Ejemplo n.º 1
0
void Spooler::on() {
  setTunings(0.5, 0.01, 0.0);
  setMode(MANUAL);
  setRPM(120);
  setMode(AUTOMATIC);
  enable();
  _startFlag = true;
}
Ejemplo n.º 2
0
void BasicStepperDriver::init(void){
    pinMode(dir_pin, OUTPUT);
    digitalWrite(dir_pin, HIGH);

    pinMode(step_pin, OUTPUT);
    digitalWrite(step_pin, LOW);

    setMicrostep(1);
    setRPM(60); // 60 rpm is a reasonable default
}
Ejemplo n.º 3
0
void Spooler::setInitialRPM() { //This needs to be reworked
  c1 = (_configuration->physical.outfeedRollerRadius
        * _configuration->physical.spoolerDiskRadius
        * _configuration->physical.spoolerStepMode
        / (_configuration->physical.spoolerMotorRollerRadius
           * _configuration->physical.outfeedStepMode));
  c2 = (_configuration->profile.diaSetPoint / (PI * _configuration->physical.spoolerTraverseLength));
  c3 = (_configuration->physical.spoolerCoreRadius * _configuration->physical.spoolerCoreRadius);
  c4 = (PI * _configuration->physical.outfeedRollerRadius / ((double)_configuration->physical.outfeedStepMode * 100.0));

  _filamentSurfaceRaduis = pow(c2 * c2 * _outfeed->getMmExtruded() + c3, 0.5);
  _motorRPM = _configuration->physical.outfeedRollerRadius
              * _configuration->physical.spoolerDiskRadius
              / (_filamentSurfaceRaduis * _configuration->physical.spoolerMotorRollerRadius)
              * _outfeed->getRPM();

  setMode(MANUAL);
  setRPM(120);
  setMode(AUTOMATIC);

}
void Stepper_2BYJ48::stepperInit(int motorPin1, int motorPin2, int motorPin3, int motorPin4, int revolutionsPerMinute){
	this->pin1 = motorPin1;
	this->pin2 = motorPin2;
	this->pin3 = motorPin3;
	this->pin4 = motorPin4;
  	
	//declare the motor pins as outputs
	pinMode(this->pin1, OUTPUT);
	pinMode(this->pin2, OUTPUT);
	pinMode(this->pin3, OUTPUT);
	pinMode(this->pin4, OUTPUT);

	setRPM(revolutionsPerMinute);
	
	this->lookup[0] = B01000;
	this->lookup[1] = B01100;
	this->lookup[2] = B00100;
	this->lookup[3] = B00110;
	this->lookup[4] = B00010;
	this->lookup[5] = B00011;
	this->lookup[6] = B00001;
	this->lookup[7] = B01001;
}
Ejemplo n.º 5
0
 virtual bool setQuickStop() {
     setRPM(0.0);
 }
Ejemplo n.º 6
0
/****************************************************************************
  Function:
    int main(void)

  Summary:
    main function

  Description:
    main function

  Precondition:
    None

  Parameters:
    None

  Return Values:
    int - exit code for main function

  Remarks:
    None
  ***************************************************************************/
int main(void)
{
    DWORD size = 0;
    BOOL responseNeeded;

    BYTE mode = 0;

    BYTE wasMode = 0;
    BYTE pushButtonValues = 0xFF;
    BYTE potPercentage = 0xFF;
    BOOL buttonsNeedUpdate = FALSE;
    BOOL potNeedsUpdate = FALSE;
    BOOL motorON = FALSE;
    BOOL readyToRead = TRUE;
    BOOL writeInProgress = FALSE;
    BYTE tempValue = 0xFF;
    BYTE errorCode;
    ACCESSORY_APP_PACKET* command_packet = NULL;

    CLKDIV =  0; /* set for default clock operations Fcyc = 4MHz */
    AD1PCFGL = 0xffff;
    AD1PCFGH = 0x0003;

    BOOL connected_to_app = FALSE;
    BOOL need_to_disconnect_from_app = FALSE;

    #if defined(__PIC32MX__)
        InitPIC32();
    #endif

  #if defined(__dsPIC33EP512MU810__) || defined (__PIC24EP512GU810__)

    // Configure the device PLL to obtain 60 MIPS operation. The crystal
    // frequency is 8MHz. Divide 8MHz by 2, multiply by 60 and divide by
    // 2. This results in Fosc of 120MHz. The CPU clock frequency is
    // Fcy = Fosc/2 = 60MHz. Wait for the Primary PLL to lock and then
    // configure the auxilliary PLL to provide 48MHz needed for USB
    // Operation.

	PLLFBD = 38;				/* M  = 60	*/
	CLKDIVbits.PLLPOST = 0;		/* N1 = 2	*/
	CLKDIVbits.PLLPRE = 0;		/* N2 = 2	*/
	OSCTUN = 0;

    /*	Initiate Clock Switch to Primary
     *	Oscillator with PLL (NOSC= 0x3)*/

    __builtin_write_OSCCONH(0x03);
	__builtin_write_OSCCONL(0x01);
	while (OSCCONbits.COSC != 0x3);

    // Configuring the auxiliary PLL, since the primary
    // oscillator provides the source clock to the auxiliary
    // PLL, the auxiliary oscillator is disabled. Note that
    // the AUX PLL is enabled. The input 8MHz clock is divided
    // by 2, multiplied by 24 and then divided by 2. Wait till
    // the AUX PLL locks.

    ACLKCON3 = 0x24C1;
    ACLKDIV3 = 0x7;
    ACLKCON3bits.ENAPLL = 1;
    while(ACLKCON3bits.APLLCK != 1);

    TRISBbits.TRISB5 = 0;
    LATBbits.LATB5 = 1;

    #endif

    USBInitialize(0);
    AndroidAppStart(&myDeviceInfo);

    responseNeeded = FALSE;
    mInitPOT();
    InitializeTimer2For_PWM();
    PwmInit();

    //InitMOTOR();

    DEBUG_Init(0);

    InitAllLEDs();

    while(1)
    {
        //Keep the USB stack running
        USBTasks();



        //If the device isn't attached yet,
        if(device_attached == FALSE || mode == 1)
        {
            buttonsNeedUpdate = TRUE;
            potNeedsUpdate = TRUE;
            need_to_disconnect_from_app = FALSE;
            connected_to_app = FALSE;
            size = 0;

            /**/
            BYTE curPush = GetPushbuttons();

            if ((curPush == 0x8) || (mode == 1)) {
                LED0_On();

                mode = 1;
                if (wasMode == 0) {

                    pot2LEDs();
                    PwmInit();


                }

                tempValue = ReadPOT();


                wasMode = 1;

                //If it is different than the last time we read the pot, then we need
                //  to send it to the Android device

                if(tempValue != potPercentage) {
                    potNeedsUpdate = TRUE;
                    //setRPM(tempValue);

                    setPWM();
                }
            }
            if ((curPush == 0x4)  || (mode == 0)) {
                    mode = 0;
                    //LED0_Off();

                    if (wasMode == 1) {
                        SetLEDs(0b00000000);
                        wasMode = 0;
                        setRPM(0);
                    }
                    //Reset the accessory state variables
                    InitAllLEDs();

                    //Continue to the top of the while loop to start the check over again.
                    continue;
                }
               /* //Reset the accessory state variables
                InitAllLEDs();

                //Continue to the top of the while loop to start the check over again.
                continue;
            }*/
            //}






        }

        //If the accessory is ready, then this is where we run all of the demo code

        if(readyToRead == TRUE && mode == 0)
        {
            errorCode = AndroidAppRead(device_handle, (BYTE*)&read_buffer, (DWORD)sizeof(read_buffer));
            //If the device is attached, then lets wait for a command from the application
            if( errorCode != USB_SUCCESS)
            {
                //Error
                DEBUG_PrintString("Error trying to start read");
            }
            else
            {
                readyToRead = FALSE;
            }
        }

        size = 0;

        if(AndroidAppIsReadComplete(device_handle, &errorCode, &size) == TRUE)
        {
            //We've received a command over the USB from the Android device.
            if(errorCode == USB_SUCCESS)
            {
                //Maybe process the data here.  Maybe process it somewhere else.
                command_packet = (ACCESSORY_APP_PACKET*)&read_buffer[0];
            }
            else
            {
                //Error
                DEBUG_PrintString("Error trying to complete read request");
            }

        }

        while(size > 0)
        {
            if(connected_to_app == FALSE)
            {
                if(command_packet->command == COMMAND_APP_CONNECT)
                {
                    connected_to_app = TRUE;
                    need_to_disconnect_from_app = FALSE;
                }
            }
            else
            {
                switch(command_packet->command)
                {
                    case COMMAND_SET_LEDS:
                        SetLEDs(command_packet->data);
                        break;

                    case COMMAND_APP_DISCONNECT:
                        need_to_disconnect_from_app = TRUE;
                        break;

                    case COMMAND_SET_PWM:
                        setRPM(command_packet->data);
                        break;

                    default:
                        //Error, unknown command
                        DEBUG_PrintString("Error: unknown command received");
                        break;
                }
            }
            //All commands in this example are two bytes, so remove that from the queue
            size -= 2;
            //And move the pointer to the next packet (this works because
            //  all command packets are 2 bytes.  If variable packet size
            //  then need to handle moving the pointer by the size of the
            //  command type that arrived.
            command_packet++;

            if(need_to_disconnect_from_app == TRUE)
            {
                break;
            }
        }

        if(size == 0)
        {
            readyToRead = TRUE;
        }

        //Get the current pushbutton settings
        tempValue = GetPushbuttons();

        //If the current button settings are different than the last time
        //  we read the button values, then we need to send an update to the
        //  attached Android device
        if(tempValue != pushButtonValues)
        {
            buttonsNeedUpdate = TRUE;
            pushButtonValues = tempValue;
        }

        //Get the current potentiometer setting
        tempValue = ReadPOT();

        //If it is different than the last time we read the pot, then we need
        //  to send it to the Android device
        if(tempValue != potPercentage)
        {
            potNeedsUpdate = TRUE;
            potPercentage = tempValue;
        }

        //If there is a write already in progress, we need to check its status
        if( writeInProgress == TRUE )
        {
            if(AndroidAppIsWriteComplete(device_handle, &errorCode, &size) == TRUE)
            {
                writeInProgress = FALSE;
                if(need_to_disconnect_from_app == TRUE)
                {
                    connected_to_app = FALSE;
                    need_to_disconnect_from_app = FALSE;
                }

                if(errorCode != USB_SUCCESS)
                {
                    //Error
                    DEBUG_PrintString("Error trying to complete write");
                }
            }
        }

        if((need_to_disconnect_from_app == TRUE) && (writeInProgress == FALSE))
        {
            outgoing_packet.command = COMMAND_APP_DISCONNECT;
            outgoing_packet.data = 0;
            writeInProgress = TRUE;

            errorCode = AndroidAppWrite(device_handle,(BYTE*)&outgoing_packet, 2);
            if( errorCode != USB_SUCCESS )
            {
                DEBUG_PrintString("Error trying to send button update");
            }
        }

        if(connected_to_app == FALSE)
        {
            //If the app hasn't told us to start sending data, let's not do anything else.
            continue;
        }

        //If we need up update the button status on the Android device and we aren't
        //  already busy in a write, then we can send the new button data.
        if((buttonsNeedUpdate == TRUE) && (writeInProgress == FALSE))
        {
            outgoing_packet.command = COMMAND_UPDATE_PUSHBUTTONS;
            outgoing_packet.data = pushButtonValues;



            errorCode = AndroidAppWrite(device_handle,(BYTE*)&outgoing_packet, 2);
            if( errorCode != USB_SUCCESS )
            {
                DEBUG_PrintString("Error trying to send button update");
            }

            buttonsNeedUpdate = FALSE;
            writeInProgress = TRUE;
        }

        //If we need up update the pot status on the Android device and we aren't
        //  already busy in a write, then we can send the new pot data.
        if((potNeedsUpdate == TRUE) && (writeInProgress == FALSE))
        {
            outgoing_packet.command = COMMAND_UPDATE_POT;
            outgoing_packet.data = potPercentage;

            errorCode = AndroidAppWrite(device_handle,(BYTE*)&outgoing_packet, 2);
            if( errorCode != USB_SUCCESS )
            {
                DEBUG_PrintString("Error trying to send pot update");
            }

            potNeedsUpdate = FALSE;
            writeInProgress = TRUE;
        }
    } //while(1) main loop
}
Ejemplo n.º 7
0
void SimulatedCar::decRPM(void) {
	setRPM(getRPM()-SIMULATION_RPM_STEP);
}
Ejemplo n.º 8
0
void SimulatedCar::incRPM(void) {
	setRPM(getRPM()+SIMULATION_RPM_STEP);
}
Ejemplo n.º 9
0
void Spooler::off() {
  setMode(MANUAL);
  setRPM(0);
  _startFlag = false;
}