Ejemplo n.º 1
0
void load_domain(char *line,kdomain *domain,int type){

    kdomain *temp_domain = domain, *new_domain,*s_domain;
    
    int i = 1;
    int splitcount;
    char **split_structure = malloc(sizeof(char *) * 4);;
    split_domain(line,split_structure);
    for(splitcount = 0; splitcount < 4;splitcount++){
        if(split_structure[splitcount] != NULL){
            if(split_structure[splitcount+1] == NULL){
                new_domain = new_domain_structure(split_structure[splitcount],type);
            }
            else
                new_domain = new_domain_structure(split_structure[splitcount],-1);

            if(split_structure[splitcount+1] == NULL)
                i = 0;
            
            temp_domain = add_domain(new_domain,temp_domain,i);
            free(split_structure[splitcount]);
        }

    }
    
    free(split_structure);

}
Ejemplo n.º 2
0
kdomain *search_domain(char *name,kdomain *root_domain,int search_type){

    char **split_structure = malloc(sizeof(char *) * 4);
    int count = 0, len_size = 0;
    unsigned int temp_hash = 0;
    kdomain *temp_domain = root_domain->kd_child;

    if(!temp_domain){
        return (kdomain *) 0;
    }
    
    split_domain(name,split_structure);
    
    if(!split_structure[0]){
        return (kdomain *) 0;  
    }
    
    while(temp_domain){
        temp_hash = 0;
         
        if((len_size = strlen(split_structure[count])) <= 10){
            temp_hash = hash(split_structure[count],len_size);
        } else
            temp_hash = hash(split_structure[count],10);
    
        if(((temp_domain->domain_hash == temp_hash))){

            len_size = (temp_domain->name_length <= len_size ? temp_domain->name_length : len_size);
            
            if(!memcmp(temp_domain->name,split_structure[count],len_size)){
                
                if((temp_domain->suspicious == 0) && (search_type == 0)){
                    return temp_domain;
                }
                
                else if((count != 3) && (split_structure[count+1] != NULL)){
                    count++; 
                    temp_domain = temp_domain->kd_child;
                } 
                else if(count != 3 && split_structure[count+1] == NULL){
                    return temp_domain;
                }
                else if(count == 3){
                    return temp_domain;
                }
            }
            else
                temp_domain = temp_domain->next;
        }
        else 
            temp_domain = temp_domain->next;
        
    }
    free(split_structure);
    return (kdomain *)0;
}
Ejemplo n.º 3
0
int main( int argc, char *argv[] )

{

  /* resulting name for ops file
   */
  char ops_file[MAX_LENGTH] = "";
  /* same for fct file 
   */
  char fct_file[MAX_LENGTH] = "";
  
  struct tms start, end;

  State current_start, current_end;
  int i, j;
  Bool found_plan;


  times ( &lstart );


  /* command line treatment
   */
  if ( argc == 1 || ( argc == 2 && *++argv[0] == '?' ) ) {
    ff_usage();
    exit( 1 );
  }
  if ( !process_command_line( argc, argv ) ) {
    ff_usage();
    exit( 1 );
  }


  /* make file names
   */

  /* one input name missing
   */
  if ( !gcmd_line.ops_file_name || 
       !gcmd_line.fct_file_name ) {
    fprintf(stdout, "\nff: two input files needed\n\n");
    ff_usage();      
    exit( 1 );
  }
  /* add path info, complete file names will be stored in
   * ops_file and fct_file 
   */
  sprintf(ops_file, "%s%s", gcmd_line.path, gcmd_line.ops_file_name);
  sprintf(fct_file, "%s%s", gcmd_line.path, gcmd_line.fct_file_name);


  /* parse the input files
   */

  /* start parse & instantiation timing
   */
  times( &start );
  /* domain file (ops)
   */
  if ( gcmd_line.display_info >= 1 ) {
    printf("\nff: parsing domain file");
  } 
  /* it is important for the pddl language to define the domain before 
   * reading the problem 
   */
  load_ops_file( ops_file );
  /* problem file (facts)
   */  
  if ( gcmd_line.display_info >= 1 ) {
    printf(" ... done.\nff: parsing problem file"); 
  }
  load_fct_file( fct_file );
  if ( gcmd_line.display_info >= 1 ) {
    printf(" ... done.\n\n");
  }

  /* This is needed to get all types.
   */
  build_orig_constant_list();

  /* last step of parsing: see if it's an ADL domain!
   */
  if ( !make_adl_domain() ) {
    printf("\nff: this is not an ADL problem!");
    printf("\n    can't be handled by this version.\n\n");
    exit( 1 );
  }


  /* now instantiate operators;
   */


  /**************************
   * first do PREPROCESSING * 
   **************************/


  /* start by collecting all strings and thereby encoding 
   * the domain in integers.
   */
  encode_domain_in_integers();

  /* inertia preprocessing, first step:
   *   - collect inertia information
   *   - split initial state into
   *        _ arrays for individual predicates
   *        - arrays for all static relations
   *        - array containing non - static relations
   */
  do_inertia_preprocessing_step_1();

  /* normalize all PL1 formulae in domain description:
   * (goal, preconds and effect conditions)
   *   - simplify formula
   *   - expand quantifiers
   *   - NOTs down
   */
  normalize_all_wffs();

  /* translate negative preconds: introduce symmetric new predicate
   * NOT-p(..) (e.g., not-in(?ob) in briefcaseworld)
   */
  translate_negative_preconds();

  /* split domain in easy (disjunction of conjunctive preconds)
   * and hard (non DNF preconds) part, to apply 
   * different instantiation algorithms
   */
  split_domain();


  /***********************************************
   * PREPROCESSING FINISHED                      *
   *                                             *
   * NOW MULTIPLY PARAMETERS IN EFFECTIVE MANNER *
   ***********************************************/

  build_easy_action_templates();
  build_hard_action_templates();

  times( &end );
  TIME( gtempl_time );

  times( &start );

  /* perform reachability analysis in terms of relaxed 
   * fixpoint
   */
  perform_reachability_analysis();

  times( &end );
  TIME( greach_time );

  times( &start );

  /* collect the relevant facts and build final domain
   * and problem representations.
   */
  collect_relevant_facts();

  times( &end );
  TIME( grelev_time );

  times( &start );

  /* now build globally accessable connectivity graph
   */
  build_connectivity_graph();

  times( &end );
  TIME( gconn_time );
  

  /***********************************************************
   * we are finally through with preprocessing and can worry *
   * bout finding a plan instead.                            *
   ***********************************************************/

  times( &start );

  /* another quick preprocess: approximate goal orderings and split
   * goal set into sequence of smaller sets, the goal agenda
   */
  compute_goal_agenda();

  /* make space in plan states info, and relax
   */
  for ( i = 0; i < MAX_PLAN_LENGTH + 1; i++ ) {
    make_state( &(gplan_states[i]), gnum_ft_conn );
    gplan_states[i].max_F = gnum_ft_conn;
  }
  make_state( &current_start, gnum_ft_conn );
  current_start.max_F = gnum_ft_conn;
  make_state( &current_end, gnum_ft_conn );
  current_end.max_F = gnum_ft_conn;
  initialize_relax();


  source_to_dest( &(gplan_states[0]), &ginitial_state );

  source_to_dest( &current_start, &ginitial_state );
  source_to_dest( &current_end, &(ggoal_agenda[0]) );

  for ( i = 0; i < gnum_goal_agenda; i++ ) {
    if ( !do_enforced_hill_climbing( &current_start, &current_end ) ) {
      break;
    }
    source_to_dest( &current_start, &(gplan_states[gnum_plan_ops]) );
    if ( i < gnum_goal_agenda - 1 ) {
      for ( j = 0; j < ggoal_agenda[i+1].num_F; j++ ) {
	current_end.F[current_end.num_F++] = ggoal_agenda[i+1].F[j];
      }
    }
  }
  found_plan = ( i == gnum_goal_agenda ) ? TRUE : FALSE;

  if ( !found_plan ) {
    printf("\n\nEnforced Hill-climbing failed !");
    printf("\nswitching to Best-first Search now.\n");
    found_plan = do_best_first_search();
  }

  times( &end );
  TIME( gsearch_time );

  if ( found_plan ) {
    print_plan();
  }

  output_planner_info();

  printf("\n\n");
  exit( 0 );

}
Ejemplo n.º 4
0
int main( int argc, char *argv[] )

{
  
  /* resulting name for ops file
   */
  char ops_file[MAX_LENGTH] = "";
  /* same for fct file 
   */
  char fct_file[MAX_LENGTH] = "";
  
  /* for calls to outside programs, eg zchaff.
   */
  char command[MAX_LENGTH];
  char command2[MAX_LENGTH]; /* for trying another path */
  /* for getting their answer.
   */
  char command3[MAX_LENGTH];
  FILE *SATRES;

  /* sat solver data.
   */
  int sat;
  float sat_rtime;
  int nractions = -1;

  struct tms start, end;

  RPGlayer *t, *tpp;

  Bool goalreached;

  char c;
  int linecount;

/*   int time; */



  times ( &lstart );

  printf("\n\n");
  system("rm CNF");
  system("rm SATRES");
  printf("\n\n");
  fflush(stdout);

  /* command line treatment
   */
  if ( argc == 1 || ( argc == 2 && *++argv[0] == '?' ) ) {
    ff_usage();
    exit( 1 );
  }
  if ( !process_command_line( argc, argv ) ) {
    ff_usage();
    exit( 1 );
  }


  /* make file names
   */

  /* one input name missing
   */
  if ( !gcmd_line.ops_file_name || 
       !gcmd_line.fct_file_name ) {
    fprintf(stdout, "\nff: two input files needed\n\n");
    ff_usage();      
    exit( 1 );
  }
  /* add path info, complete file names will be stored in
   * ops_file and fct_file 
   */
  sprintf(ops_file, "%s%s", gcmd_line.path, gcmd_line.ops_file_name);
  sprintf(fct_file, "%s%s", gcmd_line.path, gcmd_line.fct_file_name);

  /* parse the input files
   */

  /* start parse & instantiation timing
   */
  times( &start );
  /* domain file (ops)
   */
  if ( gcmd_line.display_info >= 1 ) {
    printf("\nff: parsing domain file");
  } 
  /* it is important for the pddl language to define the domain before 
   * reading the problem 
   */
  load_ops_file( ops_file );
  /* problem file (facts)
   */  
  if ( gcmd_line.display_info >= 1 ) {
    printf(" ... done.\nff: parsing problem file"); 
  }
  sprintf(command3, "python addons/removeconstraints.py %s",fct_file);
  system(command3);
  sprintf(command3, "python addons/parseconstraints.py");
  system(command3);
  load_fct_file( fct_file );
  if ( gcmd_line.display_info >= 1 ) {
    printf(" ... done.\n\n");
  }

  /*
    Load token of mutex2ignore
   */
  if( gcmd_line.mutex2ignore_file_name[0] != '\0' )
    load_mutex2ignore_file( gcmd_line.mutex2ignore_file_name );

  /* This is needed to get all types.
   */
  build_orig_constant_list();

  /* last step of parsing: see if it's an ADL domain!
   */
  if ( !make_adl_domain() ) {
    printf("\nff: this is not an ADL problem!");
    printf("\n    can't be handled by this version.\n\n");
    exit( 1 );
  }


  /* now instantiate operators;
   */


  /**************************
   * first do PREPROCESSING * 
   **************************/

  /* start by collecting all strings and thereby encoding 
   * the domain in integers.
   */
  encode_domain_in_integers();

  /* inertia preprocessing, first step:
   *   - collect inertia information
   *   - split initial state into
   *        - arrays for individual predicates
   *        - arrays for all static relations
   *        - array containing non - static relations
   */
  do_inertia_preprocessing_step_1();

  /* normalize all PL1 formulae in domain description:
   * (goal, preconds and effect conditions)
   *   - simplify formula
   *   - expand quantifiers
   *   - NOTs down
   */
  normalize_all_wffs();

  /* translate negative preconds: introduce symmetric new predicate
   * NOT-p(..) (e.g., not-in(?ob) in briefcaseworld)
   */
  translate_negative_preconds();

  /* split domain in easy (disjunction of conjunctive preconds)
   * and hard (non DNF preconds) part, to apply 
   * different instantiation algorithms
   */
  split_domain();

  /***********************************************
   * PREPROCESSING FINISHED                      *
   *                                             *
   * NOW MULTIPLY PARAMETERS IN EFFECTIVE MANNER *
   ***********************************************/

  build_easy_action_templates();
  build_hard_action_templates();

  times( &end );
  TIME( gtempl_time );

  times( &start );

  /* perform reachability analysis in terms of relaxed 
   * fixpoint
   */
  perform_reachability_analysis();

  times( &end );
  TIME( greach_time );

  times( &start );

  /* collect the relevant facts and build final domain
   * and problem representations.
   */
  collect_relevant_facts_and_fluents();

  times( &end );
  TIME( grelev_time );


  /* for num2sat, SKIP LNF AND, WITH THAT, GCONN STRUCTURES!!!
   *
   * reason: LNF is not needed for the CNF encodings, and the RPG is
   *         built only once so optimizations are not time critical.
   *
   *         LNF introduces a huge overhead, and creates many variables
   *         (e.g. n^2 vs n for pre-LNF, in jugs) which would have to be
   *         filtered for the input ones, anyway.
   *
   * RPG sets off on these data structures:
   * extern Action *gactions;
   * extern int gnum_actions;
   * extern State ginitial_state;
   * extern int *glogic_goal;
   * extern int gnum_logic_goal;
   * extern Comparator *gnumeric_goal_comp;
   * extern ExpNode_pointer *gnumeric_goal_lh, *gnumeric_goal_rh;
   * extern int gnum_numeric_goal;
   */

  /* instead, do some additional pre-processing to collect all different 
   * constraints, and all different conjunctions psi of constraints.
   * needed to get a natural implementation of collecting value tuples
   * for all such constructs.
   */
  collect_relevant_constraints_and_psis();



  /* that is done. let's go.
   *
   * NOTE that keeping track of the RPG layers in here
   * isn't just a coincidence. It's made so that we can use these same 
   * functions to build another RPG if we want to, eg. one that's
   * modified to greedily estimate the variable domains instead of
   * enumerating them completely.
   */


  /* separating CNF and Hybrid CNF methods completely,
   * though they got a large overlap.
   * reason: looks nicer, and mayb at some point
   * we're gonna use a different RPG for hybrid.
   */

  /* just to avoid "might be used uninitialized" message
   */
  tpp = NULL;

  if ( gcmd_line.CNFencoding == 0 ||
       gcmd_line.CNFencoding == 1 ) {
    /* propositional CNF!
     */
    times( &start );
    gRPG = new_RPGlayer();
    t = RPG_initialize(gRPG);
    times( &end );
    TIME( gRPG_time );
    TIMECHECK;
    if ( gcmd_line.display_info ) {
      RPG_PV_statistics(t);
      fflush(stdout);
    }
    
    times( &start );
    gCNF = new_CNF();
    gCNFend = gCNF;
    gCNFnumvars = 0;
    gCNFnumclauses = 0;
    CNF_initialize(t, 
		   &gCNFend,
		   &gCNFnumvars,
		   &gCNFnumclauses);
    times( &end );
    TIME( gCNF_time );
    TIMECHECK;
    if ( gcmd_line.display_info ) {
      CNF_statistics(t, gCNF, gCNFnumvars, gCNFnumclauses);
      fflush(stdout);
    }

/* 
##########################################################################################
##########################################################################################
##########################################################################################
##########################################################################################
##########################################################################################
##########################################################################################
*/

    system("rm auxiliar.txt");
    
    goalreached = FALSE;
    while ( TRUE ) {
      times( &start );
      tpp = RPG_extend(t);
      times( &end );
      TIME( gRPG_time );
      TIMECHECK;
      if ( gcmd_line.display_info ) {
	RPG_AE_statistics(t);
	RPG_PV_statistics(tpp);
	fflush(stdout);
      }
      
      times( &start );
      CNF_extend(t, 
		 &gCNFend,
		 &gCNFnumvars,
		 &gCNFnumclauses);
      times( &end );
      TIME( gCNF_time );
      TIMECHECK;
      if ( gcmd_line.display_info ) {
	CNF_statistics(tpp, gCNF, gCNFnumvars, gCNFnumclauses); 
	fflush(stdout);
      }

      if ( !goalreached && !RPG_satisfiesgoal(tpp) ) {
	t = tpp;
	continue;
      }
      
      if ( !goalreached ) {
	if ( gcmd_line.display_info ) {
	  printf("\nGoal reached at %d!", tpp->t); 
	  fflush(stdout);
	}
	goalreached = TRUE;
      }
      
      CNF_get_goal(tpp, 
		   &gCNFend, 
		   &gCNFnumclauses);

      CNF_output(gCNF, gCNFnumvars, gCNFnumclauses, tpp->t);
      TIMECHECK;

	CNF_print_act_table(gRPG, "action-table");
	sprintf(command, "python %s/addons/addconstraints.py CNF action-table", 
		here);
	system(command);

      if ( gcmd_line.debug && gcmd_line.dCNF ) {
	CNF_print(gRPG, gCNF, gCNFnumvars, gCNFnumclauses);
	printf("\n\n");
/* 	exit( 0 ); */
      }
      if ( gcmd_line.CNFsolver == 0 ) {

	sprintf(command, "%s/solvers/minisat/MiniSat_v1.14/minisat CNF",
		num2satpath);
	sprintf(command2, "%s/solvers/minisat/MiniSat_v1.14/minisat CNF",
		here);
      }
      if ( gcmd_line.CNFsolver == 1 ) {
	sprintf(command, "%s/solvers/zchaff/zchaff CNF", num2satpath);
	sprintf(command2, "%s/solvers/zchaff/zchaff CNF", here);
      }
      if ( gcmd_line.CNFsolver == 2 ) { /* OJO: que no hagan falta dos comandos: -m y -s 2 */
	/* minisat */
	CNF_print_act_table(gRPG, "action-table");
	sprintf(command, "%s/solvers/minisat+mutex.py CNF action-table %s m", 
		num2satpath,
		gcmd_line.mutex2ignore_file_name );
	sprintf(command2, "%s/solvers/minisat+mutex.py CNF action-table %s m", 
		here,
		gcmd_line.mutex2ignore_file_name );
      }
      if ( gcmd_line.CNFsolver == 3 ) { 
	/* zchaff */
	CNF_print_act_table(gRPG, "action-table");
	sprintf(command, "%s/solvers/minisat+mutex.py CNF action-table %s z", 
		num2satpath,
		gcmd_line.mutex2ignore_file_name );
	sprintf(command2, "%s/solvers/minisat+mutex.py CNF action-table %s z", 
		here,
		gcmd_line.mutex2ignore_file_name );
      }
      if ( gcmd_line.display_info ) {
	printf("\nInvoking SAT solver, command:");
	printf("\n%s", command);
	printf("\n");
	fflush(stdout);
      }
      if( system( command ) )
	{
	  printf("failed with path %s, trying with %s\n", num2satpath, here);
	  printf("\nInvoking SAT solver, command:");
	  printf("\n%s", command2);
	  printf("\n");
	  fflush(stdout);
	  system( command2 );
	}
      if ( (SATRES = fopen( "SATRES", "r" )) == NULL ) {
	printf("\nSATRES file not present. Failure!\n\n");
	exit( 0 );
      }
      fscanf(SATRES, "%d %f\n", &sat, &sat_rtime);
      gSAT_time += sat_rtime;
      TIMECHECK;
      if ( sat ) {
	break;
      }
      fclose(SATRES);
/*       system("rm CNF"); */
/*       system("rm SATRES"); */
      
      CNF_retract_goal(tpp, 
		       &gCNFend, 
		       &gCNFnumclauses);
      
      t = tpp;
    } /* endwhile main planning loop */

    if ( gcmd_line.display_info ) {
      nractions = CNF_output_plan(SATRES, gRPG, gCNFnumvars);
      fflush(stdout);
    }
    fclose(SATRES);
/*     system("rm CNF"); */
/*     system("rm SATRES"); */
  } /* endif propositional CNF requested */





  if ( gcmd_line.CNFencoding == 2 ||
       gcmd_line.CNFencoding == 3 ) {
    /* Hybrid CNF!
     */
    times( &start );
    gRPG = new_RPGlayer();
    t = RPG_initialize(gRPG);
    times( &end );
    TIME( gRPG_time );
    TIMECHECK;
    if ( gcmd_line.display_info ) {
      RPG_PV_statistics(t);
      fflush(stdout);
    }
    
    times( &start );
    gHCNF = new_HCNF();
    gHCNFend = gHCNF;
    gHCNFnumvars = 0;
    gHCNFnumclauses = 0;
    HCNF_initialize(t, 
		    &gHCNFend,
		    &gHCNFnumvars,
		    &gHCNFnumclauses);
    times( &end );
    TIME( gCNF_time );
    TIMECHECK;
    if ( gcmd_line.display_info ) {
      HCNF_statistics(t, gHCNF, gHCNFnumvars, gHCNFnumclauses);
      fflush(stdout);
    }
    
    goalreached = FALSE;
    while ( TRUE ) {
      times( &start );
      tpp = RPG_extend(t);
      times( &end );
      TIME( gRPG_time );
      TIMECHECK;
      if ( gcmd_line.display_info ) {
	RPG_AE_statistics(t);
	RPG_PV_statistics(tpp);
	fflush(stdout);
      }
      
      times( &start );
      HCNF_extend(t, 
		  &gHCNFend,
		  &gHCNFnumvars,
		  &gHCNFnumclauses);
      times( &end );
      TIME( gCNF_time );
      TIMECHECK;
      if ( gcmd_line.display_info ) {
	HCNF_statistics(tpp, gHCNF, gHCNFnumvars, gHCNFnumclauses);
	fflush(stdout);
      }
      
      if ( !goalreached && !RPG_satisfiesgoal(tpp) ) {
	t = tpp;
	continue;
      }
      
      if ( !goalreached ) {
	if ( gcmd_line.display_info ) {
	  printf("\nGoal reached at %d!", tpp->t);
	  fflush(stdout);
	}
	goalreached = TRUE;
      }
      
      HCNF_get_goal(tpp, 
		    &gHCNFend, 
		    &gHCNFnumclauses);

      HCNF_output(gRPG, gHCNF, gHCNFnumvars, gHCNFnumclauses, tpp->t);
      TIMECHECK;
      if ( gcmd_line.debug && gcmd_line.dHCNF ) {
	HCNF_print(gRPG, gHCNF, gHCNFnumvars, gHCNFnumclauses);
	printf("\n\n");
	exit( 0 );
      }

      sprintf(command, "%s/solvers/mathsat/mathsat-3.3.1/mathsat CNF > SATRES", num2satpath);
      sprintf(command2, "%s/solvers/mathsat/mathsat-3.3.1/mathsat CNF > SATRES", here);

      if ( gcmd_line.display_info ) {
	printf("\nInvoking MATHSAT solver, command:");
	printf("\n%s", command);
	printf("\n");
	fflush(stdout);
      }
      if( system( command ) )
	{
	  printf("failed with path %s, trying with %s\n", num2satpath, here);
	  system( command2 );
	}
      if ( (SATRES = fopen( "SATRES", "r" )) == NULL ) {
	printf("\nSATRES file not present. Failure!\n\n");
	exit( 0 );
      }
      /* read in MATHSAT's output. looks like:
       * Result = 1
       * TSTP Exit Status: SAT
       *
       * # -------------------------------------------------
       * # User time   : 0.020 s
       * # System time : 0.019 s
       * # Total time  : 0.039 s
       */
      fscanf(SATRES, "Result = %d\n", &sat);
      linecount = 0;
      while ( TRUE ) {
	c = fgetc(SATRES);
	if ( c == '\n') {
	  linecount++;
	  if ( linecount == 5 ) {
	    break;
	  }
	}
      }
      fscanf(SATRES, "# Total time  : %f s\n", &sat_rtime);
      
      gSAT_time += sat_rtime;
      TIMECHECK;
      if ( sat ) {
	if ( gcmd_line.display_info ) {
	  printf("\nSAT! %f sec. Plan found.", sat_rtime);
	  fflush(stdout);
	}
	break;
      } else {
	if ( gcmd_line.display_info ) {
	  printf("\nUNSAT! %f sec. Iterate.", sat_rtime);
	  fflush(stdout);
	}
      }
      fclose(SATRES);
      system("rm CNF");
      system("rm SATRES");
      
      HCNF_retract_goal(tpp, 
			&gHCNFend, 
			&gHCNFnumclauses);
      
      t = tpp;
    } /* endwhile main planning loop */
    fclose(SATRES);
    system("rm CNF");
    system("rm SATRES");
  } /* endif hybrid CNF requested */



  if ( !tpp ) {
    printf("\ntpp NULL at plan info output?\n\n");
    exit( 1 );
  }
  if ( gcmd_line.display_info ) {
    output_planner_info(gRPG, nractions);
  }


  sprintf(command3, "python addons/timemachine.py %s",fct_file);
  system(command3);

  printf("\n\n");
  exit( 0 );

}
Ejemplo n.º 5
0
int main (int argc, char *argv[])
{

  /* resulting name for ops file */
  char ops_file[MAX_LENGTH] = "";
  /* same for fct file */
  char fct_file[MAX_LENGTH] = "";

  char sol_file[MAX_LENGTH] = "";

  struct tms start, end;

  struct timeval tv;
  struct timezone tz;

  State current_start, current_end;
  int i, j, k;
  Bool found_plan=0;


#ifdef __EFENCE__
  extern int EF_ALLOW_MALLOC_0;
  EF_ALLOW_MALLOC_0 = 1;
#endif

printf("#\n");
printf("# (C) Copyright 2008, University of Illinois, Urbana-Champaign\n");
printf("#\n");
printf("# All rights reserved. Use of this software is permitted ONLY for\n");
printf("# non-commercial research purposes, and it may be copied only\n");
printf("# for that use only. All copies must include this copyright message.\n");
printf("# This software is made available AS IS, and neither the authors\n");
printf("# nor the University of Illinois, make any warranty about the\n");
printf("# software or its performance.\n");
printf("#\n");

  dis_gcmd_line.display_info = 1;
  dis_gcmd_line.debug = 0;
  dis_gcmd_line.ehc = dis_TRUE;
  dis_gcmd_line.optimize = dis_FALSE;
  dis_gcmd_line.g_weight = 1;
  dis_gcmd_line.h_weight = 1;
  SymmLagrangian = 0;     
  SymmLagrange = 0;     
  GpG.subsolver = 0;
  //dis_processdis__command_line(argc, argv); 
  /*
  printf("dis_gcmd_line.g_weight = %d\n", dis_gcmd_line.g_weight );
  printf("dis_gcmd_line.h_weight = %d\n", dis_gcmd_line.h_weight );
  printf("dis_gcmd_line.ehc = %d\n", dis_gcmd_line.ehc );
  printf("dis_gcmd_line.optimize = %d\n", dis_gcmd_line.optimize );
  printf("dis_gcmd_line.display_info = %d\n", dis_gcmd_line.display_info );
  printf("dis_gcmd_line.debug = %d\n", dis_gcmd_line.debug );
    */        
  
  //-------
  
  so_signal_management();

  strcpy (gcomm_line, "");
  for (i = 0; i < argc; i++)
    {
      strcat (gcomm_line, argv[i]);
      strcat (gcomm_line, " ");
    }
  get_path (*argv, glpg_path);
  initialize_preset_values ();


#ifdef __STATISTIC_LM__
  init_statistic();
#endif 

  /*Reset  hash-table
   */ 
  reset_cvar_hash_table();

  /* Initialize random seed
   */
  gettimeofday (&tv, &tz);
  seed = ((tv.tv_sec & 0177) * 1000000) + tv.tv_usec;


  /* command line treatment
   */
  if (argc == 1 || (argc == 2 && *++argv[0] == '?'))
    {
      lpg_usage ();
      exit (1);
    }
    gcmd_line.out_file_name[0] = 0;
  if (!process_command_line (argc, argv))
    {
      lpg_usage ();
      exit (1);
    }

  /* make file names
   */

  /* one input name missing
   */
  if (!gcmd_line.ops_file_name || !gcmd_line.fct_file_name)
    {
      fprintf (stdout, "\n%s: two input files needed\n\n", NAMEPRG);
      lpg_usage ();
      exit (1);
    }
  /* add path info, complete file names will be stored in
   * ops_file and fct_file 
   */
  sprintf (ops_file, "%s%s", gcmd_line.path, gcmd_line.ops_file_name);
  sprintf (fct_file, "%s%s", gcmd_line.path, gcmd_line.fct_file_name);

  strcpy (gops_file, ops_file);
  strcpy (gfct_file, fct_file);
  sprintf (sol_file, "%s%s", gcmd_line.path, gcmd_line.sol_file_name);


  /* parse the input files
   */

  /* start parse & instantiation timing
   */
  times (&glob_start_time);
  times (&start);

  /*
  //GpG.feed_MFF_LPG = TRUE;
  GpG.feed_MFF_LPG = FALSE;
  if(GpG.feed_MFF_LPG) {
        dis_MFF_main(ops_file, fct_file);
        mff_to_lpg();    
  }
  else 
  // START OF PARSING
  {*/

  /* domain file (ops)
   */

  // ADL?
  GpG.gis_ADL = ADL_ops_file(ops_file);
  i = get_requirements(ops_file);
  if((!GpG.is_deripred || i == 1 || !GpG.gis_ADL) && !GpG.is_goal_utilities && !GpG.is_action_costs) {
  if(!i || !GpG.gis_ADL) {   
   printf ("\nParsing domain file\n");
	fflush(stdout);

    /* it is important for the pddl language to define the domain before 
    * reading the problem 
    */
    load_ops_file (ops_file);
    // Y. Chen
    if(gloaded_dps) {
       // printf("\nSGPlan: Contains derived predicates\n");
      GpG.is_deripred = TRUE;
    }
    else {
      //  printf("\nSGPlan: No derived predicates\n");
      GpG.is_deripred = FALSE;
    }                 
  }
  else
  {
    gdomain_name = dis_copy_dis_Token("PSR");
    GpG.is_deripred = TRUE;
  }
  }

  /* =============  Search Modal =======================
   * Y. Chen 
   * Decide which parser to use here 
   */
                                
  search_ops_modal(); 
  //fprintf(stderr, "\nSearchModal = %d %d\n", GpG.SearchModal, GpG.SecondaryModal);
                                           
  // MFF_parser
  if((GpG.SearchModal == 5) || (GpG.SearchModal == 7) 
     || (GpG.SearchModal == 6) || (GpG.SearchModal == 100)
     || (GpG.SearchModal == 104) || (GpG.SearchModal == 106)
     || (GpG.SearchModal == 107)
     || (GpG.SearchModal == -1) || (GpG.SearchModal <= -1000)) {
	/* 
	Settlers 5
	Sattelite 6 Sattelite TIME_TIMEWINDOWS_COMPILED 106
	UMTS 7
	Psr large 100 Psr middle-compiled 104
	Promela OPTICAL_TELEGRAPH_FLUENTS PHILOSOPHERS_FLUENTS 107
	*/
        GpG.MFF_parser = TRUE;        
  } else {
        GpG.MFF_parser = FALSE;
  }
 
  // ComputeMutex       
  if(((GpG.SearchModal == 0)||(GpG.SearchModal == 105))
  || (GpG.SearchModal == 3 && GpG.is_til )
         ) {
	/*
	Airport 0 Airport TEMPORAL_TIMEWINDOWS_COMPILED 105
	Pipesworld NOTANKAGE_TEMPORAL_DEADLINES 3
	*/
	GpG.lowmemory = FALSE;
        ComputeMutex = TRUE;        
  } else {
        ComputeMutex = FALSE;
  }
  if(GpG.is_deripred) {
      ComputeMutex = FALSE;
  }
    
    
  /* ==================================================*/
 
  if(GpG.MFF_parser) {
    mffDistributedSearch(ops_file, fct_file);  
    exit(0);
  }
  
  /* ===================================================
    */
  
  transfer_PlDP_PlOperator();
        
  /*dirty trick to get another copy of gloaded_ops */
  	if (GpG.is_til)
		load_fct_file (fct_file);  
  gloaded_pl2ops = gloaded_ops;
  gloaded_ops = NULL;
  /* derived predicates */
  gloaded_dps = NULL;
  /* timed initial literals */
  gnum_tils = 0;
  g_tils = gtils = NULL;
  gdomain_name = NULL;
  gorig_initial_facts = NULL;
  gorig_goal_facts = NULL;
  gmetric_exp = NULL;
  gloaded_axioms = NULL;
  gparse_types = NULL;
  gparse_constants = NULL;
  gparse_predicates = NULL;
  gparse_functions = NULL;
  gparse_objects = NULL;
  gorig_constant_list = NULL;
  gpredicates_and_types = NULL;
  gfunctions_and_types = NULL;
  gloaded_constraints = NULL;
  gloaded_preferences = NULL;
  load_ops_file (ops_file);
  
  // Y. Chen
  transfer_PlDP_PlOperator();

  /*add dummy effect to operators without boolean effects */
  add_dummy_effects (gloaded_ops);
  add_dummy_effects (gloaded_pl2ops);
  /*counts numeric preconds and effects */
  count_num_preconds_and_effects ();
  GpG.gplan_actions = NULL;


  /* problem file (facts)
   */
  if (gcmd_line.display_info >= 1)
    {
      printf ("\nParsing problem file\n");
	fflush(stdout);
    }

  load_fct_file (fct_file);
  if (gcmd_line.display_info >= 1)
    printf ("\n\n");

  allocate_after_parser();

  /* now we have PlOperators and PlNodes */
  reduce_pddl2_to_pddl1 ();

  /* This is needed to get all types.
   */
  build_orig_constant_list ();

  /* last step of parsing: see if it's an ADL domain!
   */

  if (!make_adl_domain ())
    {
      printf ("\n%s: this is  an ADL problem!", NAMEPRG);
      printf ("\n    can't be handled by this version.\n\n");
      exit (1);
    }


  /* now instantiate operators;
   */


  /**************************
   * first do PREPROCESSING * 
   **************************/


  /* start by collecting all strings and thereby encoding 
   * the domain in integers.
   */
  encode_domain_in_integers ();

  /* inertia preprocessing, first step:
   *   - collect inertia information
   *   - split initial state into
   *        _ arrays for individual predicates
   *        - arrays for all static relations
   *        - array containing non - static relations
   */
  do_inertia_preprocessing_step_1 ();

  /* normalize all PL1 formulae in domain description:
   * (goal, preconds and effect conditions)
   *   - simplify formula
   *   - expand quantifiers
   *   - NOTs down
   */
  normalize_all_wffs ();

  /* translate negative preconds: introduce symmetric new predicate
   * NOT-p(..) (e.g., not-in(?ob) in briefcaseworld)
   */
  translate_negative_preconds ();

  /* split domain in easy (disjunction of conjunctive preconds)
   * and hard (non DNF preconds) part, to apply 
   * different instantiation algorithms
   */
  split_domain ();


  /***********************************************
   * PREPROCESSING FINISHED                      *
   *                                             *
   * NOW MULTIPLY PARAMETERS IN EFFECTIVE MANNER *
   ***********************************************/

  build_easy_action_templates ();

  build_hard_action_templates ();

  times (&end);
  TIME (gtempl_time);
  times (&start);


  check_time_and_length (0);

  // Y.Chen
  seed = 2004;
  srandom(seed);

#ifdef __MY_OUTPUT__
  printf ("\n Seed %d  \n", seed);
#endif


  /* perform reachability analysis in terms of relaxed 
   * fixpoint
   */

  perform_reachability_analysis ();

  times (&end);
  TIME (greach_time);
  times (&start);

  check_time_and_length (0);


  /* collect the relevant facts and build final domain
   * and problem representations.
   */

  collect_relevant_facts ();

  times (&end);
  TIME (grelev_time);
  times (&start);

  check_time_and_length (0);


  /* now build globally accessable connectivity graph
   */
  build_connectivity_graph ();
 
 /* 
  }// END PARSING
 */

  // Y. Chen
  set_DPop_flag();
 
  if(GpG.SearchModal != 3 && GpG.SearchModal != -2) { 
    if(!ComputeMutex) {       
        DistributeSearch(&ginitial_state, &ggoal_state, &subplan_actions);
        exit(0);
    }
  }
  
  times (&end);
  TIME (gconn_time);
  times (&start);

  check_time_and_length (0);

  /* association to gef_conn[i] a corresponding complet ploperator */
  associate_PlOperator_with_EfConn ();


  /* adding composed numeric quantities */
  add_composite_vars ();

  make_numgoal_state(GpG.numeric_goal_PlNode);

  /* make false the comparison between uninitialized numeric quantities */
  make_false_all_checks_on_not_init ();

  /* Semplification for inertial vars
   */
  propagate_inertias ();

if (GpG.SearchModal == -2)
{
	mffDistributedSearch(ops_file, fct_file);
	exit(0);
}
  if(GpG.SearchModal == 3) { 
    if(!ComputeMutex) {       
        DistributeSearch(&ginitial_state, &ggoal_state, &subplan_actions);
        exit(0);
    }
  }

  if (DEBUG0)
    if (GpG.non_strips_domain)
      {
          /*
	    if (GpG.variable_duration)
	        printf ("\n\nAction durations have been computed\n");
	    else
	     printf ("\n\nThere is no action duration to compute\n");*/
      }

  /* Set vars orig_weight_cost and orig_weight_time according with plan evaluation metric
   */
  if (goptimization_exp != -1)
    set_cost_and_time_coeffs ();

  /*
  if (DEBUG0)
    printf("\nEvaluation function weights:\n     Action duration %.2f; Action cost %.2f", GpG.orig_weight_time, GpG.orig_weight_cost);

  if (DEBUG0)
    printf ("\n\nTemporal flag: %s\n", GpG.temporal_plan ? "ON" : "OFF");
 */
    
  /* Make numeric effects structure
   */
  create_descnumeff_of_efconns ();

  /* Sets flag is_numeric for each action (efconn)
   */
  set_numeric_flag ();

  assert (gnum_comp_var < MAX_NUM_VALUE);

  /* Copy initial state in  initial_state
   */
  for (i = 0; i < gnum_comp_var; i++)
    ginitial_state.V[i] = GCOMP_VAR_VALUE(i);


  times (&end);
  TIME (gnum_time);
  times (&start);

  /* Print information about action istantiation 
   */
  print_parser_info_for_debug();
  //print_real_state(ginitial_state); 

  
    if(ComputeMutex) {
        
  //if (GpG.numrun > 0 && GpG.numtry > 0) {
  if (1) {

    if (DEBUG0 && !DEBUG1) {
   //   printf ("\nComputing mutex... ");
   //   fflush (stdout);
    }
    if (DEBUG1)
      printf ("\n\n--- COMPUTE MUTEX BETWEEN FACTS ---\n");
    
    if (GpG.accurate_cost >= 1)
      allocate_reachability_information_data();
	
    /* Comute mutex between facts    
    */
    calc_mutex (&ginitial_state);
    
    if (!are_goal_reachable_and_non_mutex ()) {
      printf ("\nThe problem is unsolvable since at the fixpoint level the goals are mutex or not reachable\n\n");
      exit (0);
    }
  }
  

  times (&end);
  TIME (gmutex_ft_time);

  if (DEBUG2)
    printf ("\n");
  if (DEBUG1)
    printf ("\n   --> Compute mutex between facts TOTAL TIME: %12.2f",gmutex_ft_time);

  times (&start);
  //if (GpG.numrun > 0 && GpG.numtry > 0) {
  if(1){  
   if (DEBUG1)
      printf ("\n\n--- COMPUTE MUTEX BETWEEN ACTIONS ---\n");
    /*Compute action-action, action_fact, fact-action mutex
     */
    calc_mutex_ops ();
  }


  times (&end);
  TIME (gmutex_ops_time);

  if (DEBUG1)
    printf ("\n   --> Compute mutex between actions TOTAL TIME: %12.2f\n",gmutex_ops_time);


  
  times (&start);

  
  //if (GpG.numrun > 0 && GpG.numtry > 0) {
  if(1){
      if (DEBUG1)
      printf ("\n\n--- COMPUTE MUTEX BETWEEN NUMERIC FACTS ---\n");
    /* Compute mutex between action with numeric effects
     */  
    if (!GpG.lowmemory)
      calc_mutex_num_efs ();
  }
  
  times (&end);
  TIME (gmutex_num_time);

  if (DEBUG1)
    printf("\n   --> Compute mutex between numeric facts TOTAL TIME: %12.2f\n",gmutex_num_time);
  if (DEBUG2)
    print_mutex_result ();
  if (DEBUG0 && !DEBUG1) {
   // printf ("done");
   // fflush (stdout);
  }

  times (&start);

  //if (DEBUG6 && !GpG.lowmemory)
    print_matrs ();
  gmutex_total_time = gmutex_ft_time + gmutex_ops_time + gmutex_num_time;
 }

  if (strlen (gcmd_line.sol_file_name) > 0)
    load_pddl2_plan (sol_file, &GpG.gplan_actions, 0);
	if (GpG.SearchModal == 3)
		ComputeMutex = FALSE;


  GpG.max_num_actions = gnum_ef_conn;
  GpG.max_num_facts = gnum_ft_conn;
  GpG.max_num_ft_block = gnum_ft_block;



  /***********************************************************
   * we are finally through with preprocessing and can worry *
   * about finding a plan instead.                            *
   ***********************************************************/


  /* another quick preprocess: approximate goal orderings and split
   * goal set into sequence of smaller sets, the goal agenda
   */
   
	// Yixin
 if(ComputeMutex) { 
    modify_ft_ef_mutex(); 
    compute_goal_agenda();
 }
  // printf ("******************\n");

  /*
   source_to_dest( &(gplan_states[0]), &ginitial_state );
   source_to_dest( &current_start, &ginitial_state );
   source_to_dest( &current_end, &(ggoal_agenda[0]) );
          
   for ( i = 0; i < gnum_goal_agenda; i++ ) {
	if ( !do_enforced_hill_climbing( &current_start, &current_end ) ) {
	       break;
       }
       source_to_dest( &current_start, &(gplan_states[gnum_plan_ops]) );
      if ( i < gnum_goal_agenda - 1 ) {
         for ( j = 0; j < ggoal_agenda[i+1].num_F; j++ ) {
	       current_end.F[current_end.num_F++] = ggoal_agenda[i+1].F[j];
         }
      }
    }
    found_plan = ( i == gnum_goal_agenda ) ? TRUE : FALSE;
  */
    

  source_to_dest (&(gplan_states[0]), &ginitial_state);
  source_to_dest (&current_start, &ginitial_state);
  source_to_dest (&current_end, &ggoal_state);

  remove_unappliable_actions ();

  if ((GpG.search_type == LOCAL && GpG.numrun > 0 && GpG.numtry > 0) ||
      GpG.search_type == DIS_SEARCH )
     {
      k = MAX (GpG.input_plan_lenght, gmutex_level);
      for (i = 0; i < k; i++)
	{
	  if (i < gmutex_level)
	    create_vectlevel (0);
	  else
	    create_vectlevel (1);
	}
      allocate_data_for_local_search();
      create_all_min_array ();

      GpG.fixpoint_plan_length = GpG.max_plan_length - 1;
      GpG.saved_fixpoint_plan_length = GpG.fixpoint_plan_length ;
      GpG.curr_goal_state =  &current_end;

    }


  if (DEBUG1) {
    printf ("\n\nTime spent for preprocessing:");
    printf ("\n Instantiating:     %7.2f seconds", gtempl_time + greach_time + grelev_time + gconn_time + gsearch_time);
    printf ("\n Mutex relations:   %7.2f seconds", gmutex_total_time);
    printf ("\n Numeric relations: %7.2f seconds", gnum_time);
  }
  if (DEBUG0) {   
    times (&glob_end_time);
    gtotal_time = (float) ((glob_end_time.tms_utime - glob_start_time.tms_utime + glob_end_time.tms_stime - glob_start_time.tms_stime) / 100.0);
  //  printf ("\nPreprocessing total time: %.2f seconds",gtotal_time);
  }
  

  /*
  printf ("\n\ninitial state is:\n\n");
  for (i = 0; i < ginitial_state.num_F; i++)
    {
      print_ft_name (current_start.F[i]);
      printf ("\n");
    }
  printf ("\n\ngoal state is:\n\n");
  for (i = 0; i < current_end.num_F; i++)
    {
      print_ft_name (current_end.F[i]);
      printf ("\n");
    }
  printf("GpG.fixpoint_plan_length = ",
          GpG.fixpoint_plan_length);
*/
#ifdef __TEST__
  for (i = 0; i < gnum_op_conn; i++)
  {
    print_op_name(i);
    printf(" -- %f \n", get_action_cost (i));
  }
#endif


  if (GpG.do_best_first == TRUE && GpG.numrun==0)  
    GpG.search_type=BEST_FIRST;
  /* Search untill it is not reached termination condition (given by the function 'is_term_condition_reached')
   */
  while(!is_terminated)
    {
      /* Different types of local search 
       */      
      switch(GpG.search_type)
	{
	  /* Local Search usually used in LPG
	   */

     case DIS_SEARCH:
         DistributeSearch(&current_start, &current_end, &subplan_actions);
         GpG.gplan_actions = subplan_actions;
         subplan_actions = NULL;
         is_terminated=TRUE;
         break;       
         
     case LOCAL:
	  /* Do Local Search
	   */
	   
        LocalSearch (&current_start, &current_end, &subplan_actions);
	  /* Store plan in GpG.gplan_actions
	   */
	  GpG.gplan_actions = subplan_actions;	 
	  subplan_actions = NULL;
	  /* Control if the termination condition is reached
	   */
	  is_terminated=TRUE;
      //is_terminated= is_term_condition_reached();
	  break;
	 
	  /* Best First Search implemented by J. Hoffmann (FF-v2.3)
	   */
	case BEST_FIRST:

      //  strips_gef_conn();
       // load_ff_gef_conn();
	  
        if (DEBUG0)
	    printf("\n\nSwitching to Best-first Search ( code from J. Hoffmann's package FF-v2.3 ) \n");
	  check_time_and_length (0);	/* con zero non controlla la lunghezza */
	  /* Return solution if reached, FALSE otherwise
	   */
	  found_plan = do_best_first_search ();
	  printf("do_best_first_search");
      
	  //if (do_enforced_hill_climbing (&current_start, &current_end))
	  //printf("do_hill");
	  
      times (&end);
	  TIME (gsearch_time);
	  
	  times (&end);
	  times (&glob_end_time);
	  gtotal_time = (float) ((glob_end_time.tms_utime - glob_start_time.tms_utime + glob_end_time.tms_stime - glob_start_time.tms_stime) / 100.0);
	  /* If a solution was found in best first search print solution
	   */
	  if (found_plan)
	    {
	      
#ifdef __MY_OUTPUT__
	      printf ("\nFFGGHH::%.2f::%d\n", gtotal_time, gnum_plan_ops);
#endif
	      store_adapted_temporal_plan_ff (gcmd_line.fct_file_name);
	      
	      
	      printf ("\nTotal time:      %.2f\nSearch time:     %.2f\nActions:         %d\nExecution cost:  %.2f\nDuration:        %.3f\nPlan quality:    %.3f", gtotal_time, gsearch_time, GpG.num_actions, GpG.total_cost, GpG.total_time,GpG.total_cost * GpG.orig_weight_cost + GpG.total_time * GpG.orig_weight_time);

	      printf ("\n     Plan file:");
	      printf ("       plan_bestfirst_%s.SOL", gcmd_line.fct_file_name);
	  
	    }
	  
	  if (DEBUG1)
	    output_planner_info ();
	  /* Control if the termination condition is reached
	   */
	  is_terminated= is_term_condition_reached();
	  break;
	  
	  /* Hill Climbing Search
	   */
	case   HILL_CLIMBING:
	  
	  if (do_enforced_hill_climbing (&current_start, &current_end))
	    source_to_dest (&current_start, &(gplan_states[gnum_plan_ops]));
	  
      printf("do_hill");
	  /* Control if the termination condition is reached
	   */
	  is_terminated= is_term_condition_reached();
	  break;
	  
	default:
	  /* Control if the termination condition is reached
	   */
	  is_terminated= is_term_condition_reached();
	  break;

	}  

	  
      if (DEBUG2)
	{
	  printf ("\n\nInitial state is:\n\n");
	  for (j = 0; j < ginitial_state.num_F; j++)
	    {
	      print_ft_name (current_start.F[j]);
	      printf ("\n");
	    }
	  printf ("\n\nGoal state is:\n\n");
	  for (j = 0; j < current_end.num_F; j++)
	    {
	      print_ft_name (current_end.F[j]);
	      printf ("\n");
	    }
	}
    }
    
  printf ("\n\n");

	      printf ("\nTotal time:      %.3f\n", gtotal_time);
  exit (0);
}
Ejemplo n.º 6
0
int main( int argc, char *argv[] ) {
    /* resulting name for ops file
     */
    char ops_file[MAX_LENGTH] = "";

    /* same for fct file
     */
    char fct_file[MAX_LENGTH] = "";

    /* name for additional goal file
     */
    char mul_file[MAX_LENGTH] = "";

    struct timeb start, end;

    State current_start, current_end;
    int i, j;
    Bool found_plan;

    Bool found_plan_for_multiple_purpose;

    /*times ( &lstart );*/
    ftime(&lstart);

    /* command line treatment*/
    if ( argc == 1 || ( argc == 2 && *++argv[0] == '?' ) ) {
        ff_usage();
        exit( 1 );
    }
    if ( !process_command_line( argc, argv ) ) {
        ff_usage();
        exit( 1 );
    }

    /* make file names
     */

    /* one input name missing
     */
    if ( !gcmd_line.ops_file_name ||
            !gcmd_line.fct_file_name ||
            !gcmd_line.mul_file_name ) {

        fprintf(stdout, "\nmul-fip : three input files needed\n");
        ff_usage();
        exit( 1 );
    }
    /* add path info, complete file names will be stored in
     * ops_file and fct_file
     */
    sprintf(ops_file, "%s%s", gcmd_line.path, gcmd_line.ops_file_name);
    sprintf(fct_file, "%s%s", gcmd_line.path, gcmd_line.fct_file_name);
    sprintf(mul_file, "%s%s", gcmd_line.path, gcmd_line.mul_file_name);

    /* parse the input files
     */
    /* start parse & instantiation timing*/
    /*times( &start );*/
    ftime(&start);
    /* domain file (ops)
     */

    /* it is important for the pddl language to define the domain before
     * reading the problem  */
    load_ops_file( ops_file );
    /* problem file (facts) */
    if ( gcmd_line.display_info >= 1 ) {
        printf("\nDebugInfo: parsing problem file.\n");
    }

    load_fct_file( fct_file );

    if ( gcmd_line.display_info >= 1 ) {
        printf("\nDebugInfo: original purpose fact file done.\n");
    }

    load_mul_file( mul_file );

    if ( gcmd_line.display_info >= 1 ) {
        printf("\nDebugInfo: multiple purpose fact file done.\n");
    }

    /* This is needed to get all types.*/
    /* modified by jovi: adding supprot for addtional constant */
    build_orig_constant_list();

    if ( gcmd_line.display_info >= 1 ) {
        printf("\nDebugInfo: build_orig_constant_list() done.\n");
    }

    /* last step of parsing: see if it's an ADL domain!
     */
    if ( !make_adl_domain() ) {
        printf("\nmul-fip: this is not an ADL problem!");
        printf("\n\tcan't be handled by this version.\n\n");
        exit( 1 );
    }
    if ( gcmd_line.display_info >= 1 ) {
        printf("\nDebugInfo: make_adl_domain() done.\n");
    }

    /* now instantiate operators;
     */
    /*JC: initialize the array*/
    gInvActs = (StateActionPair*)calloc(MAX_INVALID_ACTIONS, sizeof(StateActionPair));

    /**************************
     * first do PREPROCESSING *
     **************************/

    /* start by collecting all strings and thereby encoding
     * the domain in integers.
     */
    encode_domain_in_integers();

    if ( gcmd_line.display_info >= 1 ) {
        printf("\nDebugInfo: encode_domain_in_integers() done.\n");
    }
    /* inertia preprocessing, first step:
     *   - collect inertia information
     *   - split initial state into
     *        _ arrays for individual predicates
     *        - arrays for all static relations
     *        - array containing non - static relations
     */
    do_inertia_preprocessing_step_1();
    if ( gcmd_line.display_info >= 1 ) {
        printf("\nDebugInfo: do_inertia_preprocessing_step_1() done.\n");
    }

    /* normalize all PL1 formulae in domain description:
     * (goal, preconds and effect conditions)
     *   - simplify formula
     *   - expand quantifiers
     *   - NOTs down
     */
    normalize_all_wffs();

    if ( gcmd_line.display_info >= 1 ) {
        printf("\nDebugInfo: normalize_all_wffs() done.\n");
    }

    /* translate negative preconds: introduce symmetric new predicate
     * NOT-p(..) (e.g., not-in(?ob) in briefcaseworld)
     */
    translate_negative_preconds();
    if ( gcmd_line.display_info >= 1 ) {
        printf("\nDebugInfo: translate_negative_preconds() done.\n");
    }

    /* split domain in easy (disjunction of conjunctive preconds)
     * and hard (non DNF preconds) part, to apply
     * different instantiation algorithms
     */
    split_domain();
    if ( gcmd_line.display_info >= 1 ) {
        printf("\nDebugInfo: split_domain() done.\n");
    }

    /***********************************************
     * PREPROCESSING FINISHED                      *
     *                                             *
     * NOW MULTIPLY PARAMETERS IN EFFECTIVE MANNER *
     ***********************************************/

    /*jovi: updated for multiple purpose */
    build_easy_action_templates();
    build_hard_action_templates();

    if ( gcmd_line.display_info >= 1 ) {
        printf("\nDebugInfo: build_easy_action_template() done.\n");
    }

    /*times( &end );*/
    ftime(&end);
    TIME( gtempl_time );

    /*times( &start );*/
    ftime(&start);

    /* perform reachability analysis in terms of relaxed  fixpoint */
    perform_reachability_analysis();

    if ( gcmd_line.display_info >= 1 ) {
        printf("\nDebugInfo: perform_reachability_analysis() done.\n");
    }

    /*times( &end );*/
    ftime(&end);
    TIME( greach_time );

    /*times( &start );*/
    ftime(&start);

    /* collect the relevant facts and build final domain
     * and problem representations.*/
    collect_relevant_facts();
    if ( gcmd_line.display_info >= 1 ) {
        printf("\nDebugInfo: collect_relevant_facts.\n");
    }
    /*times( &end );*/
    ftime(&end);
    TIME( grelev_time );

    /*times( &start );*/
    ftime(&start);

    /* now build globally accessable connectivity graph */
    build_connectivity_graph();
    if ( gcmd_line.display_info >= 1 ) {
        printf("\nDebugInfo: build_connectivity_graph().\n");
    }

    /*times( &end );*/
    ftime(&end);
    TIME( gconn_time );


    /***********************************************************
     * we are finally through with preprocessing and can worry *
     * bout finding a plan instead.                            *
     ***********************************************************/
    ftime(&mystart);
    /*times( &start );*/
    ftime(&start);

    /* another quick preprocess: approximate goal orderings and split
     * goal set into sequence of smaller sets, the goal agenda
     */
    compute_goal_agenda();
    if ( gcmd_line.display_info >= 1 ) {
        printf("\nDebugInfo: compute_goal_agenda().\n");
    }
    /*debugit(&ginitial_state);*/
    /* make space in plan states info, and relax
     * make sapce is initialize the space for gplan_states and
     * initialzie the variable
     */
    for ( i = 0; i < MAX_PLAN_LENGTH + 1; i++ ) {
        make_state( &(gplan_states[i]), gnum_ft_conn );
        gplan_states[i].max_F = gnum_ft_conn;
    }

    make_state( &current_start, gnum_ft_conn );
    current_start.max_F = gnum_ft_conn;
    make_state( &current_end, gnum_ft_conn );
    current_end.max_F = gnum_ft_conn;
    initialize_relax();

    /* need to read the agenda paper */
    source_to_dest( &(gplan_states[0]), &ginitial_state );
    source_to_dest( &current_start, &ginitial_state );
    source_to_dest( &current_end, &(ggoal_agenda[0]) );

    for ( i = 0; i < gnum_goal_agenda; i++ ) {
        /* JC add a hashtable creating in do_enforced_hill_climbling*/
        if (!do_enforced_hill_climbing(&current_start, &current_end)) {
            if (gcmd_line.display_info >= 1) {
                printf("\nDebugInfo: do_enforced_hill_climbling() exit .\n");
            }
            break;
        }
        source_to_dest( &current_start, &(gplan_states[gnum_plan_ops]) );
        if ( i < gnum_goal_agenda - 1 ) {
            for ( j = 0; j < ggoal_agenda[i+1].num_F; j++ ) {
                current_end.F[current_end.num_F++] = ggoal_agenda[i+1].F[j];
            }
        }
    }

    found_plan = ( i == gnum_goal_agenda ) ? TRUE : FALSE;

    if ( !found_plan ) {
        printf("\nDebugInfo: switching to Best-first Search now.\n");
        reset_ff_states();
        found_plan = do_best_first_search();
    }


    if ( gcmd_line.display_info >= 1 ) {
        printf("\n************************************************\n");
        printf("\n*  mul-fip: fip plan finished for single goal. *\n");
        printf("\n************************************************\n");
    }
    print_plan();

    if ( !found_plan ) {
        /*print_plan();*/
        /* D action add to group */
        build_action_group();

        gfipPlan.num_sons = 0;
        gfipPlan.action = -1;

        print_plan();

        /*put the ultimate goal to the solved set*/
        StateActionPair *g = new_StateActionPair();
        make_state(&g->state, gnum_ft_conn);
        g->state.max_F = gnum_ft_conn;
        source_to_dest(&g->state, &ggoal_state);
        g->state.num_L = 1;
        g->state.L[0] = 10000000; /*make it the biggest*/
        add_solved_state(g);
        /*ugly, but work*/

        convert_ff_plan_to_fip_plan( &gfipPlan );

        solve_unsolved_states();

        if(!gsolved_states) {
            printf("No solutions are found! The problem is unsolvable.\n");
            exit(0);
        } else if(g_is_strong) {
            StateActionPair *ptr = gsolved_states;
            Bool valid = FALSE;
            while(ptr) {
                if(ptr->state.num_L == 1 && ptr->state.L[0] == 1) {
                    valid = TRUE;
                    break;
                }
                ptr = ptr->next;
            }
            if(!valid) {
                printf("The initial state is a dead-end! The problem is unsolvable.\n");
                exit(0);
            }
        }

        printf("##########################################\n");
        printf("#####   PROCEDURE-LIKE CODE   ############\n");
        printf("##########################################\n");
        /* print_fip_plan_1( is_solved_state(&ginitial_state) , &gfipPlan, 1); */

        /* times( &end ); */
        ftime(&end);
        TIME( gsearch_time );

        /* myend = clock(); */
        ftime(&myend);

        /* printf("my cac is %7.3f\n", 1.0*(myend.millitm - mystart.millitm)/1000.0); */
        print_fip_plan_2();

        if(to_print_state)
            print_all_states();
        /* print_fip_plan_3( &gfipPlan, 0 ); */
    }
    printf("The total searching time is %7.3f\n", (myend.time - mystart.time) + (myend.millitm - mystart.millitm)/1000.0);

    output_planner_info();




    /********************************************
     * Multiple Purpose Planning                *
     ********************************************/

    if ( gcmd_line.display_info >= 1 ) {
        printf("\n************************************************\n");
        printf("\n*  mul-fip: multiple purpose planning          *\n");
        printf("\n************************************************\n");
    }

    set_global_variables_for_multiple_purpose();

    ftime(&start);
    update_reachability_analysis_for_multiple_purpose ();
    ftime(&end);
    TIME( gadd_reach_time );

    if ( gcmd_line.display_info >= 1 ) {
        printf("\nDebugInfo: update_reachability_analysis_for_multiple_purpose() finished\n");
    }

    ftime(&start);
    update_relevant_facts_for_multiple_purpose ();
    ftime(&end);
    TIME( gadd_relev_time );

    if ( gcmd_line.display_info >= 1 ) {
        printf("\nDebugInfo: update_relevant_facts_for_multiple_purpose() finished\n");
    }

    ftime(&start);
    update_connectivity_graph_for_multiple_purpose();
    ftime(&end);
    TIME( gadd_conn_time );

    if ( gcmd_line.display_info >= 1 ) {
        printf("\nDebugInfo: update_connectivity_graph_for_multiple_purpose() finished\n");
    }

    compute_goal_agenda_for_multiple_purpose ();

    if ( gcmd_line.display_info >= 1 ) {
        printf("\nDebugInfo: compute_goal_agenda_for_multiple_purpose() finished\n");
    }

    for ( i = 0; i < MAX_PLAN_LENGTH + 1; i++ ) {
        make_state( &(gadd_plan_states[i]), gnum_ft_conn );
        gadd_plan_states[i].max_F = gnum_ft_conn;
    }

    source_to_dest( &current_end, &(gadd_goal_agenda[0]) );

    for ( i = 0; i < gadd_num_goal_agenda; i++ ) {
        /* JC add a hashtable creating in do_enforced_hill_climbling*/
        if ( !do_enforced_hill_climbing_for_multiple_purpose ( &current_start, &current_end ) ) {
            break;
        }
        source_to_dest( &current_start, &(gplan_states[gnum_plan_ops]) );
        if ( i < gnum_goal_agenda - 1 ) {
            for ( j = 0; j < ggoal_agenda[i+1].num_F; j++ ) {
                current_end.F[current_end.num_F++] = ggoal_agenda[i+1].F[j];
            }
        }
    }

    found_plan_for_multiple_purpose = ( i == gadd_num_goal_agenda ) ? TRUE : FALSE;



    if ( !found_plan_for_multiple_purpose ) {
        printf("\n\nEnforced Hill-climbing failed !");
        printf("\nswitching to Best-first Search now.\n");
        reset_ff_states_for_multiple_purpose();
        found_plan_for_multiple_purpose = do_best_first_search_for_multiple_purpose();
    }

    if ( gcmd_line.display_info >= 1 ) {
        printf("\n************************************************\n");
        printf("\n*  mul-fip: fip plan finished for multiple goal. *\n");
        printf("\n************************************************\n");
    }

    print_plan();

    if ( !found_plan_for_multiple_purpose ) {
        /*print_plan();*/
        /* D action add to group */
        build_action_group();

        gfipPlan.num_sons = 0;
        gfipPlan.action = -1;

        print_plan();

        /*put the ultimate goal to the solved set*/
        StateActionPair *g = new_StateActionPair();
        make_state(&g->state, gnum_ft_conn);
        g->state.max_F = gnum_ft_conn;
        source_to_dest(&g->state, &ggoal_state);
        g->state.num_L = 1;
        g->state.L[0] = 10000000; /*make it the biggest*/
        add_solved_state(g);
        /*ugly, but work*/

        convert_ff_plan_to_fip_plan( &gfipPlan );

        solve_unsolved_states();

        if(!gsolved_states) {
            printf("No solutions are found! The problem is unsolvable.\n");
            exit(0);
        } else if(g_is_strong) {
            StateActionPair *ptr = gsolved_states;
            Bool valid = FALSE;
            while(ptr) {
                if(ptr->state.num_L == 1 && ptr->state.L[0] == 1) {
                    valid = TRUE;
                    break;
                }
                ptr = ptr->next;
            }
            if(!valid) {
                printf("The initial state is a dead-end! The problem is unsolvable.\n");
                exit(0);
            }
        }

        printf("##########################################\n");
        printf("#####   PROCEDURE-LIKE CODE   ############\n");
        printf("##########################################\n");
        /* print_fip_plan_1( is_solved_state(&ginitial_state) , &gfipPlan, 1); */

        /* times( &end ); */
        ftime(&end);
        TIME( gsearch_time );

        /* myend = clock(); */
        ftime(&myend);

        /* printf("my cac is %7.3f\n", 1.0*(myend.millitm - mystart.millitm)/1000.0); */
        print_fip_plan_2();

        if(to_print_state)
            print_all_states();
        /* print_fip_plan_3( &gfipPlan, 0 ); */
    }
    /*****************************************************************************************/

    output_planner_info();

    printf("\n\n");
    exit( 0 );

}