gur = (void *)(CONFIG_SYS_FSL_GUTS_ADDR); unsigned int svr = in_be32(&gur->svr); /* delete crypto node if not on an E-processor */ if (!IS_E_PROCESSOR(svr)) fdt_fixup_crypto_node(blob, 0); #if CONFIG_SYS_FSL_SEC_COMPAT >= 4 else { ccsr_sec_t __iomem *sec; sec = (void __iomem *)CONFIG_SYS_FSL_SEC_ADDR; fdt_fixup_crypto_node(blob, sec_in32(&sec->secvid_ms)); } #endif #endif #ifdef CONFIG_MP ft_fixup_cpu(blob); #endif #ifdef CONFIG_SYS_NS16550 do_fixup_by_compat_u32(blob, "fsl,ns16550", "clock-frequency", CONFIG_SYS_NS16550_CLK, 1); #endif do_fixup_by_compat_u32(blob, "fixed-clock", "clock-frequency", CONFIG_SYS_CLK_FREQ, 1); #ifdef CONFIG_PCI ft_pci_setup(blob, bd); #endif #ifdef CONFIG_FSL_ESDHC fdt_fixup_esdhc(blob, bd); #endif #ifdef CONFIG_SYS_DPAA_FMAN fdt_fixup_fman_firmware(blob); #endif fsl_fdt_disable_usb(blob); }
static int rng_init(void) { int ret, ent_delay = RTSDCTL_ENT_DLY_MIN; ccsr_sec_t __iomem *sec = (ccsr_sec_t __iomem *)CONFIG_SYS_FSL_SEC_ADDR; struct rng4tst __iomem *rng = (struct rng4tst __iomem *)&sec->rng; u32 rdsta = sec_in32(&rng->rdsta); /* Check if RNG state 0 handler is already instantiated */ if (rdsta & RNG_STATE0_HANDLE_INSTANTIATED) return 0; do { /* * If either of the SH's were instantiated by somebody else * then it is assumed that the entropy * parameters are properly set and thus the function * setting these (kick_trng(...)) is skipped. * Also, if a handle was instantiated, do not change * the TRNG parameters. */ kick_trng(ent_delay); ent_delay += 400; /* * if instantiate_rng(...) fails, the loop will rerun * and the kick_trng(...) function will modfiy the * upper and lower limits of the entropy sampling * interval, leading to a sucessful initialization of * the RNG. */ ret = instantiate_rng(); } while ((ret == -1) && (ent_delay < RTSDCTL_ENT_DLY_MAX)); if (ret) { printf("RNG: Failed to instantiate RNG\n"); return ret; } /* Enable RDB bit so that RNG works faster */ sec_setbits32(&sec->scfgr, SEC_SCFGR_RDBENABLE); return ret; }
/** * blob_dek() - Encapsulate the DEK as a blob using CAM's Key * @src: - Address of data to be encapsulated * @dst: - Desination address of encapsulated data * @len: - Size of data to be encapsulated * * Returns zero on success,and negative on error. */ static int blob_encap_dek(const u8 *src, u8 *dst, u32 len) { int ret = 0; u32 jr_size = 4; u32 out_jr_size = sec_in32(CONFIG_SYS_FSL_JR0_ADDR + 0x102c); if (out_jr_size != jr_size) { hab_caam_clock_enable(1); sec_init(); } if (!((len == 128) | (len == 192) | (len == 256))) { debug("Invalid DEK size. Valid sizes are 128, 192 and 256b\n"); return -1; } len /= 8; ret = blob_dek(src, dst, len); return ret; }
/* * By default, the TRNG runs for 200 clocks per sample; * 1200 clocks per sample generates better entropy. */ static void kick_trng(int ent_delay) { ccsr_sec_t __iomem *sec = (ccsr_sec_t __iomem *)CONFIG_SYS_FSL_SEC_ADDR; struct rng4tst __iomem *rng = (struct rng4tst __iomem *)&sec->rng; u32 val; /* put RNG4 into program mode */ sec_setbits32(&rng->rtmctl, RTMCTL_PRGM); /* rtsdctl bits 0-15 contain "Entropy Delay, which defines the * length (in system clocks) of each Entropy sample taken * */ val = sec_in32(&rng->rtsdctl); val = (val & ~RTSDCTL_ENT_DLY_MASK) | (ent_delay << RTSDCTL_ENT_DLY_SHIFT); sec_out32(&rng->rtsdctl, val); /* min. freq. count, equal to 1/4 of the entropy sample length */ sec_out32(&rng->rtfreqmin, ent_delay >> 2); /* max. freq. count, equal to 8 times the entropy sample length */ sec_out32(&rng->rtfreqmax, ent_delay << 3); /* put RNG4 into run mode */ sec_clrbits32(&rng->rtmctl, RTMCTL_PRGM); }
/* -1 --- error, can't enqueue -- no space available */ static int jr_enqueue(uint32_t *desc_addr, void (*callback)(uint32_t status, void *arg), void *arg) { struct jr_regs *regs = (struct jr_regs *)CONFIG_SYS_FSL_JR0_ADDR; int head = jr.head; uint32_t desc_word; int length = desc_len(desc_addr); int i; #ifdef CONFIG_PHYS_64BIT uint32_t *addr_hi, *addr_lo; #endif /* The descriptor must be submitted to SEC block as per endianness * of the SEC Block. * So, if the endianness of Core and SEC block is different, each word * of the descriptor will be byte-swapped. */ for (i = 0; i < length; i++) { desc_word = desc_addr[i]; sec_out32((uint32_t *)&desc_addr[i], desc_word); } phys_addr_t desc_phys_addr = virt_to_phys(desc_addr); if (sec_in32(®s->irsa) == 0 || CIRC_SPACE(jr.head, jr.tail, jr.size) <= 0) return -1; jr.info[head].desc_phys_addr = desc_phys_addr; jr.info[head].callback = (void *)callback; jr.info[head].arg = arg; jr.info[head].op_done = 0; unsigned long start = (unsigned long)&jr.info[head] & ~(ARCH_DMA_MINALIGN - 1); unsigned long end = ALIGN((unsigned long)&jr.info[head] + sizeof(struct jr_info), ARCH_DMA_MINALIGN); flush_dcache_range(start, end); #ifdef CONFIG_PHYS_64BIT /* Write the 64 bit Descriptor address on Input Ring. * The 32 bit hign and low part of the address will * depend on endianness of SEC block. */ #ifdef CONFIG_SYS_FSL_SEC_LE addr_lo = (uint32_t *)(&jr.input_ring[head]); addr_hi = (uint32_t *)(&jr.input_ring[head]) + 1; #elif defined(CONFIG_SYS_FSL_SEC_BE) addr_hi = (uint32_t *)(&jr.input_ring[head]); addr_lo = (uint32_t *)(&jr.input_ring[head]) + 1; #endif /* ifdef CONFIG_SYS_FSL_SEC_LE */ sec_out32(addr_hi, (uint32_t)(desc_phys_addr >> 32)); sec_out32(addr_lo, (uint32_t)(desc_phys_addr)); #else /* Write the 32 bit Descriptor address on Input Ring. */ sec_out32(&jr.input_ring[head], desc_phys_addr); #endif /* ifdef CONFIG_PHYS_64BIT */ start = (unsigned long)&jr.input_ring[head] & ~(ARCH_DMA_MINALIGN - 1); end = ALIGN((unsigned long)&jr.input_ring[head] + sizeof(dma_addr_t), ARCH_DMA_MINALIGN); flush_dcache_range(start, end); jr.head = (head + 1) & (jr.size - 1); /* Invalidate output ring */ start = (unsigned long)jr.output_ring & ~(ARCH_DMA_MINALIGN - 1); end = ALIGN((unsigned long)jr.output_ring + jr.op_size, ARCH_DMA_MINALIGN); invalidate_dcache_range(start, end); sec_out32(®s->irja, 1); return 0; }
static int jr_dequeue(void) { struct jr_regs *regs = (struct jr_regs *)CONFIG_SYS_FSL_JR0_ADDR; int head = jr.head; int tail = jr.tail; int idx, i, found; void (*callback)(uint32_t status, void *arg); void *arg = NULL; #ifdef CONFIG_PHYS_64BIT uint32_t *addr_hi, *addr_lo; #else uint32_t *addr; #endif while (sec_in32(®s->orsf) && CIRC_CNT(jr.head, jr.tail, jr.size)) { found = 0; phys_addr_t op_desc; #ifdef CONFIG_PHYS_64BIT /* Read the 64 bit Descriptor address from Output Ring. * The 32 bit hign and low part of the address will * depend on endianness of SEC block. */ #ifdef CONFIG_SYS_FSL_SEC_LE addr_lo = (uint32_t *)(&jr.output_ring[jr.tail].desc); addr_hi = (uint32_t *)(&jr.output_ring[jr.tail].desc) + 1; #elif defined(CONFIG_SYS_FSL_SEC_BE) addr_hi = (uint32_t *)(&jr.output_ring[jr.tail].desc); addr_lo = (uint32_t *)(&jr.output_ring[jr.tail].desc) + 1; #endif /* ifdef CONFIG_SYS_FSL_SEC_LE */ op_desc = ((u64)sec_in32(addr_hi) << 32) | ((u64)sec_in32(addr_lo)); #else /* Read the 32 bit Descriptor address from Output Ring. */ addr = (uint32_t *)&jr.output_ring[jr.tail].desc; op_desc = sec_in32(addr); #endif /* ifdef CONFIG_PHYS_64BIT */ uint32_t status = sec_in32(&jr.output_ring[jr.tail].status); for (i = 0; CIRC_CNT(head, tail + i, jr.size) >= 1; i++) { idx = (tail + i) & (jr.size - 1); if (op_desc == jr.info[idx].desc_phys_addr) { found = 1; break; } } /* Error condition if match not found */ if (!found) return -1; jr.info[idx].op_done = 1; callback = (void *)jr.info[idx].callback; arg = jr.info[idx].arg; /* When the job on tail idx gets done, increment * tail till the point where job completed out of oredr has * been taken into account */ if (idx == tail) do { tail = (tail + 1) & (jr.size - 1); } while (jr.info[tail].op_done); jr.tail = tail; jr.read_idx = (jr.read_idx + 1) & (jr.size - 1); sec_out32(®s->orjr, 1); jr.info[idx].op_done = 0; callback(status, arg); } return 0; }
int sec_init(void) { ccsr_sec_t *sec = (void *)CONFIG_SYS_FSL_SEC_ADDR; uint32_t mcr = sec_in32(&sec->mcfgr); int ret = 0; #ifdef CONFIG_FSL_CORENET uint32_t liodnr; uint32_t liodn_ns; uint32_t liodn_s; #endif /* * Modifying CAAM Read/Write Attributes * For LS2080A * For AXI Write - Cacheable, Write Back, Write allocate * For AXI Read - Cacheable, Read allocate * Only For LS2080a, to solve CAAM coherency issues */ #ifdef CONFIG_LS2080A mcr = (mcr & ~MCFGR_AWCACHE_MASK) | (0xb << MCFGR_AWCACHE_SHIFT); mcr = (mcr & ~MCFGR_ARCACHE_MASK) | (0x6 << MCFGR_ARCACHE_SHIFT); #else mcr = (mcr & ~MCFGR_AWCACHE_MASK) | (0x2 << MCFGR_AWCACHE_SHIFT); #endif #ifdef CONFIG_PHYS_64BIT mcr |= (1 << MCFGR_PS_SHIFT); #endif sec_out32(&sec->mcfgr, mcr); #ifdef CONFIG_FSL_CORENET liodnr = sec_in32(&sec->jrliodnr[0].ls); liodn_ns = (liodnr & JRNSLIODN_MASK) >> JRNSLIODN_SHIFT; liodn_s = (liodnr & JRSLIODN_MASK) >> JRSLIODN_SHIFT; #endif ret = jr_init(); if (ret < 0) { printf("SEC initialization failed\n"); return -1; } #ifdef CONFIG_FSL_CORENET ret = sec_config_pamu_table(liodn_ns, liodn_s); if (ret < 0) return -1; pamu_enable(); #endif if (get_rng_vid() >= 4) { if (rng_init() < 0) { printf("RNG instantiation failed\n"); return -1; } printf("SEC: RNG instantiated\n"); } return ret; }
int inline_cnstr_jobdesc_blob_dek(uint32_t *desc, const uint8_t *plain_txt, uint8_t *dek_blob, uint32_t in_sz) { ccsr_sec_t *sec = (void *)CONFIG_SYS_FSL_SEC_ADDR; uint32_t sm_vid = SM_VERSION(sec_in32(&sec->smvid)); uint32_t jr_id = 0; uint32_t ret = 0; u32 aad_w1, aad_w2; /* output blob will have 32 bytes key blob in beginning and * 16 byte HMAC identifier at end of data blob */ uint32_t out_sz = in_sz + KEY_BLOB_SIZE + MAC_SIZE; /* Setting HDR for blob */ uint8_t wrapped_key_hdr[8] = {HDR_TAG, 0x00, WRP_HDR_SIZE + out_sz, HDR_PAR, HAB_MOD, HAB_ALG, in_sz, HAB_FLG}; /* initialize the blob array */ memset(dek_blob, 0, out_sz + 8); /* Copy the header into the DEK blob buffer */ memcpy(dek_blob, wrapped_key_hdr, sizeof(wrapped_key_hdr)); /* allocating secure memory */ ret = caam_page_alloc(PAGE_1, PARTITION_1); if (ret) return ret; /* Write DEK to secure memory */ memcpy((uint32_t *)SEC_MEM_PAGE1, (uint32_t *)plain_txt, in_sz); unsigned long start = (unsigned long)SEC_MEM_PAGE1 & ~(ARCH_DMA_MINALIGN - 1); unsigned long end = ALIGN(start + 0x1000, ARCH_DMA_MINALIGN); flush_dcache_range(start, end); /* Now configure the access rights of the partition */ sec_out32(CAAM_SMAG1JR(sm_vid, jr_id, PARTITION_1), KS_G1); sec_out32(CAAM_SMAG2JR(sm_vid, jr_id, PARTITION_1), 0); sec_out32(CAAM_SMAPJR(sm_vid, jr_id, PARTITION_1), PERM); /* construct aad for AES */ aad_w1 = (in_sz << OP_ALG_ALGSEL_SHIFT) | KEY_AES_SRC | LD_CCM_MODE; aad_w2 = 0x0; init_job_desc(desc, 0); append_cmd(desc, CMD_LOAD | CLASS_2 | KEY_IMM | KEY_ENC | (0x0c << LDST_OFFSET_SHIFT) | 0x08); append_u32(desc, aad_w1); append_u32(desc, aad_w2); append_cmd_ptr(desc, (dma_addr_t)SEC_MEM_PAGE1, in_sz, CMD_SEQ_IN_PTR); append_cmd_ptr(desc, (dma_addr_t)dek_blob + 8, out_sz, CMD_SEQ_OUT_PTR); append_operation(desc, OP_TYPE_ENCAP_PROTOCOL | OP_PCLID_BLOB | OP_PCLID_SECMEM); return ret; }
void ft_cpu_setup(void *blob, bd_t *bd) { int off; int val; const char *sysclk_path; struct ccsr_gur __iomem *gur = (void *)(CONFIG_SYS_FSL_GUTS_ADDR); unsigned int svr; svr = in_be32(&gur->svr); unsigned long busclk = get_bus_freq(0); /* delete crypto node if not on an E-processor */ if (!IS_E_PROCESSOR(svr)) fdt_fixup_crypto_node(blob, 0); #if CONFIG_SYS_FSL_SEC_COMPAT >= 4 else { ccsr_sec_t __iomem *sec; sec = (void __iomem *)CONFIG_SYS_FSL_SEC_ADDR; fdt_fixup_crypto_node(blob, sec_in32(&sec->secvid_ms)); } #endif off = fdt_node_offset_by_prop_value(blob, -1, "device_type", "cpu", 4); while (off != -FDT_ERR_NOTFOUND) { val = gd->cpu_clk; fdt_setprop(blob, off, "clock-frequency", &val, 4); off = fdt_node_offset_by_prop_value(blob, off, "device_type", "cpu", 4); } do_fixup_by_prop_u32(blob, "device_type", "soc", 4, "bus-frequency", busclk, 1); ft_fixup_enet_phy_connect_type(blob); #ifdef CONFIG_SYS_NS16550 do_fixup_by_compat_u32(blob, "fsl,16550-FIFO64", "clock-frequency", CONFIG_SYS_NS16550_CLK, 1); #endif sysclk_path = fdt_get_alias(blob, "sysclk"); if (sysclk_path) do_fixup_by_path_u32(blob, sysclk_path, "clock-frequency", CONFIG_SYS_CLK_FREQ, 1); do_fixup_by_compat_u32(blob, "fsl,qoriq-sysclk-2.0", "clock-frequency", CONFIG_SYS_CLK_FREQ, 1); #if defined(CONFIG_DEEP_SLEEP) && defined(CONFIG_SD_BOOT) #define UBOOT_HEAD_LEN 0x1000 /* * Reserved memory in SD boot deep sleep case. * Second stage uboot binary and malloc space should be reserved. * If the memory they occupied has not been reserved, then this * space would be used by kernel and overwritten in uboot when * deep sleep resume, which cause deep sleep failed. * Since second uboot binary has a head, that space need to be * reserved either(assuming its size is less than 0x1000). */ off = fdt_add_mem_rsv(blob, CONFIG_SYS_TEXT_BASE - UBOOT_HEAD_LEN, CONFIG_SYS_MONITOR_LEN + CONFIG_SYS_SPL_MALLOC_SIZE + UBOOT_HEAD_LEN); if (off < 0) printf("Failed to reserve memory for SD boot deep sleep: %s\n", fdt_strerror(off)); #endif #if defined(CONFIG_FSL_ESDHC) fdt_fixup_esdhc(blob, bd); #endif /* * platform bus clock = system bus clock/2 * Here busclk = system bus clock * We are using the platform bus clock as 1588 Timer reference * clock source select */ do_fixup_by_compat_u32(blob, "fsl, gianfar-ptp-timer", "timer-frequency", busclk / 2, 1); /* * clock-freq should change to clock-frequency and * flexcan-v1.0 should change to p1010-flexcan respectively * in the future. */ do_fixup_by_compat_u32(blob, "fsl, flexcan-v1.0", "clock_freq", busclk / 2, 1); do_fixup_by_compat_u32(blob, "fsl, flexcan-v1.0", "clock-frequency", busclk / 2, 1); do_fixup_by_compat_u32(blob, "fsl, ls1021a-flexcan", "clock-frequency", busclk / 2, 1); #if defined(CONFIG_QSPI_BOOT) || defined(CONFIG_SD_BOOT_QSPI) off = fdt_node_offset_by_compat_reg(blob, FSL_IFC_COMPAT, CONFIG_SYS_IFC_ADDR); fdt_set_node_status(blob, off, FDT_STATUS_DISABLED, 0); #else off = fdt_node_offset_by_compat_reg(blob, FSL_QSPI_COMPAT, QSPI0_BASE_ADDR); fdt_set_node_status(blob, off, FDT_STATUS_DISABLED, 0); off = fdt_node_offset_by_compat_reg(blob, FSL_DSPI_COMPAT, DSPI1_BASE_ADDR); fdt_set_node_status(blob, off, FDT_STATUS_DISABLED, 0); #endif }