Example #1
0
 RectangleInt2D(FloatLongitude min_lon_,
                FloatLongitude max_lon_,
                FloatLatitude min_lat_,
                FloatLatitude max_lat_)
     : min_lon(toFixed(min_lon_)), max_lon(toFixed(max_lon_)), min_lat(toFixed(min_lat_)),
       max_lat(toFixed(max_lat_))
 {
 }
Example #2
0
/*
  This is the main workhorse of the QGridLayout. It portions out
  available space to the chain's children.

  The calculation is done in fixed point: "fixed" variables are
  scaled by a factor of 256.

  If the layout runs "backwards" (i.e. RightToLeft or Up) the layout
  is computed mirror-reversed, and it's the caller's responsibility
  do reverse the values before use.

  chain contains input and output parameters describing the geometry.
  count is the count of items in the chain; pos and space give the
  interval (relative to parentWidget topLeft).
*/
Q_EXPORT void qGeomCalc( QMemArray<QLayoutStruct> &chain, int start, int count,
			 int pos, int space, int spacer )
{
    typedef int fixed;
    int cHint = 0;
    int cMin = 0;
    int cMax = 0;
    int sumStretch = 0;
    int spacerCount = 0;

    bool wannaGrow = FALSE; // anyone who really wants to grow?
    //    bool canShrink = FALSE; // anyone who could be persuaded to shrink?

    int i;
    for ( i = start; i < start + count; i++ ) {
	chain[i].done = FALSE;
	cHint += chain[i].smartSizeHint();
	cMin += chain[i].minimumSize;
	cMax += chain[i].maximumSize;
	sumStretch += chain[i].stretch;
	if ( !chain[i].empty )
	    spacerCount++;
	wannaGrow = wannaGrow || chain[i].expansive || chain[i].stretch > 0;
    }

    int extraspace = 0;
    if ( spacerCount )
	spacerCount--; // only spacers between things
    if ( space < cMin + spacerCount * spacer ) {
	for ( i = start; i < start+count; i++ ) {
	    chain[i].size = chain[i].minimumSize;
	    chain[i].done = TRUE;
	}
    } else if ( space < cHint + spacerCount*spacer ) {
	/*
	  Less space than smartSizeHint(), but more than minimumSize.
	  Currently take space equally from each, as in Qt 2.x.
	  Commented-out lines will give more space to stretchier
	  items.
	*/
	int n = count;
	int space_left = space - spacerCount*spacer;
	int overdraft = cHint - space_left;

	// first give to the fixed ones:
	for ( i = start; i < start + count; i++ ) {
	    if ( !chain[i].done
		 && chain[i].minimumSize >= chain[i].smartSizeHint() ) {
		chain[i].size = chain[i].smartSizeHint();
		chain[i].done = TRUE;
		space_left -= chain[i].smartSizeHint();
		// sumStretch -= chain[i].stretch;
		n--;
	    }
	}
	bool finished = n == 0;
	while ( !finished ) {
	    finished = TRUE;
	    fixed fp_over = toFixed( overdraft );
	    fixed fp_w = 0;

	    for ( i = start; i < start+count; i++ ) {
		if ( chain[i].done )
		    continue;
		// if ( sumStretch <= 0 )
		fp_w += fp_over / n;
		// else
		//    fp_w += (fp_over * chain[i].stretch) / sumStretch;
		int w = fRound( fp_w );
		chain[i].size = chain[i].smartSizeHint() - w;
		fp_w -= toFixed( w ); // give the difference to the next
		if ( chain[i].size < chain[i].minimumSize ) {
		    chain[i].done = TRUE;
		    chain[i].size = chain[i].minimumSize;
		    finished = FALSE;
		    overdraft -= ( chain[i].smartSizeHint()
				   - chain[i].minimumSize );
		    // sumStretch -= chain[i].stretch;
		    n--;
		    break;
		}
	    }
	}
    } else { // extra space
	int n = count;
	int space_left = space - spacerCount*spacer;
	// first give to the fixed ones, and handle non-expansiveness
	for ( i = start; i < start + count; i++ ) {
	    if ( !chain[i].done
		 && (chain[i].maximumSize <= chain[i].smartSizeHint()
		     || (wannaGrow && !chain[i].expansive && chain[i].stretch == 0)) ) {
		chain[i].size = chain[i].smartSizeHint();
		chain[i].done = TRUE;
		space_left -= chain[i].smartSizeHint();
		sumStretch -= chain[i].stretch;
		n--;
	    }
	}
	extraspace = space_left;

	/*
	  Do a trial distribution and calculate how much it is off.
	  If there are more deficit pixels than surplus pixels, give
	  the minimum size items what they need, and repeat.
	  Otherwise give to the maximum size items, and repeat.

	  Paul Olav Tvete has a wonderful mathematical proof of the
	  correctness of this principle, but unfortunately this
	  comment is too small to contain it.
	*/
	int surplus, deficit;
	do {
	    surplus = deficit = 0;
	    fixed fp_space = toFixed( space_left );
	    fixed fp_w = 0;
	    for ( i = start; i < start+count; i++ ) {
		if ( chain[i].done )
		    continue;
		extraspace = 0;
		if ( sumStretch <= 0 )
		    fp_w += fp_space / n;
		else
		    fp_w += (fp_space * chain[i].stretch) / sumStretch;
		int w = fRound( fp_w );
		chain[i].size = w;
		fp_w -= toFixed( w ); // give the difference to the next
		if ( w < chain[i].smartSizeHint() ) {
		    deficit +=  chain[i].smartSizeHint() - w;
		} else if ( w > chain[i].maximumSize ) {
		    surplus += w - chain[i].maximumSize;
		}
	    }
	    if ( deficit > 0 && surplus <= deficit ) {
		// give to the ones that have too little
		for ( i = start; i < start+count; i++ ) {
		    if ( !chain[i].done &&
			 chain[i].size < chain[i].smartSizeHint() ) {
			chain[i].size = chain[i].smartSizeHint();
			chain[i].done = TRUE;
			space_left -= chain[i].smartSizeHint();
			sumStretch -= chain[i].stretch;
			n--;
		    }
		}
	    }
	    if ( surplus > 0 && surplus >= deficit ) {
		// take from the ones that have too much
		for ( i = start; i < start+count; i++ ) {
		    if ( !chain[i].done &&
			 chain[i].size > chain[i].maximumSize ) {
			chain[i].size = chain[i].maximumSize;
			chain[i].done = TRUE;
			space_left -= chain[i].maximumSize;
			sumStretch -= chain[i].stretch;
			n--;
		    }
		}
	    }
	} while ( n > 0 && surplus != deficit );
	if ( n == 0 )
	    extraspace = space_left;
    }

    /*
      As a last resort, we distribute the unwanted space equally
      among the spacers (counting the start and end of the chain). We
      could, but don't, attempt a sub-pixel allocation of the extra
      space.
    */
    int extra = extraspace / ( spacerCount + 2 );
    int p = pos + extra;
    for ( i = start; i < start+count; i++ ) {
	chain[i].pos = p;
	p = p + chain[i].size;
	if ( !chain[i].empty )
	    p += spacer+extra;
    }
}
Example #3
0
/*
  This is the main workhorse of the QGridLayout. It portions out
  available space to the chain's children.

  The calculation is done in fixed point: "fixed" variables are
  scaled by a factor of 256.

  If the layout runs "backwards" (i.e. RightToLeft or Up) the layout
  is computed mirror-reversed, and it's the caller's responsibility
  do reverse the values before use.

  chain contains input and output parameters describing the geometry.
  count is the count of items in the chain; pos and space give the
  interval (relative to parentWidget topLeft).
*/
void qGeomCalc(QVector<QLayoutStruct> &chain, int start, int count,
               int pos, int space, int spacer)
{
    int cHint = 0;
    int cMin = 0;
    int cMax = 0;
    int sumStretch = 0;
    int sumSpacing = 0;

    bool wannaGrow = false; // anyone who really wants to grow?
    //    bool canShrink = false; // anyone who could be persuaded to shrink?

    bool allEmptyNonstretch = true;
    int pendingSpacing = -1;
    int spacerCount = 0;
    int i;

    for (i = start; i < start + count; i++) {
        QLayoutStruct *data = &chain[i];

        data->done = false;
        cHint += data->smartSizeHint();
        cMin += data->minimumSize;
        cMax += data->maximumSize;
        sumStretch += data->stretch;
        if (!data->empty) {
            /*
                Using pendingSpacing, we ensure that the spacing for the last
                (non-empty) item is ignored.
            */
            if (pendingSpacing >= 0) {
                sumSpacing += pendingSpacing;
                ++spacerCount;
            }
            pendingSpacing = data->effectiveSpacer(spacer);
        }
        wannaGrow = wannaGrow || data->expansive || data->stretch > 0;
        allEmptyNonstretch = allEmptyNonstretch && !wannaGrow && data->empty;
    }

    int extraspace = 0;

    if (space < cMin + sumSpacing) {
        /*
          Less space than minimumSize; take from the biggest first
        */

        int minSize = cMin + sumSpacing;

        // shrink the spacers proportionally
        if (spacer >= 0) {
            spacer = minSize > 0 ? spacer * space / minSize : 0;
            sumSpacing = spacer * spacerCount;
        }

        QList<int> list;

        for (i = start; i < start + count; i++)
            list << chain.at(i).minimumSize;

        qSort(list);

        int space_left = space - sumSpacing;

        int sum = 0;
        int idx = 0;
        int space_used=0;
        int current = 0;
        while (idx < count && space_used < space_left) {
            current = list.at(idx);
            space_used = sum + current * (count - idx);
            sum += current;
            ++idx;
        }
        --idx;
        int deficit = space_used - space_left;

        int items = count - idx;
        /*
         * If we truncate all items to "current", we would get "deficit" too many pixels. Therefore, we have to remove
         * deficit/items from each item bigger than maxval. The actual value to remove is deficitPerItem + remainder/items
         * "rest" is the accumulated error from using integer arithmetic.
        */
        int deficitPerItem = deficit/items;
        int remainder = deficit % items;
        int maxval = current - deficitPerItem;

        int rest = 0;
        for (i = start; i < start + count; i++) {
            int maxv = maxval;
            rest += remainder;
            if (rest >= items) {
                maxv--;
                rest-=items;
            }
            QLayoutStruct *data = &chain[i];
            data->size = qMin(data->minimumSize, maxv);
            data->done = true;
        }
    } else if (space < cHint + sumSpacing) {
        /*
          Less space than smartSizeHint(), but more than minimumSize.
          Currently take space equally from each, as in Qt 2.x.
          Commented-out lines will give more space to stretchier
          items.
        */
        int n = count;
        int space_left = space - sumSpacing;
        int overdraft = cHint - space_left;

        // first give to the fixed ones:
        for (i = start; i < start + count; i++) {
            QLayoutStruct *data = &chain[i];
            if (!data->done
                 && data->minimumSize >= data->smartSizeHint()) {
                data->size = data->smartSizeHint();
                data->done = true;
                space_left -= data->smartSizeHint();
                // sumStretch -= data->stretch;
                n--;
            }
        }
        bool finished = n == 0;
        while (!finished) {
            finished = true;
            Fixed64 fp_over = toFixed(overdraft);
            Fixed64 fp_w = 0;

            for (i = start; i < start+count; i++) {
                QLayoutStruct *data = &chain[i];
                if (data->done)
                    continue;
                // if (sumStretch <= 0)
                fp_w += fp_over / n;
                // else
                //    fp_w += (fp_over * data->stretch) / sumStretch;
                int w = fRound(fp_w);
                data->size = data->smartSizeHint() - w;
                fp_w -= toFixed(w); // give the difference to the next
                if (data->size < data->minimumSize) {
                    data->done = true;
                    data->size = data->minimumSize;
                    finished = false;
                    overdraft -= data->smartSizeHint() - data->minimumSize;
                    // sumStretch -= data->stretch;
                    n--;
                    break;
                }
            }
        }
    } else { // extra space
        int n = count;
        int space_left = space - sumSpacing;
        // first give to the fixed ones, and handle non-expansiveness
        for (i = start; i < start + count; i++) {
            QLayoutStruct *data = &chain[i];
            if (!data->done
                && (data->maximumSize <= data->smartSizeHint()
                    || (wannaGrow && !data->expansive && data->stretch == 0)
                    || (!allEmptyNonstretch && data->empty &&
                        !data->expansive && data->stretch == 0))) {
                data->size = data->smartSizeHint();
                data->done = true;
                space_left -= data->size;
                sumStretch -= data->stretch;
                n--;
            }
        }
        extraspace = space_left;

        /*
          Do a trial distribution and calculate how much it is off.
          If there are more deficit pixels than surplus pixels, give
          the minimum size items what they need, and repeat.
          Otherwise give to the maximum size items, and repeat.

          Paul Olav Tvete has a wonderful mathematical proof of the
          correctness of this principle, but unfortunately this
          comment is too small to contain it.
        */
        int surplus, deficit;
        do {
            surplus = deficit = 0;
            Fixed64 fp_space = toFixed(space_left);
            Fixed64 fp_w = 0;
            for (i = start; i < start + count; i++) {
                QLayoutStruct *data = &chain[i];
                if (data->done)
                    continue;
                extraspace = 0;
                if (sumStretch <= 0)
                    fp_w += fp_space / n;
                else
                    fp_w += (fp_space * data->stretch) / sumStretch;
                int w = fRound(fp_w);
                data->size = w;
                fp_w -= toFixed(w); // give the difference to the next
                if (w < data->smartSizeHint()) {
                    deficit +=  data->smartSizeHint() - w;
                } else if (w > data->maximumSize) {
                    surplus += w - data->maximumSize;
                }
            }
            if (deficit > 0 && surplus <= deficit) {
                // give to the ones that have too little
                for (i = start; i < start+count; i++) {
                    QLayoutStruct *data = &chain[i];
                    if (!data->done && data->size < data->smartSizeHint()) {
                        data->size = data->smartSizeHint();
                        data->done = true;
                        space_left -= data->smartSizeHint();
                        sumStretch -= data->stretch;
                        n--;
                    }
                }
            }
            if (surplus > 0 && surplus >= deficit) {
                // take from the ones that have too much
                for (i = start; i < start + count; i++) {
                    QLayoutStruct *data = &chain[i];
                    if (!data->done && data->size > data->maximumSize) {
                        data->size = data->maximumSize;
                        data->done = true;
                        space_left -= data->maximumSize;
                        sumStretch -= data->stretch;
                        n--;
                    }
                }
            }
        } while (n > 0 && surplus != deficit);
        if (n == 0)
            extraspace = space_left;
    }

    /*
      As a last resort, we distribute the unwanted space equally
      among the spacers (counting the start and end of the chain). We
      could, but don't, attempt a sub-pixel allocation of the extra
      space.
    */
    int extra = extraspace / (spacerCount + 2);
    int p = pos + extra;
    for (i = start; i < start+count; i++) {
        QLayoutStruct *data = &chain[i];
        data->pos = p;
        p += data->size;
        if (!data->empty)
            p += data->effectiveSpacer(spacer) + extra;
    }

#ifdef QLAYOUT_EXTRA_DEBUG
    qDebug() << "qGeomCalc" << "start" << start <<  "count" << count <<  "pos" << pos
             <<  "space" << space <<  "spacer" << spacer;
    for (i = start; i < start + count; ++i) {
        qDebug() << i << ":" << chain[i].minimumSize << chain[i].smartSizeHint()
                 << chain[i].maximumSize << "stretch" << chain[i].stretch
                 << "empty" << chain[i].empty << "expansive" << chain[i].expansive
                 << "spacing" << chain[i].spacing;
        qDebug() << "result pos" << chain[i].pos << "size" << chain[i].size;
    }
#endif
}
float FixedFloat::toFloat(char msb, char lsb, Qvals q) {
  return toFloat(toFixed(msb, lsb), q);
}
Example #5
0
bool TouchExtensionGlobal::postTouchEvent(QTouchEvent *event, QWaylandView *view)
{
    const QList<QTouchEvent::TouchPoint> points = event->touchPoints();
    const int pointCount = points.count();
    if (!pointCount)
        return false;

    wl_client *surfaceClient = view->surface()->client()->client();
    uint32_t time = m_compositor->currentTimeMsecs();
    const int rescount = m_resources.count();

    for (int res = 0; res < rescount; ++res) {
        Resource *target = m_resources.at(res);
        if (target->client() != surfaceClient)
            continue;

        // We will use no touch_frame type of event, to reduce the number of
        // events flowing through the wire. Instead, the number of points sent is
        // included in the touch point events.
        int sentPointCount = 0;
        for (int i = 0; i < pointCount; ++i) {
            if (points.at(i).state() != Qt::TouchPointStationary)
                ++sentPointCount;
        }

        for (int i = 0; i < pointCount; ++i) {
            const QTouchEvent::TouchPoint &tp(points.at(i));
            // Stationary points are never sent. They are cached on client side.
            if (tp.state() == Qt::TouchPointStationary)
                continue;

            uint32_t id = tp.id();
            uint32_t state = (tp.state() & 0xFFFF) | (sentPointCount << 16);
            uint32_t flags = (tp.flags() & 0xFFFF) | (int(event->device()->capabilities()) << 16);

            int x = toFixed(tp.pos().x());
            int y = toFixed(tp.pos().y());
            int nx = toFixed(tp.normalizedPos().x());
            int ny = toFixed(tp.normalizedPos().y());
            int w = toFixed(tp.rect().width());
            int h = toFixed(tp.rect().height());
            int vx = toFixed(tp.velocity().x());
            int vy = toFixed(tp.velocity().y());
            uint32_t pressure = uint32_t(tp.pressure() * 255);

            QByteArray rawData;
            QVector<QPointF> rawPosList = tp.rawScreenPositions();
            int rawPosCount = rawPosList.count();
            if (rawPosCount) {
                rawPosCount = qMin(maxRawPos, rawPosCount);
                QVector<float>::iterator iter = m_posData.begin();
                for (int rpi = 0; rpi < rawPosCount; ++rpi) {
                    const QPointF &rawPos(rawPosList.at(rpi));
                    // This will stay in screen coordinates for performance
                    // reasons, clients using this data will presumably know
                    // what they are doing.
                    *iter++ = static_cast<float>(rawPos.x());
                    *iter++ = static_cast<float>(rawPos.y());
                }
                rawData = QByteArray::fromRawData(reinterpret_cast<const char*>(m_posData.constData()), sizeof(float) * rawPosCount * 2);
            }

            send_touch(target->handle,
                       time, id, state,
                       x, y, nx, ny, w, h,
                       pressure, vx, vy,
                       flags, rawData);
        }

        return true;
    }

    return false;
}
Example #6
0
Func* FuncEmitter::create(Unit& unit, PreClass* preClass /* = NULL */) const {
  bool isGenerated = isdigit(name->data()[0]) ||
    ParserBase::IsClosureName(name->toCppString());

  Attr attrs = this->attrs;
  if (preClass && preClass->attrs() & AttrInterface) {
    attrs |= AttrAbstract;
  }
  if (attrs & AttrPersistent &&
      ((RuntimeOption::EvalJitEnableRenameFunction && !isGenerated) ||
       (!RuntimeOption::RepoAuthoritative && SystemLib::s_inited) ||
       attrs & AttrInterceptable)) {
    if (attrs & AttrBuiltin) {
      SystemLib::s_anyNonPersistentBuiltins = true;
    }
    attrs = Attr(attrs & ~AttrPersistent);
  }
  if (!RuntimeOption::RepoAuthoritative) {
    // In non-RepoAuthoritative mode, any function could get a VarEnv because
    // of evalPHPDebugger.
    attrs |= AttrMayUseVV;
  } else if (RuntimeOption::EvalJitEnableRenameFunction &&
      !name->empty() &&
      !Func::isSpecial(name) &&
      !isClosureBody) {
    // intercepted functions need to pass all args through
    // to the interceptee
    attrs |= AttrMayUseVV;
  }
  if (isVariadic()) { attrs |= AttrVariadicParam; }

  if (!containsCalls) { attrs |= AttrPhpLeafFn; }

  assert(!m_pce == !preClass);
  auto f = m_ue.newFunc(this, unit, name, attrs, params.size());

  f->m_isPreFunc = !!preClass;

  bool const needsExtendedSharedData =
    m_info ||
    m_builtinFuncPtr ||
    m_nativeFuncPtr ||
    (attrs & AttrNative) ||
    line2 - line1 >= Func::kSmallDeltaLimit ||
    past - base >= Func::kSmallDeltaLimit;

  f->m_shared.reset(
    needsExtendedSharedData
      ? new Func::ExtendedSharedData(preClass, base, past, line1, line2,
                                     top, docComment)
      : new Func::SharedData(preClass, base, past,
                             line1, line2, top, docComment)
  );

  f->init(params.size());

  if (auto const ex = f->extShared()) {
    ex->m_hasExtendedSharedData = true;
    ex->m_builtinFuncPtr = m_builtinFuncPtr;
    ex->m_nativeFuncPtr = m_nativeFuncPtr;
    ex->m_info = m_info;
    ex->m_line2 = line2;
    ex->m_past = past;
    ex->m_returnByValue = false;
  }

  std::vector<Func::ParamInfo> fParams;
  for (unsigned i = 0; i < params.size(); ++i) {
    Func::ParamInfo pi = params[i];
    if (pi.isVariadic()) {
      pi.builtinType = KindOfArray;
    }
    f->appendParam(params[i].byRef, pi, fParams);
  }

  f->shared()->m_returnType = returnType;
  f->shared()->m_localNames.create(m_localNames);
  f->shared()->m_numLocals = m_numLocals;
  f->shared()->m_numIterators = m_numIterators;
  f->m_maxStackCells = maxStackCells;
  f->shared()->m_staticVars = staticVars;
  f->shared()->m_ehtab = toFixed(ehtab);
  f->shared()->m_fpitab = fpitab;
  f->shared()->m_isClosureBody = isClosureBody;
  f->shared()->m_isAsync = isAsync;
  f->shared()->m_isGenerator = isGenerator;
  f->shared()->m_isPairGenerator = isPairGenerator;
  f->shared()->m_userAttributes = userAttributes;
  f->shared()->m_retTypeConstraint = retTypeConstraint;
  f->shared()->m_retUserType = retUserType;
  f->shared()->m_originalFilename = originalFilename;
  f->shared()->m_isGenerated = isGenerated;

  if (attrs & AttrNative) {
    auto const ex = f->extShared();

    auto const& info = Native::GetBuiltinFunction(
      name,
      m_pce ? m_pce->name() : nullptr,
      f->isStatic()
    );

    Attr dummy = AttrNone;
    auto nativeAttributes = parseNativeAttributes(dummy);
    Native::getFunctionPointers(
      info,
      nativeAttributes,
      ex->m_builtinFuncPtr,
      ex->m_nativeFuncPtr
    );

    if (ex->m_nativeFuncPtr &&
        !(nativeAttributes & Native::AttrZendCompat)) {
      if (info.sig.ret == Native::NativeSig::Type::MixedTV) {
        ex->m_returnByValue = true;
      }
      int extra =
        (attrs & AttrNumArgs ? 1 : 0) +
        (isMethod() ? 1 : 0);
      assert(info.sig.args.size() == params.size() + extra);
      for (auto i = params.size(); i--; ) {
        switch (info.sig.args[extra + i]) {
          case Native::NativeSig::Type::ObjectArg:
          case Native::NativeSig::Type::StringArg:
          case Native::NativeSig::Type::ArrayArg:
          case Native::NativeSig::Type::ResourceArg:
          case Native::NativeSig::Type::OutputArg:
          case Native::NativeSig::Type::MixedTV:
            fParams[i].nativeArg = true;
            break;
          default:
            break;
        }
      }
    }
  }

  f->finishedEmittingParams(fParams);
  return f;
}
inline Coordinate::Coordinate(const FloatCoordinate &other)
    : Coordinate(toFixed(other.lon), toFixed(other.lat))
{
}
 Coordinate(const UnsafeFloatLongitude lon_, const UnsafeFloatLatitude lat_)
     : Coordinate(toFixed(lon_), toFixed(lat_))
 {
 }
Example #9
0
bool TouchExtensionGlobal::postTouchEvent(QTouchEvent *event, Surface *surface)
{
    const QList<QTouchEvent::TouchPoint> points = event->touchPoints();
    const int pointCount = points.count();
    if (!pointCount)
        return false;

    QPointF surfacePos = surface->pos();
    wl_client *surfaceClient = surface->resource()->client();
    uint32_t time = m_compositor->currentTimeMsecs();
    const int rescount = m_resources.count();

    for (int res = 0; res < rescount; ++res) {
        wl_resource *target = m_resources.at(res);
        if (target->client != surfaceClient)
            continue;

        // We will use no touch_frame type of event, to reduce the number of
        // events flowing through the wire. Instead, the number of points sent is
        // included in the touch point events.
        int sentPointCount = 0;
        for (int i = 0; i < pointCount; ++i) {
            if (points.at(i).state() != Qt::TouchPointStationary)
                ++sentPointCount;
        }

        for (int i = 0; i < pointCount; ++i) {
            const QTouchEvent::TouchPoint &tp(points.at(i));
            // Stationary points are never sent. They are cached on client side.
            if (tp.state() == Qt::TouchPointStationary)
                continue;

            uint32_t id = tp.id();
            uint32_t state = (tp.state() & 0xFFFF) | (sentPointCount << 16);
            uint32_t flags = (tp.flags() & 0xFFFF) | (int(event->device()->capabilities()) << 16);

            QPointF p = tp.pos() - surfacePos; // surface-relative
            int x = toFixed(p.x());
            int y = toFixed(p.y());
            int nx = toFixed(tp.normalizedPos().x());
            int ny = toFixed(tp.normalizedPos().y());
            int w = toFixed(tp.rect().width());
            int h = toFixed(tp.rect().height());
            int vx = toFixed(tp.velocity().x());
            int vy = toFixed(tp.velocity().y());
            uint32_t pressure = uint32_t(tp.pressure() * 255);

            wl_array *rawData = 0;
            QVector<QPointF> rawPosList = tp.rawScreenPositions();
            int rawPosCount = rawPosList.count();
            if (rawPosCount) {
                rawPosCount = qMin(maxRawPos, rawPosCount);
                rawData = &m_rawdata_array;
                rawData->size = rawPosCount * sizeof(float) * 2;
                float *p = m_rawdata_ptr;
                for (int rpi = 0; rpi < rawPosCount; ++rpi) {
                    const QPointF &rawPos(rawPosList.at(rpi));
                    // This will stay in screen coordinates for performance
                    // reasons, clients using this data will presumably know
                    // what they are doing.
                    *p++ = float(rawPos.x());
                    *p++ = float(rawPos.y());
                }
            }

            qt_touch_extension_send_touch(target,
                                          time, id, state,
                                          x, y, nx, ny, w, h,
                                          pressure, vx, vy,
                                          flags, rawData);
        }

        return true;
    }

    return false;
}
Example #10
0
Func* FuncEmitter::create(Unit& unit, PreClass* preClass /* = NULL */) const {
  bool isGenerated = isdigit(name->data()[0]) ||
    ParserBase::IsClosureName(name->toCppString());

  Attr attrs = this->attrs;
  if (preClass && preClass->attrs() & AttrInterface) {
    attrs |= AttrAbstract;
  }
  if (attrs & AttrPersistent &&
      ((RuntimeOption::EvalJitEnableRenameFunction && !isGenerated) ||
       (!RuntimeOption::RepoAuthoritative && SystemLib::s_inited) ||
       attrs & AttrInterceptable)) {
    if (attrs & AttrBuiltin) {
      SystemLib::s_anyNonPersistentBuiltins = true;
    }
    attrs = Attr(attrs & ~AttrPersistent);
  }
  if (!RuntimeOption::RepoAuthoritative) {
    // In non-RepoAuthoritative mode, any function could get a VarEnv because
    // of evalPHPDebugger.
    attrs |= AttrMayUseVV;
  } else if (RuntimeOption::EvalJitEnableRenameFunction &&
      !name->empty() &&
      !Func::isSpecial(name) &&
      !isClosureBody) {
    // intercepted functions need to pass all args through
    // to the interceptee
    attrs |= AttrMayUseVV;
  }
  if (isVariadic()) { attrs |= AttrVariadicParam; }

  if (!containsCalls) { attrs |= AttrPhpLeafFn; }

  assert(!m_pce == !preClass);
  auto f = m_ue.newFunc(this, unit, name, attrs, params.size());

  f->m_isPreFunc = !!preClass;

  bool const needsExtendedSharedData =
    m_info ||
    m_builtinFuncPtr ||
    m_nativeFuncPtr ||
    (attrs & AttrNative) ||
    line2 - line1 >= Func::kSmallDeltaLimit ||
    past - base >= Func::kSmallDeltaLimit;

  f->m_shared.reset(
    needsExtendedSharedData
      ? new Func::ExtendedSharedData(preClass, base, past, line1, line2,
                                     top, docComment)
      : new Func::SharedData(preClass, base, past,
                             line1, line2, top, docComment)
  );

  f->init(params.size());

  if (auto const ex = f->extShared()) {
    ex->m_hasExtendedSharedData = true;
    ex->m_builtinFuncPtr = m_builtinFuncPtr;
    ex->m_nativeFuncPtr = m_nativeFuncPtr;
    ex->m_info = m_info;
    ex->m_line2 = line2;
    ex->m_past = past;
  }

  std::vector<Func::ParamInfo> fParams;
  bool usesDoubles = false, variadic = false;
  for (unsigned i = 0; i < params.size(); ++i) {
    Func::ParamInfo pi = params[i];
    if (pi.builtinType == KindOfDouble) usesDoubles = true;
    if (pi.isVariadic()) variadic = true;
    f->appendParam(params[i].byRef, pi, fParams);
  }

  f->shared()->m_returnType = returnType;
  f->shared()->m_localNames.create(m_localNames);
  f->shared()->m_numLocals = m_numLocals;
  f->shared()->m_numIterators = m_numIterators;
  f->m_maxStackCells = maxStackCells;
  f->shared()->m_staticVars = staticVars;
  f->shared()->m_ehtab = toFixed(ehtab);
  f->shared()->m_fpitab = fpitab;
  f->shared()->m_isClosureBody = isClosureBody;
  f->shared()->m_isAsync = isAsync;
  f->shared()->m_isGenerator = isGenerator;
  f->shared()->m_isPairGenerator = isPairGenerator;
  f->shared()->m_userAttributes = userAttributes;
  f->shared()->m_retTypeConstraint = retTypeConstraint;
  f->shared()->m_retUserType = retUserType;
  f->shared()->m_originalFilename = originalFilename;
  f->shared()->m_isGenerated = isGenerated;

  f->finishedEmittingParams(fParams);

  if (attrs & AttrNative) {
    auto const ex = f->extShared();

    auto const& info = Native::GetBuiltinFunction(
      name,
      m_pce ? m_pce->name() : nullptr,
      f->isStatic()
    );

    auto const nif = info.ptr;
    if (nif) {
      Attr dummy = AttrNone;
      int nativeAttrs = parseNativeAttributes(dummy);
      if (nativeAttrs & Native::AttrZendCompat) {
        ex->m_nativeFuncPtr = nif;
        ex->m_builtinFuncPtr = zend_wrap_func;
      } else {
        if (parseNativeAttributes(dummy) & Native::AttrActRec) {
          ex->m_builtinFuncPtr = nif;
          ex->m_nativeFuncPtr = nullptr;
        } else {
          ex->m_nativeFuncPtr = nif;
          ex->m_builtinFuncPtr =
            Native::getWrapper(m_pce, usesDoubles, variadic);
        }
      }
    } else {
      ex->m_builtinFuncPtr = Native::unimplementedWrapper;
    }
  }

  return f;
}