void load_domain(char *line,kdomain *domain,int type){ kdomain *temp_domain = domain, *new_domain,*s_domain; int i = 1; int splitcount; char **split_structure = malloc(sizeof(char *) * 4);; split_domain(line,split_structure); for(splitcount = 0; splitcount < 4;splitcount++){ if(split_structure[splitcount] != NULL){ if(split_structure[splitcount+1] == NULL){ new_domain = new_domain_structure(split_structure[splitcount],type); } else new_domain = new_domain_structure(split_structure[splitcount],-1); if(split_structure[splitcount+1] == NULL) i = 0; temp_domain = add_domain(new_domain,temp_domain,i); free(split_structure[splitcount]); } } free(split_structure); }
kdomain *search_domain(char *name,kdomain *root_domain,int search_type){ char **split_structure = malloc(sizeof(char *) * 4); int count = 0, len_size = 0; unsigned int temp_hash = 0; kdomain *temp_domain = root_domain->kd_child; if(!temp_domain){ return (kdomain *) 0; } split_domain(name,split_structure); if(!split_structure[0]){ return (kdomain *) 0; } while(temp_domain){ temp_hash = 0; if((len_size = strlen(split_structure[count])) <= 10){ temp_hash = hash(split_structure[count],len_size); } else temp_hash = hash(split_structure[count],10); if(((temp_domain->domain_hash == temp_hash))){ len_size = (temp_domain->name_length <= len_size ? temp_domain->name_length : len_size); if(!memcmp(temp_domain->name,split_structure[count],len_size)){ if((temp_domain->suspicious == 0) && (search_type == 0)){ return temp_domain; } else if((count != 3) && (split_structure[count+1] != NULL)){ count++; temp_domain = temp_domain->kd_child; } else if(count != 3 && split_structure[count+1] == NULL){ return temp_domain; } else if(count == 3){ return temp_domain; } } else temp_domain = temp_domain->next; } else temp_domain = temp_domain->next; } free(split_structure); return (kdomain *)0; }
int main( int argc, char *argv[] ) { /* resulting name for ops file */ char ops_file[MAX_LENGTH] = ""; /* same for fct file */ char fct_file[MAX_LENGTH] = ""; struct tms start, end; State current_start, current_end; int i, j; Bool found_plan; times ( &lstart ); /* command line treatment */ if ( argc == 1 || ( argc == 2 && *++argv[0] == '?' ) ) { ff_usage(); exit( 1 ); } if ( !process_command_line( argc, argv ) ) { ff_usage(); exit( 1 ); } /* make file names */ /* one input name missing */ if ( !gcmd_line.ops_file_name || !gcmd_line.fct_file_name ) { fprintf(stdout, "\nff: two input files needed\n\n"); ff_usage(); exit( 1 ); } /* add path info, complete file names will be stored in * ops_file and fct_file */ sprintf(ops_file, "%s%s", gcmd_line.path, gcmd_line.ops_file_name); sprintf(fct_file, "%s%s", gcmd_line.path, gcmd_line.fct_file_name); /* parse the input files */ /* start parse & instantiation timing */ times( &start ); /* domain file (ops) */ if ( gcmd_line.display_info >= 1 ) { printf("\nff: parsing domain file"); } /* it is important for the pddl language to define the domain before * reading the problem */ load_ops_file( ops_file ); /* problem file (facts) */ if ( gcmd_line.display_info >= 1 ) { printf(" ... done.\nff: parsing problem file"); } load_fct_file( fct_file ); if ( gcmd_line.display_info >= 1 ) { printf(" ... done.\n\n"); } /* This is needed to get all types. */ build_orig_constant_list(); /* last step of parsing: see if it's an ADL domain! */ if ( !make_adl_domain() ) { printf("\nff: this is not an ADL problem!"); printf("\n can't be handled by this version.\n\n"); exit( 1 ); } /* now instantiate operators; */ /************************** * first do PREPROCESSING * **************************/ /* start by collecting all strings and thereby encoding * the domain in integers. */ encode_domain_in_integers(); /* inertia preprocessing, first step: * - collect inertia information * - split initial state into * _ arrays for individual predicates * - arrays for all static relations * - array containing non - static relations */ do_inertia_preprocessing_step_1(); /* normalize all PL1 formulae in domain description: * (goal, preconds and effect conditions) * - simplify formula * - expand quantifiers * - NOTs down */ normalize_all_wffs(); /* translate negative preconds: introduce symmetric new predicate * NOT-p(..) (e.g., not-in(?ob) in briefcaseworld) */ translate_negative_preconds(); /* split domain in easy (disjunction of conjunctive preconds) * and hard (non DNF preconds) part, to apply * different instantiation algorithms */ split_domain(); /*********************************************** * PREPROCESSING FINISHED * * * * NOW MULTIPLY PARAMETERS IN EFFECTIVE MANNER * ***********************************************/ build_easy_action_templates(); build_hard_action_templates(); times( &end ); TIME( gtempl_time ); times( &start ); /* perform reachability analysis in terms of relaxed * fixpoint */ perform_reachability_analysis(); times( &end ); TIME( greach_time ); times( &start ); /* collect the relevant facts and build final domain * and problem representations. */ collect_relevant_facts(); times( &end ); TIME( grelev_time ); times( &start ); /* now build globally accessable connectivity graph */ build_connectivity_graph(); times( &end ); TIME( gconn_time ); /*********************************************************** * we are finally through with preprocessing and can worry * * bout finding a plan instead. * ***********************************************************/ times( &start ); /* another quick preprocess: approximate goal orderings and split * goal set into sequence of smaller sets, the goal agenda */ compute_goal_agenda(); /* make space in plan states info, and relax */ for ( i = 0; i < MAX_PLAN_LENGTH + 1; i++ ) { make_state( &(gplan_states[i]), gnum_ft_conn ); gplan_states[i].max_F = gnum_ft_conn; } make_state( ¤t_start, gnum_ft_conn ); current_start.max_F = gnum_ft_conn; make_state( ¤t_end, gnum_ft_conn ); current_end.max_F = gnum_ft_conn; initialize_relax(); source_to_dest( &(gplan_states[0]), &ginitial_state ); source_to_dest( ¤t_start, &ginitial_state ); source_to_dest( ¤t_end, &(ggoal_agenda[0]) ); for ( i = 0; i < gnum_goal_agenda; i++ ) { if ( !do_enforced_hill_climbing( ¤t_start, ¤t_end ) ) { break; } source_to_dest( ¤t_start, &(gplan_states[gnum_plan_ops]) ); if ( i < gnum_goal_agenda - 1 ) { for ( j = 0; j < ggoal_agenda[i+1].num_F; j++ ) { current_end.F[current_end.num_F++] = ggoal_agenda[i+1].F[j]; } } } found_plan = ( i == gnum_goal_agenda ) ? TRUE : FALSE; if ( !found_plan ) { printf("\n\nEnforced Hill-climbing failed !"); printf("\nswitching to Best-first Search now.\n"); found_plan = do_best_first_search(); } times( &end ); TIME( gsearch_time ); if ( found_plan ) { print_plan(); } output_planner_info(); printf("\n\n"); exit( 0 ); }
int main( int argc, char *argv[] ) { /* resulting name for ops file */ char ops_file[MAX_LENGTH] = ""; /* same for fct file */ char fct_file[MAX_LENGTH] = ""; /* for calls to outside programs, eg zchaff. */ char command[MAX_LENGTH]; char command2[MAX_LENGTH]; /* for trying another path */ /* for getting their answer. */ char command3[MAX_LENGTH]; FILE *SATRES; /* sat solver data. */ int sat; float sat_rtime; int nractions = -1; struct tms start, end; RPGlayer *t, *tpp; Bool goalreached; char c; int linecount; /* int time; */ times ( &lstart ); printf("\n\n"); system("rm CNF"); system("rm SATRES"); printf("\n\n"); fflush(stdout); /* command line treatment */ if ( argc == 1 || ( argc == 2 && *++argv[0] == '?' ) ) { ff_usage(); exit( 1 ); } if ( !process_command_line( argc, argv ) ) { ff_usage(); exit( 1 ); } /* make file names */ /* one input name missing */ if ( !gcmd_line.ops_file_name || !gcmd_line.fct_file_name ) { fprintf(stdout, "\nff: two input files needed\n\n"); ff_usage(); exit( 1 ); } /* add path info, complete file names will be stored in * ops_file and fct_file */ sprintf(ops_file, "%s%s", gcmd_line.path, gcmd_line.ops_file_name); sprintf(fct_file, "%s%s", gcmd_line.path, gcmd_line.fct_file_name); /* parse the input files */ /* start parse & instantiation timing */ times( &start ); /* domain file (ops) */ if ( gcmd_line.display_info >= 1 ) { printf("\nff: parsing domain file"); } /* it is important for the pddl language to define the domain before * reading the problem */ load_ops_file( ops_file ); /* problem file (facts) */ if ( gcmd_line.display_info >= 1 ) { printf(" ... done.\nff: parsing problem file"); } sprintf(command3, "python addons/removeconstraints.py %s",fct_file); system(command3); sprintf(command3, "python addons/parseconstraints.py"); system(command3); load_fct_file( fct_file ); if ( gcmd_line.display_info >= 1 ) { printf(" ... done.\n\n"); } /* Load token of mutex2ignore */ if( gcmd_line.mutex2ignore_file_name[0] != '\0' ) load_mutex2ignore_file( gcmd_line.mutex2ignore_file_name ); /* This is needed to get all types. */ build_orig_constant_list(); /* last step of parsing: see if it's an ADL domain! */ if ( !make_adl_domain() ) { printf("\nff: this is not an ADL problem!"); printf("\n can't be handled by this version.\n\n"); exit( 1 ); } /* now instantiate operators; */ /************************** * first do PREPROCESSING * **************************/ /* start by collecting all strings and thereby encoding * the domain in integers. */ encode_domain_in_integers(); /* inertia preprocessing, first step: * - collect inertia information * - split initial state into * - arrays for individual predicates * - arrays for all static relations * - array containing non - static relations */ do_inertia_preprocessing_step_1(); /* normalize all PL1 formulae in domain description: * (goal, preconds and effect conditions) * - simplify formula * - expand quantifiers * - NOTs down */ normalize_all_wffs(); /* translate negative preconds: introduce symmetric new predicate * NOT-p(..) (e.g., not-in(?ob) in briefcaseworld) */ translate_negative_preconds(); /* split domain in easy (disjunction of conjunctive preconds) * and hard (non DNF preconds) part, to apply * different instantiation algorithms */ split_domain(); /*********************************************** * PREPROCESSING FINISHED * * * * NOW MULTIPLY PARAMETERS IN EFFECTIVE MANNER * ***********************************************/ build_easy_action_templates(); build_hard_action_templates(); times( &end ); TIME( gtempl_time ); times( &start ); /* perform reachability analysis in terms of relaxed * fixpoint */ perform_reachability_analysis(); times( &end ); TIME( greach_time ); times( &start ); /* collect the relevant facts and build final domain * and problem representations. */ collect_relevant_facts_and_fluents(); times( &end ); TIME( grelev_time ); /* for num2sat, SKIP LNF AND, WITH THAT, GCONN STRUCTURES!!! * * reason: LNF is not needed for the CNF encodings, and the RPG is * built only once so optimizations are not time critical. * * LNF introduces a huge overhead, and creates many variables * (e.g. n^2 vs n for pre-LNF, in jugs) which would have to be * filtered for the input ones, anyway. * * RPG sets off on these data structures: * extern Action *gactions; * extern int gnum_actions; * extern State ginitial_state; * extern int *glogic_goal; * extern int gnum_logic_goal; * extern Comparator *gnumeric_goal_comp; * extern ExpNode_pointer *gnumeric_goal_lh, *gnumeric_goal_rh; * extern int gnum_numeric_goal; */ /* instead, do some additional pre-processing to collect all different * constraints, and all different conjunctions psi of constraints. * needed to get a natural implementation of collecting value tuples * for all such constructs. */ collect_relevant_constraints_and_psis(); /* that is done. let's go. * * NOTE that keeping track of the RPG layers in here * isn't just a coincidence. It's made so that we can use these same * functions to build another RPG if we want to, eg. one that's * modified to greedily estimate the variable domains instead of * enumerating them completely. */ /* separating CNF and Hybrid CNF methods completely, * though they got a large overlap. * reason: looks nicer, and mayb at some point * we're gonna use a different RPG for hybrid. */ /* just to avoid "might be used uninitialized" message */ tpp = NULL; if ( gcmd_line.CNFencoding == 0 || gcmd_line.CNFencoding == 1 ) { /* propositional CNF! */ times( &start ); gRPG = new_RPGlayer(); t = RPG_initialize(gRPG); times( &end ); TIME( gRPG_time ); TIMECHECK; if ( gcmd_line.display_info ) { RPG_PV_statistics(t); fflush(stdout); } times( &start ); gCNF = new_CNF(); gCNFend = gCNF; gCNFnumvars = 0; gCNFnumclauses = 0; CNF_initialize(t, &gCNFend, &gCNFnumvars, &gCNFnumclauses); times( &end ); TIME( gCNF_time ); TIMECHECK; if ( gcmd_line.display_info ) { CNF_statistics(t, gCNF, gCNFnumvars, gCNFnumclauses); fflush(stdout); } /* ########################################################################################## ########################################################################################## ########################################################################################## ########################################################################################## ########################################################################################## ########################################################################################## */ system("rm auxiliar.txt"); goalreached = FALSE; while ( TRUE ) { times( &start ); tpp = RPG_extend(t); times( &end ); TIME( gRPG_time ); TIMECHECK; if ( gcmd_line.display_info ) { RPG_AE_statistics(t); RPG_PV_statistics(tpp); fflush(stdout); } times( &start ); CNF_extend(t, &gCNFend, &gCNFnumvars, &gCNFnumclauses); times( &end ); TIME( gCNF_time ); TIMECHECK; if ( gcmd_line.display_info ) { CNF_statistics(tpp, gCNF, gCNFnumvars, gCNFnumclauses); fflush(stdout); } if ( !goalreached && !RPG_satisfiesgoal(tpp) ) { t = tpp; continue; } if ( !goalreached ) { if ( gcmd_line.display_info ) { printf("\nGoal reached at %d!", tpp->t); fflush(stdout); } goalreached = TRUE; } CNF_get_goal(tpp, &gCNFend, &gCNFnumclauses); CNF_output(gCNF, gCNFnumvars, gCNFnumclauses, tpp->t); TIMECHECK; CNF_print_act_table(gRPG, "action-table"); sprintf(command, "python %s/addons/addconstraints.py CNF action-table", here); system(command); if ( gcmd_line.debug && gcmd_line.dCNF ) { CNF_print(gRPG, gCNF, gCNFnumvars, gCNFnumclauses); printf("\n\n"); /* exit( 0 ); */ } if ( gcmd_line.CNFsolver == 0 ) { sprintf(command, "%s/solvers/minisat/MiniSat_v1.14/minisat CNF", num2satpath); sprintf(command2, "%s/solvers/minisat/MiniSat_v1.14/minisat CNF", here); } if ( gcmd_line.CNFsolver == 1 ) { sprintf(command, "%s/solvers/zchaff/zchaff CNF", num2satpath); sprintf(command2, "%s/solvers/zchaff/zchaff CNF", here); } if ( gcmd_line.CNFsolver == 2 ) { /* OJO: que no hagan falta dos comandos: -m y -s 2 */ /* minisat */ CNF_print_act_table(gRPG, "action-table"); sprintf(command, "%s/solvers/minisat+mutex.py CNF action-table %s m", num2satpath, gcmd_line.mutex2ignore_file_name ); sprintf(command2, "%s/solvers/minisat+mutex.py CNF action-table %s m", here, gcmd_line.mutex2ignore_file_name ); } if ( gcmd_line.CNFsolver == 3 ) { /* zchaff */ CNF_print_act_table(gRPG, "action-table"); sprintf(command, "%s/solvers/minisat+mutex.py CNF action-table %s z", num2satpath, gcmd_line.mutex2ignore_file_name ); sprintf(command2, "%s/solvers/minisat+mutex.py CNF action-table %s z", here, gcmd_line.mutex2ignore_file_name ); } if ( gcmd_line.display_info ) { printf("\nInvoking SAT solver, command:"); printf("\n%s", command); printf("\n"); fflush(stdout); } if( system( command ) ) { printf("failed with path %s, trying with %s\n", num2satpath, here); printf("\nInvoking SAT solver, command:"); printf("\n%s", command2); printf("\n"); fflush(stdout); system( command2 ); } if ( (SATRES = fopen( "SATRES", "r" )) == NULL ) { printf("\nSATRES file not present. Failure!\n\n"); exit( 0 ); } fscanf(SATRES, "%d %f\n", &sat, &sat_rtime); gSAT_time += sat_rtime; TIMECHECK; if ( sat ) { break; } fclose(SATRES); /* system("rm CNF"); */ /* system("rm SATRES"); */ CNF_retract_goal(tpp, &gCNFend, &gCNFnumclauses); t = tpp; } /* endwhile main planning loop */ if ( gcmd_line.display_info ) { nractions = CNF_output_plan(SATRES, gRPG, gCNFnumvars); fflush(stdout); } fclose(SATRES); /* system("rm CNF"); */ /* system("rm SATRES"); */ } /* endif propositional CNF requested */ if ( gcmd_line.CNFencoding == 2 || gcmd_line.CNFencoding == 3 ) { /* Hybrid CNF! */ times( &start ); gRPG = new_RPGlayer(); t = RPG_initialize(gRPG); times( &end ); TIME( gRPG_time ); TIMECHECK; if ( gcmd_line.display_info ) { RPG_PV_statistics(t); fflush(stdout); } times( &start ); gHCNF = new_HCNF(); gHCNFend = gHCNF; gHCNFnumvars = 0; gHCNFnumclauses = 0; HCNF_initialize(t, &gHCNFend, &gHCNFnumvars, &gHCNFnumclauses); times( &end ); TIME( gCNF_time ); TIMECHECK; if ( gcmd_line.display_info ) { HCNF_statistics(t, gHCNF, gHCNFnumvars, gHCNFnumclauses); fflush(stdout); } goalreached = FALSE; while ( TRUE ) { times( &start ); tpp = RPG_extend(t); times( &end ); TIME( gRPG_time ); TIMECHECK; if ( gcmd_line.display_info ) { RPG_AE_statistics(t); RPG_PV_statistics(tpp); fflush(stdout); } times( &start ); HCNF_extend(t, &gHCNFend, &gHCNFnumvars, &gHCNFnumclauses); times( &end ); TIME( gCNF_time ); TIMECHECK; if ( gcmd_line.display_info ) { HCNF_statistics(tpp, gHCNF, gHCNFnumvars, gHCNFnumclauses); fflush(stdout); } if ( !goalreached && !RPG_satisfiesgoal(tpp) ) { t = tpp; continue; } if ( !goalreached ) { if ( gcmd_line.display_info ) { printf("\nGoal reached at %d!", tpp->t); fflush(stdout); } goalreached = TRUE; } HCNF_get_goal(tpp, &gHCNFend, &gHCNFnumclauses); HCNF_output(gRPG, gHCNF, gHCNFnumvars, gHCNFnumclauses, tpp->t); TIMECHECK; if ( gcmd_line.debug && gcmd_line.dHCNF ) { HCNF_print(gRPG, gHCNF, gHCNFnumvars, gHCNFnumclauses); printf("\n\n"); exit( 0 ); } sprintf(command, "%s/solvers/mathsat/mathsat-3.3.1/mathsat CNF > SATRES", num2satpath); sprintf(command2, "%s/solvers/mathsat/mathsat-3.3.1/mathsat CNF > SATRES", here); if ( gcmd_line.display_info ) { printf("\nInvoking MATHSAT solver, command:"); printf("\n%s", command); printf("\n"); fflush(stdout); } if( system( command ) ) { printf("failed with path %s, trying with %s\n", num2satpath, here); system( command2 ); } if ( (SATRES = fopen( "SATRES", "r" )) == NULL ) { printf("\nSATRES file not present. Failure!\n\n"); exit( 0 ); } /* read in MATHSAT's output. looks like: * Result = 1 * TSTP Exit Status: SAT * * # ------------------------------------------------- * # User time : 0.020 s * # System time : 0.019 s * # Total time : 0.039 s */ fscanf(SATRES, "Result = %d\n", &sat); linecount = 0; while ( TRUE ) { c = fgetc(SATRES); if ( c == '\n') { linecount++; if ( linecount == 5 ) { break; } } } fscanf(SATRES, "# Total time : %f s\n", &sat_rtime); gSAT_time += sat_rtime; TIMECHECK; if ( sat ) { if ( gcmd_line.display_info ) { printf("\nSAT! %f sec. Plan found.", sat_rtime); fflush(stdout); } break; } else { if ( gcmd_line.display_info ) { printf("\nUNSAT! %f sec. Iterate.", sat_rtime); fflush(stdout); } } fclose(SATRES); system("rm CNF"); system("rm SATRES"); HCNF_retract_goal(tpp, &gHCNFend, &gHCNFnumclauses); t = tpp; } /* endwhile main planning loop */ fclose(SATRES); system("rm CNF"); system("rm SATRES"); } /* endif hybrid CNF requested */ if ( !tpp ) { printf("\ntpp NULL at plan info output?\n\n"); exit( 1 ); } if ( gcmd_line.display_info ) { output_planner_info(gRPG, nractions); } sprintf(command3, "python addons/timemachine.py %s",fct_file); system(command3); printf("\n\n"); exit( 0 ); }
int main (int argc, char *argv[]) { /* resulting name for ops file */ char ops_file[MAX_LENGTH] = ""; /* same for fct file */ char fct_file[MAX_LENGTH] = ""; char sol_file[MAX_LENGTH] = ""; struct tms start, end; struct timeval tv; struct timezone tz; State current_start, current_end; int i, j, k; Bool found_plan=0; #ifdef __EFENCE__ extern int EF_ALLOW_MALLOC_0; EF_ALLOW_MALLOC_0 = 1; #endif printf("#\n"); printf("# (C) Copyright 2008, University of Illinois, Urbana-Champaign\n"); printf("#\n"); printf("# All rights reserved. Use of this software is permitted ONLY for\n"); printf("# non-commercial research purposes, and it may be copied only\n"); printf("# for that use only. All copies must include this copyright message.\n"); printf("# This software is made available AS IS, and neither the authors\n"); printf("# nor the University of Illinois, make any warranty about the\n"); printf("# software or its performance.\n"); printf("#\n"); dis_gcmd_line.display_info = 1; dis_gcmd_line.debug = 0; dis_gcmd_line.ehc = dis_TRUE; dis_gcmd_line.optimize = dis_FALSE; dis_gcmd_line.g_weight = 1; dis_gcmd_line.h_weight = 1; SymmLagrangian = 0; SymmLagrange = 0; GpG.subsolver = 0; //dis_processdis__command_line(argc, argv); /* printf("dis_gcmd_line.g_weight = %d\n", dis_gcmd_line.g_weight ); printf("dis_gcmd_line.h_weight = %d\n", dis_gcmd_line.h_weight ); printf("dis_gcmd_line.ehc = %d\n", dis_gcmd_line.ehc ); printf("dis_gcmd_line.optimize = %d\n", dis_gcmd_line.optimize ); printf("dis_gcmd_line.display_info = %d\n", dis_gcmd_line.display_info ); printf("dis_gcmd_line.debug = %d\n", dis_gcmd_line.debug ); */ //------- so_signal_management(); strcpy (gcomm_line, ""); for (i = 0; i < argc; i++) { strcat (gcomm_line, argv[i]); strcat (gcomm_line, " "); } get_path (*argv, glpg_path); initialize_preset_values (); #ifdef __STATISTIC_LM__ init_statistic(); #endif /*Reset hash-table */ reset_cvar_hash_table(); /* Initialize random seed */ gettimeofday (&tv, &tz); seed = ((tv.tv_sec & 0177) * 1000000) + tv.tv_usec; /* command line treatment */ if (argc == 1 || (argc == 2 && *++argv[0] == '?')) { lpg_usage (); exit (1); } gcmd_line.out_file_name[0] = 0; if (!process_command_line (argc, argv)) { lpg_usage (); exit (1); } /* make file names */ /* one input name missing */ if (!gcmd_line.ops_file_name || !gcmd_line.fct_file_name) { fprintf (stdout, "\n%s: two input files needed\n\n", NAMEPRG); lpg_usage (); exit (1); } /* add path info, complete file names will be stored in * ops_file and fct_file */ sprintf (ops_file, "%s%s", gcmd_line.path, gcmd_line.ops_file_name); sprintf (fct_file, "%s%s", gcmd_line.path, gcmd_line.fct_file_name); strcpy (gops_file, ops_file); strcpy (gfct_file, fct_file); sprintf (sol_file, "%s%s", gcmd_line.path, gcmd_line.sol_file_name); /* parse the input files */ /* start parse & instantiation timing */ times (&glob_start_time); times (&start); /* //GpG.feed_MFF_LPG = TRUE; GpG.feed_MFF_LPG = FALSE; if(GpG.feed_MFF_LPG) { dis_MFF_main(ops_file, fct_file); mff_to_lpg(); } else // START OF PARSING {*/ /* domain file (ops) */ // ADL? GpG.gis_ADL = ADL_ops_file(ops_file); i = get_requirements(ops_file); if((!GpG.is_deripred || i == 1 || !GpG.gis_ADL) && !GpG.is_goal_utilities && !GpG.is_action_costs) { if(!i || !GpG.gis_ADL) { printf ("\nParsing domain file\n"); fflush(stdout); /* it is important for the pddl language to define the domain before * reading the problem */ load_ops_file (ops_file); // Y. Chen if(gloaded_dps) { // printf("\nSGPlan: Contains derived predicates\n"); GpG.is_deripred = TRUE; } else { // printf("\nSGPlan: No derived predicates\n"); GpG.is_deripred = FALSE; } } else { gdomain_name = dis_copy_dis_Token("PSR"); GpG.is_deripred = TRUE; } } /* ============= Search Modal ======================= * Y. Chen * Decide which parser to use here */ search_ops_modal(); //fprintf(stderr, "\nSearchModal = %d %d\n", GpG.SearchModal, GpG.SecondaryModal); // MFF_parser if((GpG.SearchModal == 5) || (GpG.SearchModal == 7) || (GpG.SearchModal == 6) || (GpG.SearchModal == 100) || (GpG.SearchModal == 104) || (GpG.SearchModal == 106) || (GpG.SearchModal == 107) || (GpG.SearchModal == -1) || (GpG.SearchModal <= -1000)) { /* Settlers 5 Sattelite 6 Sattelite TIME_TIMEWINDOWS_COMPILED 106 UMTS 7 Psr large 100 Psr middle-compiled 104 Promela OPTICAL_TELEGRAPH_FLUENTS PHILOSOPHERS_FLUENTS 107 */ GpG.MFF_parser = TRUE; } else { GpG.MFF_parser = FALSE; } // ComputeMutex if(((GpG.SearchModal == 0)||(GpG.SearchModal == 105)) || (GpG.SearchModal == 3 && GpG.is_til ) ) { /* Airport 0 Airport TEMPORAL_TIMEWINDOWS_COMPILED 105 Pipesworld NOTANKAGE_TEMPORAL_DEADLINES 3 */ GpG.lowmemory = FALSE; ComputeMutex = TRUE; } else { ComputeMutex = FALSE; } if(GpG.is_deripred) { ComputeMutex = FALSE; } /* ==================================================*/ if(GpG.MFF_parser) { mffDistributedSearch(ops_file, fct_file); exit(0); } /* =================================================== */ transfer_PlDP_PlOperator(); /*dirty trick to get another copy of gloaded_ops */ if (GpG.is_til) load_fct_file (fct_file); gloaded_pl2ops = gloaded_ops; gloaded_ops = NULL; /* derived predicates */ gloaded_dps = NULL; /* timed initial literals */ gnum_tils = 0; g_tils = gtils = NULL; gdomain_name = NULL; gorig_initial_facts = NULL; gorig_goal_facts = NULL; gmetric_exp = NULL; gloaded_axioms = NULL; gparse_types = NULL; gparse_constants = NULL; gparse_predicates = NULL; gparse_functions = NULL; gparse_objects = NULL; gorig_constant_list = NULL; gpredicates_and_types = NULL; gfunctions_and_types = NULL; gloaded_constraints = NULL; gloaded_preferences = NULL; load_ops_file (ops_file); // Y. Chen transfer_PlDP_PlOperator(); /*add dummy effect to operators without boolean effects */ add_dummy_effects (gloaded_ops); add_dummy_effects (gloaded_pl2ops); /*counts numeric preconds and effects */ count_num_preconds_and_effects (); GpG.gplan_actions = NULL; /* problem file (facts) */ if (gcmd_line.display_info >= 1) { printf ("\nParsing problem file\n"); fflush(stdout); } load_fct_file (fct_file); if (gcmd_line.display_info >= 1) printf ("\n\n"); allocate_after_parser(); /* now we have PlOperators and PlNodes */ reduce_pddl2_to_pddl1 (); /* This is needed to get all types. */ build_orig_constant_list (); /* last step of parsing: see if it's an ADL domain! */ if (!make_adl_domain ()) { printf ("\n%s: this is an ADL problem!", NAMEPRG); printf ("\n can't be handled by this version.\n\n"); exit (1); } /* now instantiate operators; */ /************************** * first do PREPROCESSING * **************************/ /* start by collecting all strings and thereby encoding * the domain in integers. */ encode_domain_in_integers (); /* inertia preprocessing, first step: * - collect inertia information * - split initial state into * _ arrays for individual predicates * - arrays for all static relations * - array containing non - static relations */ do_inertia_preprocessing_step_1 (); /* normalize all PL1 formulae in domain description: * (goal, preconds and effect conditions) * - simplify formula * - expand quantifiers * - NOTs down */ normalize_all_wffs (); /* translate negative preconds: introduce symmetric new predicate * NOT-p(..) (e.g., not-in(?ob) in briefcaseworld) */ translate_negative_preconds (); /* split domain in easy (disjunction of conjunctive preconds) * and hard (non DNF preconds) part, to apply * different instantiation algorithms */ split_domain (); /*********************************************** * PREPROCESSING FINISHED * * * * NOW MULTIPLY PARAMETERS IN EFFECTIVE MANNER * ***********************************************/ build_easy_action_templates (); build_hard_action_templates (); times (&end); TIME (gtempl_time); times (&start); check_time_and_length (0); // Y.Chen seed = 2004; srandom(seed); #ifdef __MY_OUTPUT__ printf ("\n Seed %d \n", seed); #endif /* perform reachability analysis in terms of relaxed * fixpoint */ perform_reachability_analysis (); times (&end); TIME (greach_time); times (&start); check_time_and_length (0); /* collect the relevant facts and build final domain * and problem representations. */ collect_relevant_facts (); times (&end); TIME (grelev_time); times (&start); check_time_and_length (0); /* now build globally accessable connectivity graph */ build_connectivity_graph (); /* }// END PARSING */ // Y. Chen set_DPop_flag(); if(GpG.SearchModal != 3 && GpG.SearchModal != -2) { if(!ComputeMutex) { DistributeSearch(&ginitial_state, &ggoal_state, &subplan_actions); exit(0); } } times (&end); TIME (gconn_time); times (&start); check_time_and_length (0); /* association to gef_conn[i] a corresponding complet ploperator */ associate_PlOperator_with_EfConn (); /* adding composed numeric quantities */ add_composite_vars (); make_numgoal_state(GpG.numeric_goal_PlNode); /* make false the comparison between uninitialized numeric quantities */ make_false_all_checks_on_not_init (); /* Semplification for inertial vars */ propagate_inertias (); if (GpG.SearchModal == -2) { mffDistributedSearch(ops_file, fct_file); exit(0); } if(GpG.SearchModal == 3) { if(!ComputeMutex) { DistributeSearch(&ginitial_state, &ggoal_state, &subplan_actions); exit(0); } } if (DEBUG0) if (GpG.non_strips_domain) { /* if (GpG.variable_duration) printf ("\n\nAction durations have been computed\n"); else printf ("\n\nThere is no action duration to compute\n");*/ } /* Set vars orig_weight_cost and orig_weight_time according with plan evaluation metric */ if (goptimization_exp != -1) set_cost_and_time_coeffs (); /* if (DEBUG0) printf("\nEvaluation function weights:\n Action duration %.2f; Action cost %.2f", GpG.orig_weight_time, GpG.orig_weight_cost); if (DEBUG0) printf ("\n\nTemporal flag: %s\n", GpG.temporal_plan ? "ON" : "OFF"); */ /* Make numeric effects structure */ create_descnumeff_of_efconns (); /* Sets flag is_numeric for each action (efconn) */ set_numeric_flag (); assert (gnum_comp_var < MAX_NUM_VALUE); /* Copy initial state in initial_state */ for (i = 0; i < gnum_comp_var; i++) ginitial_state.V[i] = GCOMP_VAR_VALUE(i); times (&end); TIME (gnum_time); times (&start); /* Print information about action istantiation */ print_parser_info_for_debug(); //print_real_state(ginitial_state); if(ComputeMutex) { //if (GpG.numrun > 0 && GpG.numtry > 0) { if (1) { if (DEBUG0 && !DEBUG1) { // printf ("\nComputing mutex... "); // fflush (stdout); } if (DEBUG1) printf ("\n\n--- COMPUTE MUTEX BETWEEN FACTS ---\n"); if (GpG.accurate_cost >= 1) allocate_reachability_information_data(); /* Comute mutex between facts */ calc_mutex (&ginitial_state); if (!are_goal_reachable_and_non_mutex ()) { printf ("\nThe problem is unsolvable since at the fixpoint level the goals are mutex or not reachable\n\n"); exit (0); } } times (&end); TIME (gmutex_ft_time); if (DEBUG2) printf ("\n"); if (DEBUG1) printf ("\n --> Compute mutex between facts TOTAL TIME: %12.2f",gmutex_ft_time); times (&start); //if (GpG.numrun > 0 && GpG.numtry > 0) { if(1){ if (DEBUG1) printf ("\n\n--- COMPUTE MUTEX BETWEEN ACTIONS ---\n"); /*Compute action-action, action_fact, fact-action mutex */ calc_mutex_ops (); } times (&end); TIME (gmutex_ops_time); if (DEBUG1) printf ("\n --> Compute mutex between actions TOTAL TIME: %12.2f\n",gmutex_ops_time); times (&start); //if (GpG.numrun > 0 && GpG.numtry > 0) { if(1){ if (DEBUG1) printf ("\n\n--- COMPUTE MUTEX BETWEEN NUMERIC FACTS ---\n"); /* Compute mutex between action with numeric effects */ if (!GpG.lowmemory) calc_mutex_num_efs (); } times (&end); TIME (gmutex_num_time); if (DEBUG1) printf("\n --> Compute mutex between numeric facts TOTAL TIME: %12.2f\n",gmutex_num_time); if (DEBUG2) print_mutex_result (); if (DEBUG0 && !DEBUG1) { // printf ("done"); // fflush (stdout); } times (&start); //if (DEBUG6 && !GpG.lowmemory) print_matrs (); gmutex_total_time = gmutex_ft_time + gmutex_ops_time + gmutex_num_time; } if (strlen (gcmd_line.sol_file_name) > 0) load_pddl2_plan (sol_file, &GpG.gplan_actions, 0); if (GpG.SearchModal == 3) ComputeMutex = FALSE; GpG.max_num_actions = gnum_ef_conn; GpG.max_num_facts = gnum_ft_conn; GpG.max_num_ft_block = gnum_ft_block; /*********************************************************** * we are finally through with preprocessing and can worry * * about finding a plan instead. * ***********************************************************/ /* another quick preprocess: approximate goal orderings and split * goal set into sequence of smaller sets, the goal agenda */ // Yixin if(ComputeMutex) { modify_ft_ef_mutex(); compute_goal_agenda(); } // printf ("******************\n"); /* source_to_dest( &(gplan_states[0]), &ginitial_state ); source_to_dest( ¤t_start, &ginitial_state ); source_to_dest( ¤t_end, &(ggoal_agenda[0]) ); for ( i = 0; i < gnum_goal_agenda; i++ ) { if ( !do_enforced_hill_climbing( ¤t_start, ¤t_end ) ) { break; } source_to_dest( ¤t_start, &(gplan_states[gnum_plan_ops]) ); if ( i < gnum_goal_agenda - 1 ) { for ( j = 0; j < ggoal_agenda[i+1].num_F; j++ ) { current_end.F[current_end.num_F++] = ggoal_agenda[i+1].F[j]; } } } found_plan = ( i == gnum_goal_agenda ) ? TRUE : FALSE; */ source_to_dest (&(gplan_states[0]), &ginitial_state); source_to_dest (¤t_start, &ginitial_state); source_to_dest (¤t_end, &ggoal_state); remove_unappliable_actions (); if ((GpG.search_type == LOCAL && GpG.numrun > 0 && GpG.numtry > 0) || GpG.search_type == DIS_SEARCH ) { k = MAX (GpG.input_plan_lenght, gmutex_level); for (i = 0; i < k; i++) { if (i < gmutex_level) create_vectlevel (0); else create_vectlevel (1); } allocate_data_for_local_search(); create_all_min_array (); GpG.fixpoint_plan_length = GpG.max_plan_length - 1; GpG.saved_fixpoint_plan_length = GpG.fixpoint_plan_length ; GpG.curr_goal_state = ¤t_end; } if (DEBUG1) { printf ("\n\nTime spent for preprocessing:"); printf ("\n Instantiating: %7.2f seconds", gtempl_time + greach_time + grelev_time + gconn_time + gsearch_time); printf ("\n Mutex relations: %7.2f seconds", gmutex_total_time); printf ("\n Numeric relations: %7.2f seconds", gnum_time); } if (DEBUG0) { times (&glob_end_time); gtotal_time = (float) ((glob_end_time.tms_utime - glob_start_time.tms_utime + glob_end_time.tms_stime - glob_start_time.tms_stime) / 100.0); // printf ("\nPreprocessing total time: %.2f seconds",gtotal_time); } /* printf ("\n\ninitial state is:\n\n"); for (i = 0; i < ginitial_state.num_F; i++) { print_ft_name (current_start.F[i]); printf ("\n"); } printf ("\n\ngoal state is:\n\n"); for (i = 0; i < current_end.num_F; i++) { print_ft_name (current_end.F[i]); printf ("\n"); } printf("GpG.fixpoint_plan_length = ", GpG.fixpoint_plan_length); */ #ifdef __TEST__ for (i = 0; i < gnum_op_conn; i++) { print_op_name(i); printf(" -- %f \n", get_action_cost (i)); } #endif if (GpG.do_best_first == TRUE && GpG.numrun==0) GpG.search_type=BEST_FIRST; /* Search untill it is not reached termination condition (given by the function 'is_term_condition_reached') */ while(!is_terminated) { /* Different types of local search */ switch(GpG.search_type) { /* Local Search usually used in LPG */ case DIS_SEARCH: DistributeSearch(¤t_start, ¤t_end, &subplan_actions); GpG.gplan_actions = subplan_actions; subplan_actions = NULL; is_terminated=TRUE; break; case LOCAL: /* Do Local Search */ LocalSearch (¤t_start, ¤t_end, &subplan_actions); /* Store plan in GpG.gplan_actions */ GpG.gplan_actions = subplan_actions; subplan_actions = NULL; /* Control if the termination condition is reached */ is_terminated=TRUE; //is_terminated= is_term_condition_reached(); break; /* Best First Search implemented by J. Hoffmann (FF-v2.3) */ case BEST_FIRST: // strips_gef_conn(); // load_ff_gef_conn(); if (DEBUG0) printf("\n\nSwitching to Best-first Search ( code from J. Hoffmann's package FF-v2.3 ) \n"); check_time_and_length (0); /* con zero non controlla la lunghezza */ /* Return solution if reached, FALSE otherwise */ found_plan = do_best_first_search (); printf("do_best_first_search"); //if (do_enforced_hill_climbing (¤t_start, ¤t_end)) //printf("do_hill"); times (&end); TIME (gsearch_time); times (&end); times (&glob_end_time); gtotal_time = (float) ((glob_end_time.tms_utime - glob_start_time.tms_utime + glob_end_time.tms_stime - glob_start_time.tms_stime) / 100.0); /* If a solution was found in best first search print solution */ if (found_plan) { #ifdef __MY_OUTPUT__ printf ("\nFFGGHH::%.2f::%d\n", gtotal_time, gnum_plan_ops); #endif store_adapted_temporal_plan_ff (gcmd_line.fct_file_name); printf ("\nTotal time: %.2f\nSearch time: %.2f\nActions: %d\nExecution cost: %.2f\nDuration: %.3f\nPlan quality: %.3f", gtotal_time, gsearch_time, GpG.num_actions, GpG.total_cost, GpG.total_time,GpG.total_cost * GpG.orig_weight_cost + GpG.total_time * GpG.orig_weight_time); printf ("\n Plan file:"); printf (" plan_bestfirst_%s.SOL", gcmd_line.fct_file_name); } if (DEBUG1) output_planner_info (); /* Control if the termination condition is reached */ is_terminated= is_term_condition_reached(); break; /* Hill Climbing Search */ case HILL_CLIMBING: if (do_enforced_hill_climbing (¤t_start, ¤t_end)) source_to_dest (¤t_start, &(gplan_states[gnum_plan_ops])); printf("do_hill"); /* Control if the termination condition is reached */ is_terminated= is_term_condition_reached(); break; default: /* Control if the termination condition is reached */ is_terminated= is_term_condition_reached(); break; } if (DEBUG2) { printf ("\n\nInitial state is:\n\n"); for (j = 0; j < ginitial_state.num_F; j++) { print_ft_name (current_start.F[j]); printf ("\n"); } printf ("\n\nGoal state is:\n\n"); for (j = 0; j < current_end.num_F; j++) { print_ft_name (current_end.F[j]); printf ("\n"); } } } printf ("\n\n"); printf ("\nTotal time: %.3f\n", gtotal_time); exit (0); }
int main( int argc, char *argv[] ) { /* resulting name for ops file */ char ops_file[MAX_LENGTH] = ""; /* same for fct file */ char fct_file[MAX_LENGTH] = ""; /* name for additional goal file */ char mul_file[MAX_LENGTH] = ""; struct timeb start, end; State current_start, current_end; int i, j; Bool found_plan; Bool found_plan_for_multiple_purpose; /*times ( &lstart );*/ ftime(&lstart); /* command line treatment*/ if ( argc == 1 || ( argc == 2 && *++argv[0] == '?' ) ) { ff_usage(); exit( 1 ); } if ( !process_command_line( argc, argv ) ) { ff_usage(); exit( 1 ); } /* make file names */ /* one input name missing */ if ( !gcmd_line.ops_file_name || !gcmd_line.fct_file_name || !gcmd_line.mul_file_name ) { fprintf(stdout, "\nmul-fip : three input files needed\n"); ff_usage(); exit( 1 ); } /* add path info, complete file names will be stored in * ops_file and fct_file */ sprintf(ops_file, "%s%s", gcmd_line.path, gcmd_line.ops_file_name); sprintf(fct_file, "%s%s", gcmd_line.path, gcmd_line.fct_file_name); sprintf(mul_file, "%s%s", gcmd_line.path, gcmd_line.mul_file_name); /* parse the input files */ /* start parse & instantiation timing*/ /*times( &start );*/ ftime(&start); /* domain file (ops) */ /* it is important for the pddl language to define the domain before * reading the problem */ load_ops_file( ops_file ); /* problem file (facts) */ if ( gcmd_line.display_info >= 1 ) { printf("\nDebugInfo: parsing problem file.\n"); } load_fct_file( fct_file ); if ( gcmd_line.display_info >= 1 ) { printf("\nDebugInfo: original purpose fact file done.\n"); } load_mul_file( mul_file ); if ( gcmd_line.display_info >= 1 ) { printf("\nDebugInfo: multiple purpose fact file done.\n"); } /* This is needed to get all types.*/ /* modified by jovi: adding supprot for addtional constant */ build_orig_constant_list(); if ( gcmd_line.display_info >= 1 ) { printf("\nDebugInfo: build_orig_constant_list() done.\n"); } /* last step of parsing: see if it's an ADL domain! */ if ( !make_adl_domain() ) { printf("\nmul-fip: this is not an ADL problem!"); printf("\n\tcan't be handled by this version.\n\n"); exit( 1 ); } if ( gcmd_line.display_info >= 1 ) { printf("\nDebugInfo: make_adl_domain() done.\n"); } /* now instantiate operators; */ /*JC: initialize the array*/ gInvActs = (StateActionPair*)calloc(MAX_INVALID_ACTIONS, sizeof(StateActionPair)); /************************** * first do PREPROCESSING * **************************/ /* start by collecting all strings and thereby encoding * the domain in integers. */ encode_domain_in_integers(); if ( gcmd_line.display_info >= 1 ) { printf("\nDebugInfo: encode_domain_in_integers() done.\n"); } /* inertia preprocessing, first step: * - collect inertia information * - split initial state into * _ arrays for individual predicates * - arrays for all static relations * - array containing non - static relations */ do_inertia_preprocessing_step_1(); if ( gcmd_line.display_info >= 1 ) { printf("\nDebugInfo: do_inertia_preprocessing_step_1() done.\n"); } /* normalize all PL1 formulae in domain description: * (goal, preconds and effect conditions) * - simplify formula * - expand quantifiers * - NOTs down */ normalize_all_wffs(); if ( gcmd_line.display_info >= 1 ) { printf("\nDebugInfo: normalize_all_wffs() done.\n"); } /* translate negative preconds: introduce symmetric new predicate * NOT-p(..) (e.g., not-in(?ob) in briefcaseworld) */ translate_negative_preconds(); if ( gcmd_line.display_info >= 1 ) { printf("\nDebugInfo: translate_negative_preconds() done.\n"); } /* split domain in easy (disjunction of conjunctive preconds) * and hard (non DNF preconds) part, to apply * different instantiation algorithms */ split_domain(); if ( gcmd_line.display_info >= 1 ) { printf("\nDebugInfo: split_domain() done.\n"); } /*********************************************** * PREPROCESSING FINISHED * * * * NOW MULTIPLY PARAMETERS IN EFFECTIVE MANNER * ***********************************************/ /*jovi: updated for multiple purpose */ build_easy_action_templates(); build_hard_action_templates(); if ( gcmd_line.display_info >= 1 ) { printf("\nDebugInfo: build_easy_action_template() done.\n"); } /*times( &end );*/ ftime(&end); TIME( gtempl_time ); /*times( &start );*/ ftime(&start); /* perform reachability analysis in terms of relaxed fixpoint */ perform_reachability_analysis(); if ( gcmd_line.display_info >= 1 ) { printf("\nDebugInfo: perform_reachability_analysis() done.\n"); } /*times( &end );*/ ftime(&end); TIME( greach_time ); /*times( &start );*/ ftime(&start); /* collect the relevant facts and build final domain * and problem representations.*/ collect_relevant_facts(); if ( gcmd_line.display_info >= 1 ) { printf("\nDebugInfo: collect_relevant_facts.\n"); } /*times( &end );*/ ftime(&end); TIME( grelev_time ); /*times( &start );*/ ftime(&start); /* now build globally accessable connectivity graph */ build_connectivity_graph(); if ( gcmd_line.display_info >= 1 ) { printf("\nDebugInfo: build_connectivity_graph().\n"); } /*times( &end );*/ ftime(&end); TIME( gconn_time ); /*********************************************************** * we are finally through with preprocessing and can worry * * bout finding a plan instead. * ***********************************************************/ ftime(&mystart); /*times( &start );*/ ftime(&start); /* another quick preprocess: approximate goal orderings and split * goal set into sequence of smaller sets, the goal agenda */ compute_goal_agenda(); if ( gcmd_line.display_info >= 1 ) { printf("\nDebugInfo: compute_goal_agenda().\n"); } /*debugit(&ginitial_state);*/ /* make space in plan states info, and relax * make sapce is initialize the space for gplan_states and * initialzie the variable */ for ( i = 0; i < MAX_PLAN_LENGTH + 1; i++ ) { make_state( &(gplan_states[i]), gnum_ft_conn ); gplan_states[i].max_F = gnum_ft_conn; } make_state( ¤t_start, gnum_ft_conn ); current_start.max_F = gnum_ft_conn; make_state( ¤t_end, gnum_ft_conn ); current_end.max_F = gnum_ft_conn; initialize_relax(); /* need to read the agenda paper */ source_to_dest( &(gplan_states[0]), &ginitial_state ); source_to_dest( ¤t_start, &ginitial_state ); source_to_dest( ¤t_end, &(ggoal_agenda[0]) ); for ( i = 0; i < gnum_goal_agenda; i++ ) { /* JC add a hashtable creating in do_enforced_hill_climbling*/ if (!do_enforced_hill_climbing(¤t_start, ¤t_end)) { if (gcmd_line.display_info >= 1) { printf("\nDebugInfo: do_enforced_hill_climbling() exit .\n"); } break; } source_to_dest( ¤t_start, &(gplan_states[gnum_plan_ops]) ); if ( i < gnum_goal_agenda - 1 ) { for ( j = 0; j < ggoal_agenda[i+1].num_F; j++ ) { current_end.F[current_end.num_F++] = ggoal_agenda[i+1].F[j]; } } } found_plan = ( i == gnum_goal_agenda ) ? TRUE : FALSE; if ( !found_plan ) { printf("\nDebugInfo: switching to Best-first Search now.\n"); reset_ff_states(); found_plan = do_best_first_search(); } if ( gcmd_line.display_info >= 1 ) { printf("\n************************************************\n"); printf("\n* mul-fip: fip plan finished for single goal. *\n"); printf("\n************************************************\n"); } print_plan(); if ( !found_plan ) { /*print_plan();*/ /* D action add to group */ build_action_group(); gfipPlan.num_sons = 0; gfipPlan.action = -1; print_plan(); /*put the ultimate goal to the solved set*/ StateActionPair *g = new_StateActionPair(); make_state(&g->state, gnum_ft_conn); g->state.max_F = gnum_ft_conn; source_to_dest(&g->state, &ggoal_state); g->state.num_L = 1; g->state.L[0] = 10000000; /*make it the biggest*/ add_solved_state(g); /*ugly, but work*/ convert_ff_plan_to_fip_plan( &gfipPlan ); solve_unsolved_states(); if(!gsolved_states) { printf("No solutions are found! The problem is unsolvable.\n"); exit(0); } else if(g_is_strong) { StateActionPair *ptr = gsolved_states; Bool valid = FALSE; while(ptr) { if(ptr->state.num_L == 1 && ptr->state.L[0] == 1) { valid = TRUE; break; } ptr = ptr->next; } if(!valid) { printf("The initial state is a dead-end! The problem is unsolvable.\n"); exit(0); } } printf("##########################################\n"); printf("##### PROCEDURE-LIKE CODE ############\n"); printf("##########################################\n"); /* print_fip_plan_1( is_solved_state(&ginitial_state) , &gfipPlan, 1); */ /* times( &end ); */ ftime(&end); TIME( gsearch_time ); /* myend = clock(); */ ftime(&myend); /* printf("my cac is %7.3f\n", 1.0*(myend.millitm - mystart.millitm)/1000.0); */ print_fip_plan_2(); if(to_print_state) print_all_states(); /* print_fip_plan_3( &gfipPlan, 0 ); */ } printf("The total searching time is %7.3f\n", (myend.time - mystart.time) + (myend.millitm - mystart.millitm)/1000.0); output_planner_info(); /******************************************** * Multiple Purpose Planning * ********************************************/ if ( gcmd_line.display_info >= 1 ) { printf("\n************************************************\n"); printf("\n* mul-fip: multiple purpose planning *\n"); printf("\n************************************************\n"); } set_global_variables_for_multiple_purpose(); ftime(&start); update_reachability_analysis_for_multiple_purpose (); ftime(&end); TIME( gadd_reach_time ); if ( gcmd_line.display_info >= 1 ) { printf("\nDebugInfo: update_reachability_analysis_for_multiple_purpose() finished\n"); } ftime(&start); update_relevant_facts_for_multiple_purpose (); ftime(&end); TIME( gadd_relev_time ); if ( gcmd_line.display_info >= 1 ) { printf("\nDebugInfo: update_relevant_facts_for_multiple_purpose() finished\n"); } ftime(&start); update_connectivity_graph_for_multiple_purpose(); ftime(&end); TIME( gadd_conn_time ); if ( gcmd_line.display_info >= 1 ) { printf("\nDebugInfo: update_connectivity_graph_for_multiple_purpose() finished\n"); } compute_goal_agenda_for_multiple_purpose (); if ( gcmd_line.display_info >= 1 ) { printf("\nDebugInfo: compute_goal_agenda_for_multiple_purpose() finished\n"); } for ( i = 0; i < MAX_PLAN_LENGTH + 1; i++ ) { make_state( &(gadd_plan_states[i]), gnum_ft_conn ); gadd_plan_states[i].max_F = gnum_ft_conn; } source_to_dest( ¤t_end, &(gadd_goal_agenda[0]) ); for ( i = 0; i < gadd_num_goal_agenda; i++ ) { /* JC add a hashtable creating in do_enforced_hill_climbling*/ if ( !do_enforced_hill_climbing_for_multiple_purpose ( ¤t_start, ¤t_end ) ) { break; } source_to_dest( ¤t_start, &(gplan_states[gnum_plan_ops]) ); if ( i < gnum_goal_agenda - 1 ) { for ( j = 0; j < ggoal_agenda[i+1].num_F; j++ ) { current_end.F[current_end.num_F++] = ggoal_agenda[i+1].F[j]; } } } found_plan_for_multiple_purpose = ( i == gadd_num_goal_agenda ) ? TRUE : FALSE; if ( !found_plan_for_multiple_purpose ) { printf("\n\nEnforced Hill-climbing failed !"); printf("\nswitching to Best-first Search now.\n"); reset_ff_states_for_multiple_purpose(); found_plan_for_multiple_purpose = do_best_first_search_for_multiple_purpose(); } if ( gcmd_line.display_info >= 1 ) { printf("\n************************************************\n"); printf("\n* mul-fip: fip plan finished for multiple goal. *\n"); printf("\n************************************************\n"); } print_plan(); if ( !found_plan_for_multiple_purpose ) { /*print_plan();*/ /* D action add to group */ build_action_group(); gfipPlan.num_sons = 0; gfipPlan.action = -1; print_plan(); /*put the ultimate goal to the solved set*/ StateActionPair *g = new_StateActionPair(); make_state(&g->state, gnum_ft_conn); g->state.max_F = gnum_ft_conn; source_to_dest(&g->state, &ggoal_state); g->state.num_L = 1; g->state.L[0] = 10000000; /*make it the biggest*/ add_solved_state(g); /*ugly, but work*/ convert_ff_plan_to_fip_plan( &gfipPlan ); solve_unsolved_states(); if(!gsolved_states) { printf("No solutions are found! The problem is unsolvable.\n"); exit(0); } else if(g_is_strong) { StateActionPair *ptr = gsolved_states; Bool valid = FALSE; while(ptr) { if(ptr->state.num_L == 1 && ptr->state.L[0] == 1) { valid = TRUE; break; } ptr = ptr->next; } if(!valid) { printf("The initial state is a dead-end! The problem is unsolvable.\n"); exit(0); } } printf("##########################################\n"); printf("##### PROCEDURE-LIKE CODE ############\n"); printf("##########################################\n"); /* print_fip_plan_1( is_solved_state(&ginitial_state) , &gfipPlan, 1); */ /* times( &end ); */ ftime(&end); TIME( gsearch_time ); /* myend = clock(); */ ftime(&myend); /* printf("my cac is %7.3f\n", 1.0*(myend.millitm - mystart.millitm)/1000.0); */ print_fip_plan_2(); if(to_print_state) print_all_states(); /* print_fip_plan_3( &gfipPlan, 0 ); */ } /*****************************************************************************************/ output_planner_info(); printf("\n\n"); exit( 0 ); }