RectangleInt2D(FloatLongitude min_lon_, FloatLongitude max_lon_, FloatLatitude min_lat_, FloatLatitude max_lat_) : min_lon(toFixed(min_lon_)), max_lon(toFixed(max_lon_)), min_lat(toFixed(min_lat_)), max_lat(toFixed(max_lat_)) { }
/* This is the main workhorse of the QGridLayout. It portions out available space to the chain's children. The calculation is done in fixed point: "fixed" variables are scaled by a factor of 256. If the layout runs "backwards" (i.e. RightToLeft or Up) the layout is computed mirror-reversed, and it's the caller's responsibility do reverse the values before use. chain contains input and output parameters describing the geometry. count is the count of items in the chain; pos and space give the interval (relative to parentWidget topLeft). */ Q_EXPORT void qGeomCalc( QMemArray<QLayoutStruct> &chain, int start, int count, int pos, int space, int spacer ) { typedef int fixed; int cHint = 0; int cMin = 0; int cMax = 0; int sumStretch = 0; int spacerCount = 0; bool wannaGrow = FALSE; // anyone who really wants to grow? // bool canShrink = FALSE; // anyone who could be persuaded to shrink? int i; for ( i = start; i < start + count; i++ ) { chain[i].done = FALSE; cHint += chain[i].smartSizeHint(); cMin += chain[i].minimumSize; cMax += chain[i].maximumSize; sumStretch += chain[i].stretch; if ( !chain[i].empty ) spacerCount++; wannaGrow = wannaGrow || chain[i].expansive || chain[i].stretch > 0; } int extraspace = 0; if ( spacerCount ) spacerCount--; // only spacers between things if ( space < cMin + spacerCount * spacer ) { for ( i = start; i < start+count; i++ ) { chain[i].size = chain[i].minimumSize; chain[i].done = TRUE; } } else if ( space < cHint + spacerCount*spacer ) { /* Less space than smartSizeHint(), but more than minimumSize. Currently take space equally from each, as in Qt 2.x. Commented-out lines will give more space to stretchier items. */ int n = count; int space_left = space - spacerCount*spacer; int overdraft = cHint - space_left; // first give to the fixed ones: for ( i = start; i < start + count; i++ ) { if ( !chain[i].done && chain[i].minimumSize >= chain[i].smartSizeHint() ) { chain[i].size = chain[i].smartSizeHint(); chain[i].done = TRUE; space_left -= chain[i].smartSizeHint(); // sumStretch -= chain[i].stretch; n--; } } bool finished = n == 0; while ( !finished ) { finished = TRUE; fixed fp_over = toFixed( overdraft ); fixed fp_w = 0; for ( i = start; i < start+count; i++ ) { if ( chain[i].done ) continue; // if ( sumStretch <= 0 ) fp_w += fp_over / n; // else // fp_w += (fp_over * chain[i].stretch) / sumStretch; int w = fRound( fp_w ); chain[i].size = chain[i].smartSizeHint() - w; fp_w -= toFixed( w ); // give the difference to the next if ( chain[i].size < chain[i].minimumSize ) { chain[i].done = TRUE; chain[i].size = chain[i].minimumSize; finished = FALSE; overdraft -= ( chain[i].smartSizeHint() - chain[i].minimumSize ); // sumStretch -= chain[i].stretch; n--; break; } } } } else { // extra space int n = count; int space_left = space - spacerCount*spacer; // first give to the fixed ones, and handle non-expansiveness for ( i = start; i < start + count; i++ ) { if ( !chain[i].done && (chain[i].maximumSize <= chain[i].smartSizeHint() || (wannaGrow && !chain[i].expansive && chain[i].stretch == 0)) ) { chain[i].size = chain[i].smartSizeHint(); chain[i].done = TRUE; space_left -= chain[i].smartSizeHint(); sumStretch -= chain[i].stretch; n--; } } extraspace = space_left; /* Do a trial distribution and calculate how much it is off. If there are more deficit pixels than surplus pixels, give the minimum size items what they need, and repeat. Otherwise give to the maximum size items, and repeat. Paul Olav Tvete has a wonderful mathematical proof of the correctness of this principle, but unfortunately this comment is too small to contain it. */ int surplus, deficit; do { surplus = deficit = 0; fixed fp_space = toFixed( space_left ); fixed fp_w = 0; for ( i = start; i < start+count; i++ ) { if ( chain[i].done ) continue; extraspace = 0; if ( sumStretch <= 0 ) fp_w += fp_space / n; else fp_w += (fp_space * chain[i].stretch) / sumStretch; int w = fRound( fp_w ); chain[i].size = w; fp_w -= toFixed( w ); // give the difference to the next if ( w < chain[i].smartSizeHint() ) { deficit += chain[i].smartSizeHint() - w; } else if ( w > chain[i].maximumSize ) { surplus += w - chain[i].maximumSize; } } if ( deficit > 0 && surplus <= deficit ) { // give to the ones that have too little for ( i = start; i < start+count; i++ ) { if ( !chain[i].done && chain[i].size < chain[i].smartSizeHint() ) { chain[i].size = chain[i].smartSizeHint(); chain[i].done = TRUE; space_left -= chain[i].smartSizeHint(); sumStretch -= chain[i].stretch; n--; } } } if ( surplus > 0 && surplus >= deficit ) { // take from the ones that have too much for ( i = start; i < start+count; i++ ) { if ( !chain[i].done && chain[i].size > chain[i].maximumSize ) { chain[i].size = chain[i].maximumSize; chain[i].done = TRUE; space_left -= chain[i].maximumSize; sumStretch -= chain[i].stretch; n--; } } } } while ( n > 0 && surplus != deficit ); if ( n == 0 ) extraspace = space_left; } /* As a last resort, we distribute the unwanted space equally among the spacers (counting the start and end of the chain). We could, but don't, attempt a sub-pixel allocation of the extra space. */ int extra = extraspace / ( spacerCount + 2 ); int p = pos + extra; for ( i = start; i < start+count; i++ ) { chain[i].pos = p; p = p + chain[i].size; if ( !chain[i].empty ) p += spacer+extra; } }
/* This is the main workhorse of the QGridLayout. It portions out available space to the chain's children. The calculation is done in fixed point: "fixed" variables are scaled by a factor of 256. If the layout runs "backwards" (i.e. RightToLeft or Up) the layout is computed mirror-reversed, and it's the caller's responsibility do reverse the values before use. chain contains input and output parameters describing the geometry. count is the count of items in the chain; pos and space give the interval (relative to parentWidget topLeft). */ void qGeomCalc(QVector<QLayoutStruct> &chain, int start, int count, int pos, int space, int spacer) { int cHint = 0; int cMin = 0; int cMax = 0; int sumStretch = 0; int sumSpacing = 0; bool wannaGrow = false; // anyone who really wants to grow? // bool canShrink = false; // anyone who could be persuaded to shrink? bool allEmptyNonstretch = true; int pendingSpacing = -1; int spacerCount = 0; int i; for (i = start; i < start + count; i++) { QLayoutStruct *data = &chain[i]; data->done = false; cHint += data->smartSizeHint(); cMin += data->minimumSize; cMax += data->maximumSize; sumStretch += data->stretch; if (!data->empty) { /* Using pendingSpacing, we ensure that the spacing for the last (non-empty) item is ignored. */ if (pendingSpacing >= 0) { sumSpacing += pendingSpacing; ++spacerCount; } pendingSpacing = data->effectiveSpacer(spacer); } wannaGrow = wannaGrow || data->expansive || data->stretch > 0; allEmptyNonstretch = allEmptyNonstretch && !wannaGrow && data->empty; } int extraspace = 0; if (space < cMin + sumSpacing) { /* Less space than minimumSize; take from the biggest first */ int minSize = cMin + sumSpacing; // shrink the spacers proportionally if (spacer >= 0) { spacer = minSize > 0 ? spacer * space / minSize : 0; sumSpacing = spacer * spacerCount; } QList<int> list; for (i = start; i < start + count; i++) list << chain.at(i).minimumSize; qSort(list); int space_left = space - sumSpacing; int sum = 0; int idx = 0; int space_used=0; int current = 0; while (idx < count && space_used < space_left) { current = list.at(idx); space_used = sum + current * (count - idx); sum += current; ++idx; } --idx; int deficit = space_used - space_left; int items = count - idx; /* * If we truncate all items to "current", we would get "deficit" too many pixels. Therefore, we have to remove * deficit/items from each item bigger than maxval. The actual value to remove is deficitPerItem + remainder/items * "rest" is the accumulated error from using integer arithmetic. */ int deficitPerItem = deficit/items; int remainder = deficit % items; int maxval = current - deficitPerItem; int rest = 0; for (i = start; i < start + count; i++) { int maxv = maxval; rest += remainder; if (rest >= items) { maxv--; rest-=items; } QLayoutStruct *data = &chain[i]; data->size = qMin(data->minimumSize, maxv); data->done = true; } } else if (space < cHint + sumSpacing) { /* Less space than smartSizeHint(), but more than minimumSize. Currently take space equally from each, as in Qt 2.x. Commented-out lines will give more space to stretchier items. */ int n = count; int space_left = space - sumSpacing; int overdraft = cHint - space_left; // first give to the fixed ones: for (i = start; i < start + count; i++) { QLayoutStruct *data = &chain[i]; if (!data->done && data->minimumSize >= data->smartSizeHint()) { data->size = data->smartSizeHint(); data->done = true; space_left -= data->smartSizeHint(); // sumStretch -= data->stretch; n--; } } bool finished = n == 0; while (!finished) { finished = true; Fixed64 fp_over = toFixed(overdraft); Fixed64 fp_w = 0; for (i = start; i < start+count; i++) { QLayoutStruct *data = &chain[i]; if (data->done) continue; // if (sumStretch <= 0) fp_w += fp_over / n; // else // fp_w += (fp_over * data->stretch) / sumStretch; int w = fRound(fp_w); data->size = data->smartSizeHint() - w; fp_w -= toFixed(w); // give the difference to the next if (data->size < data->minimumSize) { data->done = true; data->size = data->minimumSize; finished = false; overdraft -= data->smartSizeHint() - data->minimumSize; // sumStretch -= data->stretch; n--; break; } } } } else { // extra space int n = count; int space_left = space - sumSpacing; // first give to the fixed ones, and handle non-expansiveness for (i = start; i < start + count; i++) { QLayoutStruct *data = &chain[i]; if (!data->done && (data->maximumSize <= data->smartSizeHint() || (wannaGrow && !data->expansive && data->stretch == 0) || (!allEmptyNonstretch && data->empty && !data->expansive && data->stretch == 0))) { data->size = data->smartSizeHint(); data->done = true; space_left -= data->size; sumStretch -= data->stretch; n--; } } extraspace = space_left; /* Do a trial distribution and calculate how much it is off. If there are more deficit pixels than surplus pixels, give the minimum size items what they need, and repeat. Otherwise give to the maximum size items, and repeat. Paul Olav Tvete has a wonderful mathematical proof of the correctness of this principle, but unfortunately this comment is too small to contain it. */ int surplus, deficit; do { surplus = deficit = 0; Fixed64 fp_space = toFixed(space_left); Fixed64 fp_w = 0; for (i = start; i < start + count; i++) { QLayoutStruct *data = &chain[i]; if (data->done) continue; extraspace = 0; if (sumStretch <= 0) fp_w += fp_space / n; else fp_w += (fp_space * data->stretch) / sumStretch; int w = fRound(fp_w); data->size = w; fp_w -= toFixed(w); // give the difference to the next if (w < data->smartSizeHint()) { deficit += data->smartSizeHint() - w; } else if (w > data->maximumSize) { surplus += w - data->maximumSize; } } if (deficit > 0 && surplus <= deficit) { // give to the ones that have too little for (i = start; i < start+count; i++) { QLayoutStruct *data = &chain[i]; if (!data->done && data->size < data->smartSizeHint()) { data->size = data->smartSizeHint(); data->done = true; space_left -= data->smartSizeHint(); sumStretch -= data->stretch; n--; } } } if (surplus > 0 && surplus >= deficit) { // take from the ones that have too much for (i = start; i < start + count; i++) { QLayoutStruct *data = &chain[i]; if (!data->done && data->size > data->maximumSize) { data->size = data->maximumSize; data->done = true; space_left -= data->maximumSize; sumStretch -= data->stretch; n--; } } } } while (n > 0 && surplus != deficit); if (n == 0) extraspace = space_left; } /* As a last resort, we distribute the unwanted space equally among the spacers (counting the start and end of the chain). We could, but don't, attempt a sub-pixel allocation of the extra space. */ int extra = extraspace / (spacerCount + 2); int p = pos + extra; for (i = start; i < start+count; i++) { QLayoutStruct *data = &chain[i]; data->pos = p; p += data->size; if (!data->empty) p += data->effectiveSpacer(spacer) + extra; } #ifdef QLAYOUT_EXTRA_DEBUG qDebug() << "qGeomCalc" << "start" << start << "count" << count << "pos" << pos << "space" << space << "spacer" << spacer; for (i = start; i < start + count; ++i) { qDebug() << i << ":" << chain[i].minimumSize << chain[i].smartSizeHint() << chain[i].maximumSize << "stretch" << chain[i].stretch << "empty" << chain[i].empty << "expansive" << chain[i].expansive << "spacing" << chain[i].spacing; qDebug() << "result pos" << chain[i].pos << "size" << chain[i].size; } #endif }
float FixedFloat::toFloat(char msb, char lsb, Qvals q) { return toFloat(toFixed(msb, lsb), q); }
bool TouchExtensionGlobal::postTouchEvent(QTouchEvent *event, QWaylandView *view) { const QList<QTouchEvent::TouchPoint> points = event->touchPoints(); const int pointCount = points.count(); if (!pointCount) return false; wl_client *surfaceClient = view->surface()->client()->client(); uint32_t time = m_compositor->currentTimeMsecs(); const int rescount = m_resources.count(); for (int res = 0; res < rescount; ++res) { Resource *target = m_resources.at(res); if (target->client() != surfaceClient) continue; // We will use no touch_frame type of event, to reduce the number of // events flowing through the wire. Instead, the number of points sent is // included in the touch point events. int sentPointCount = 0; for (int i = 0; i < pointCount; ++i) { if (points.at(i).state() != Qt::TouchPointStationary) ++sentPointCount; } for (int i = 0; i < pointCount; ++i) { const QTouchEvent::TouchPoint &tp(points.at(i)); // Stationary points are never sent. They are cached on client side. if (tp.state() == Qt::TouchPointStationary) continue; uint32_t id = tp.id(); uint32_t state = (tp.state() & 0xFFFF) | (sentPointCount << 16); uint32_t flags = (tp.flags() & 0xFFFF) | (int(event->device()->capabilities()) << 16); int x = toFixed(tp.pos().x()); int y = toFixed(tp.pos().y()); int nx = toFixed(tp.normalizedPos().x()); int ny = toFixed(tp.normalizedPos().y()); int w = toFixed(tp.rect().width()); int h = toFixed(tp.rect().height()); int vx = toFixed(tp.velocity().x()); int vy = toFixed(tp.velocity().y()); uint32_t pressure = uint32_t(tp.pressure() * 255); QByteArray rawData; QVector<QPointF> rawPosList = tp.rawScreenPositions(); int rawPosCount = rawPosList.count(); if (rawPosCount) { rawPosCount = qMin(maxRawPos, rawPosCount); QVector<float>::iterator iter = m_posData.begin(); for (int rpi = 0; rpi < rawPosCount; ++rpi) { const QPointF &rawPos(rawPosList.at(rpi)); // This will stay in screen coordinates for performance // reasons, clients using this data will presumably know // what they are doing. *iter++ = static_cast<float>(rawPos.x()); *iter++ = static_cast<float>(rawPos.y()); } rawData = QByteArray::fromRawData(reinterpret_cast<const char*>(m_posData.constData()), sizeof(float) * rawPosCount * 2); } send_touch(target->handle, time, id, state, x, y, nx, ny, w, h, pressure, vx, vy, flags, rawData); } return true; } return false; }
Func* FuncEmitter::create(Unit& unit, PreClass* preClass /* = NULL */) const { bool isGenerated = isdigit(name->data()[0]) || ParserBase::IsClosureName(name->toCppString()); Attr attrs = this->attrs; if (preClass && preClass->attrs() & AttrInterface) { attrs |= AttrAbstract; } if (attrs & AttrPersistent && ((RuntimeOption::EvalJitEnableRenameFunction && !isGenerated) || (!RuntimeOption::RepoAuthoritative && SystemLib::s_inited) || attrs & AttrInterceptable)) { if (attrs & AttrBuiltin) { SystemLib::s_anyNonPersistentBuiltins = true; } attrs = Attr(attrs & ~AttrPersistent); } if (!RuntimeOption::RepoAuthoritative) { // In non-RepoAuthoritative mode, any function could get a VarEnv because // of evalPHPDebugger. attrs |= AttrMayUseVV; } else if (RuntimeOption::EvalJitEnableRenameFunction && !name->empty() && !Func::isSpecial(name) && !isClosureBody) { // intercepted functions need to pass all args through // to the interceptee attrs |= AttrMayUseVV; } if (isVariadic()) { attrs |= AttrVariadicParam; } if (!containsCalls) { attrs |= AttrPhpLeafFn; } assert(!m_pce == !preClass); auto f = m_ue.newFunc(this, unit, name, attrs, params.size()); f->m_isPreFunc = !!preClass; bool const needsExtendedSharedData = m_info || m_builtinFuncPtr || m_nativeFuncPtr || (attrs & AttrNative) || line2 - line1 >= Func::kSmallDeltaLimit || past - base >= Func::kSmallDeltaLimit; f->m_shared.reset( needsExtendedSharedData ? new Func::ExtendedSharedData(preClass, base, past, line1, line2, top, docComment) : new Func::SharedData(preClass, base, past, line1, line2, top, docComment) ); f->init(params.size()); if (auto const ex = f->extShared()) { ex->m_hasExtendedSharedData = true; ex->m_builtinFuncPtr = m_builtinFuncPtr; ex->m_nativeFuncPtr = m_nativeFuncPtr; ex->m_info = m_info; ex->m_line2 = line2; ex->m_past = past; ex->m_returnByValue = false; } std::vector<Func::ParamInfo> fParams; for (unsigned i = 0; i < params.size(); ++i) { Func::ParamInfo pi = params[i]; if (pi.isVariadic()) { pi.builtinType = KindOfArray; } f->appendParam(params[i].byRef, pi, fParams); } f->shared()->m_returnType = returnType; f->shared()->m_localNames.create(m_localNames); f->shared()->m_numLocals = m_numLocals; f->shared()->m_numIterators = m_numIterators; f->m_maxStackCells = maxStackCells; f->shared()->m_staticVars = staticVars; f->shared()->m_ehtab = toFixed(ehtab); f->shared()->m_fpitab = fpitab; f->shared()->m_isClosureBody = isClosureBody; f->shared()->m_isAsync = isAsync; f->shared()->m_isGenerator = isGenerator; f->shared()->m_isPairGenerator = isPairGenerator; f->shared()->m_userAttributes = userAttributes; f->shared()->m_retTypeConstraint = retTypeConstraint; f->shared()->m_retUserType = retUserType; f->shared()->m_originalFilename = originalFilename; f->shared()->m_isGenerated = isGenerated; if (attrs & AttrNative) { auto const ex = f->extShared(); auto const& info = Native::GetBuiltinFunction( name, m_pce ? m_pce->name() : nullptr, f->isStatic() ); Attr dummy = AttrNone; auto nativeAttributes = parseNativeAttributes(dummy); Native::getFunctionPointers( info, nativeAttributes, ex->m_builtinFuncPtr, ex->m_nativeFuncPtr ); if (ex->m_nativeFuncPtr && !(nativeAttributes & Native::AttrZendCompat)) { if (info.sig.ret == Native::NativeSig::Type::MixedTV) { ex->m_returnByValue = true; } int extra = (attrs & AttrNumArgs ? 1 : 0) + (isMethod() ? 1 : 0); assert(info.sig.args.size() == params.size() + extra); for (auto i = params.size(); i--; ) { switch (info.sig.args[extra + i]) { case Native::NativeSig::Type::ObjectArg: case Native::NativeSig::Type::StringArg: case Native::NativeSig::Type::ArrayArg: case Native::NativeSig::Type::ResourceArg: case Native::NativeSig::Type::OutputArg: case Native::NativeSig::Type::MixedTV: fParams[i].nativeArg = true; break; default: break; } } } } f->finishedEmittingParams(fParams); return f; }
inline Coordinate::Coordinate(const FloatCoordinate &other) : Coordinate(toFixed(other.lon), toFixed(other.lat)) { }
Coordinate(const UnsafeFloatLongitude lon_, const UnsafeFloatLatitude lat_) : Coordinate(toFixed(lon_), toFixed(lat_)) { }
bool TouchExtensionGlobal::postTouchEvent(QTouchEvent *event, Surface *surface) { const QList<QTouchEvent::TouchPoint> points = event->touchPoints(); const int pointCount = points.count(); if (!pointCount) return false; QPointF surfacePos = surface->pos(); wl_client *surfaceClient = surface->resource()->client(); uint32_t time = m_compositor->currentTimeMsecs(); const int rescount = m_resources.count(); for (int res = 0; res < rescount; ++res) { wl_resource *target = m_resources.at(res); if (target->client != surfaceClient) continue; // We will use no touch_frame type of event, to reduce the number of // events flowing through the wire. Instead, the number of points sent is // included in the touch point events. int sentPointCount = 0; for (int i = 0; i < pointCount; ++i) { if (points.at(i).state() != Qt::TouchPointStationary) ++sentPointCount; } for (int i = 0; i < pointCount; ++i) { const QTouchEvent::TouchPoint &tp(points.at(i)); // Stationary points are never sent. They are cached on client side. if (tp.state() == Qt::TouchPointStationary) continue; uint32_t id = tp.id(); uint32_t state = (tp.state() & 0xFFFF) | (sentPointCount << 16); uint32_t flags = (tp.flags() & 0xFFFF) | (int(event->device()->capabilities()) << 16); QPointF p = tp.pos() - surfacePos; // surface-relative int x = toFixed(p.x()); int y = toFixed(p.y()); int nx = toFixed(tp.normalizedPos().x()); int ny = toFixed(tp.normalizedPos().y()); int w = toFixed(tp.rect().width()); int h = toFixed(tp.rect().height()); int vx = toFixed(tp.velocity().x()); int vy = toFixed(tp.velocity().y()); uint32_t pressure = uint32_t(tp.pressure() * 255); wl_array *rawData = 0; QVector<QPointF> rawPosList = tp.rawScreenPositions(); int rawPosCount = rawPosList.count(); if (rawPosCount) { rawPosCount = qMin(maxRawPos, rawPosCount); rawData = &m_rawdata_array; rawData->size = rawPosCount * sizeof(float) * 2; float *p = m_rawdata_ptr; for (int rpi = 0; rpi < rawPosCount; ++rpi) { const QPointF &rawPos(rawPosList.at(rpi)); // This will stay in screen coordinates for performance // reasons, clients using this data will presumably know // what they are doing. *p++ = float(rawPos.x()); *p++ = float(rawPos.y()); } } qt_touch_extension_send_touch(target, time, id, state, x, y, nx, ny, w, h, pressure, vx, vy, flags, rawData); } return true; } return false; }
Func* FuncEmitter::create(Unit& unit, PreClass* preClass /* = NULL */) const { bool isGenerated = isdigit(name->data()[0]) || ParserBase::IsClosureName(name->toCppString()); Attr attrs = this->attrs; if (preClass && preClass->attrs() & AttrInterface) { attrs |= AttrAbstract; } if (attrs & AttrPersistent && ((RuntimeOption::EvalJitEnableRenameFunction && !isGenerated) || (!RuntimeOption::RepoAuthoritative && SystemLib::s_inited) || attrs & AttrInterceptable)) { if (attrs & AttrBuiltin) { SystemLib::s_anyNonPersistentBuiltins = true; } attrs = Attr(attrs & ~AttrPersistent); } if (!RuntimeOption::RepoAuthoritative) { // In non-RepoAuthoritative mode, any function could get a VarEnv because // of evalPHPDebugger. attrs |= AttrMayUseVV; } else if (RuntimeOption::EvalJitEnableRenameFunction && !name->empty() && !Func::isSpecial(name) && !isClosureBody) { // intercepted functions need to pass all args through // to the interceptee attrs |= AttrMayUseVV; } if (isVariadic()) { attrs |= AttrVariadicParam; } if (!containsCalls) { attrs |= AttrPhpLeafFn; } assert(!m_pce == !preClass); auto f = m_ue.newFunc(this, unit, name, attrs, params.size()); f->m_isPreFunc = !!preClass; bool const needsExtendedSharedData = m_info || m_builtinFuncPtr || m_nativeFuncPtr || (attrs & AttrNative) || line2 - line1 >= Func::kSmallDeltaLimit || past - base >= Func::kSmallDeltaLimit; f->m_shared.reset( needsExtendedSharedData ? new Func::ExtendedSharedData(preClass, base, past, line1, line2, top, docComment) : new Func::SharedData(preClass, base, past, line1, line2, top, docComment) ); f->init(params.size()); if (auto const ex = f->extShared()) { ex->m_hasExtendedSharedData = true; ex->m_builtinFuncPtr = m_builtinFuncPtr; ex->m_nativeFuncPtr = m_nativeFuncPtr; ex->m_info = m_info; ex->m_line2 = line2; ex->m_past = past; } std::vector<Func::ParamInfo> fParams; bool usesDoubles = false, variadic = false; for (unsigned i = 0; i < params.size(); ++i) { Func::ParamInfo pi = params[i]; if (pi.builtinType == KindOfDouble) usesDoubles = true; if (pi.isVariadic()) variadic = true; f->appendParam(params[i].byRef, pi, fParams); } f->shared()->m_returnType = returnType; f->shared()->m_localNames.create(m_localNames); f->shared()->m_numLocals = m_numLocals; f->shared()->m_numIterators = m_numIterators; f->m_maxStackCells = maxStackCells; f->shared()->m_staticVars = staticVars; f->shared()->m_ehtab = toFixed(ehtab); f->shared()->m_fpitab = fpitab; f->shared()->m_isClosureBody = isClosureBody; f->shared()->m_isAsync = isAsync; f->shared()->m_isGenerator = isGenerator; f->shared()->m_isPairGenerator = isPairGenerator; f->shared()->m_userAttributes = userAttributes; f->shared()->m_retTypeConstraint = retTypeConstraint; f->shared()->m_retUserType = retUserType; f->shared()->m_originalFilename = originalFilename; f->shared()->m_isGenerated = isGenerated; f->finishedEmittingParams(fParams); if (attrs & AttrNative) { auto const ex = f->extShared(); auto const& info = Native::GetBuiltinFunction( name, m_pce ? m_pce->name() : nullptr, f->isStatic() ); auto const nif = info.ptr; if (nif) { Attr dummy = AttrNone; int nativeAttrs = parseNativeAttributes(dummy); if (nativeAttrs & Native::AttrZendCompat) { ex->m_nativeFuncPtr = nif; ex->m_builtinFuncPtr = zend_wrap_func; } else { if (parseNativeAttributes(dummy) & Native::AttrActRec) { ex->m_builtinFuncPtr = nif; ex->m_nativeFuncPtr = nullptr; } else { ex->m_nativeFuncPtr = nif; ex->m_builtinFuncPtr = Native::getWrapper(m_pce, usesDoubles, variadic); } } } else { ex->m_builtinFuncPtr = Native::unimplementedWrapper; } } return f; }