Ejemplo n.º 1
0
int
ANode::distance(ANode* anc, ANode* desc)
{
  int distance = 0;
  for (ANode* x = desc; x != NULL; x = x->parent()) {
    if (x == anc) {
      return distance;
    }
    ++distance;
  }

  // If we arrive here, there was no path between 'anc' and 'desc'
  return -1;
}
Ejemplo n.º 2
0
ANode*
ANode::leastCommonAncestor(ANode* n1, ANode* n2)
{
  // Collect all ancestors of n1 and n2.  The root will be at the front
  // of the ancestor list.
  ANodeList anc1, anc2;
  for (ANode* a = n1->parent(); (a); a = a->parent()) {
    anc1.push_front(a);
  }
  for (ANode* a = n2->parent(); (a); a = a->parent()) {
    anc2.push_front(a);
  }
  
  // Find the most deeply nested common ancestor
  ANode* lca = NULL;
  while ( (!anc1.empty() && !anc2.empty()) && (anc1.front() == anc2.front())) {
    lca = anc1.front();
    anc1.pop_front();
    anc2.pop_front();
  }
  
  return lca;
}
Ejemplo n.º 3
0
bool
ANode::mergePaths(ANode* lca, ANode* node_dst, ANode* node_src)
{
  bool merged = false;
  // Should we verify that lca is really the lca?
  
  // Collect nodes along the paths 'lca' --> 'node_dst', 'node_src'.
  // Exclude 'lca'.  Shallowest nodes are at beginning of list.
  ANodeList path_dst, path_src;
  for (ANode* x = node_dst; x != lca; x = x->parent()) {
    path_dst.push_front(x);
  }
  for (ANode* x = node_src; x != lca; x = x->parent()) {
    path_src.push_front(x);
  }
  DIAG_Assert(path_dst.size() > 0 && path_src.size() > 0, "");
  
  // Merge nodes in 'path_src' into 'path_dst', shallowest to deepest,
  // exiting as soon as a merge fails
  ANodeList::iterator it_dst = path_dst.begin();
  ANodeList::iterator it_src = path_src.begin();

  for ( ; (it_dst != path_dst.end() && it_src != path_src.end());
	++it_src, ++it_dst) {
    ANode* x_src = *it_src;
    ANode* x_dst = *it_dst;
    if (isMergable(x_dst, x_src)) {
      merged |= merge(x_dst, x_src);
    }
    else {
      break; // done
    }
  }
  
  return merged;
}
Ejemplo n.º 4
0
void
ANode::aggregateMetrics(uint mBegId, uint mEndId)
{
  if ( !(mBegId < mEndId) ) {
    return; // short circuit
  }

  const ANode* root = this;
  ANodeIterator it(root, NULL/*filter*/, false/*leavesOnly*/,
		   IteratorStack::PostOrder);
  for (ANode* n = NULL; (n = it.current()); ++it) {
    ANode* n_parent = n->parent();
    if (n != root) {
      for (uint mId = mBegId; mId < mEndId; ++mId) {
	double mVal = n->demandMetric(mId, mEndId/*size*/);
	n_parent->demandMetric(mId, mEndId/*size*/) += mVal;
      }
    }
  }
}
Ejemplo n.º 5
0
bool
ANode::arePathsOverlapping(ANode* lca, ANode* desc1, ANode* desc2)
{
  // Ensure that d1 is on the longest path
  ANode* d1 = desc1, *d2 = desc2;
  int dist1 = distance(lca, d1);
  int dist2 = distance(lca, d2);
  if (dist2 > dist1) {
    ANode* t = d1;
    d1 = d2;
    d2 = t;
  }
  
  // Iterate over the longest path (d1 -> lca) searching for d2.  Stop
  // when x is NULL or lca.
  for (ANode* x = d1; (x && x != lca); x = x->parent()) {
    if (x == d2) {
      return true;
    }
  }
  
  // If we arrive here, we did not encounter d2.  Divergent.
  return false;
}
Ejemplo n.º 6
0
int
ANodeSortedIterator::cmpByStructureInfo(const void* a, const void* b)
{
  ANode* x = (*(ANode**)a);
  ANode* y = (*(ANode**)b);

  if (x && y) {
    // 0. test for equality
    if (x == y) {
      return 0;
    }

    // INVARIANT: x != y, so never return 0
    
    // 1. distinguish by structure ids
    uint x_id = x->structureId();
    uint y_id = y->structureId();
    int cmp_sid = cmp(x_id, y_id);
    if (cmp_sid != 0) {
      return cmp_sid;
    }

    // 2. distinguish by types
    int cmp_ty = (int)x->type() - (int)y->type();
    if (cmp_ty != 0) {
      return cmp_ty;
    }

    // 3. distinguish by dynamic info (unnormalized CCTs)
    //    (for determinism, ensure x and y are both ADynNodes)
    ADynNode* x_dyn = dynamic_cast<ADynNode*>(x);
    ADynNode* y_dyn = dynamic_cast<ADynNode*>(y);
    if (x_dyn && y_dyn) {
      int cmp_dyn = cmpByDynInfoSpecial(x_dyn, y_dyn);
      if (cmp_dyn != 0) {
	return cmp_dyn;
      }
    }
    
    
    // 5. distinguish by id
    int cmp_id = (int)x->id() - (int)y->id();
    if (cmp_id != 0) {
      return cmp_id;
    }

    // 4. distinguish by tree context
    ANode* x_parent = x->parent();
    ANode* y_parent = y->parent();
    if (x_parent != y_parent) {
      int cmp_ctxt = cmpByStructureInfo(&x_parent, &y_parent);
      if (cmp_ctxt != 0) {
	return cmp_ctxt;
      }
    }
    // *. Could compare childCount() and other aspects of children.
    DIAG_Die("Prof::CCT::ANodeSortedIterator::cmpByStructureInfo: cannot compare:"
		<< "\n\tx: " << x->toStringMe(Prof::CCT::Tree::OFlg_Debug)
		<< "\n\ty: " << y->toStringMe(Prof::CCT::Tree::OFlg_Debug));
    return 0;
  }
  else if (x) {
    return 1; // x > y=NULL (only used for recursive case)
  }
  else if (y) {
    return -1; // x=NULL < y (only used for recursive case)
  }
  else {
    DIAG_Die(DIAG_UnexpectedInput);
  }
}