Ejemplo n.º 1
0
FPoly operator*(const FPoly& a,const FPoly& b)
{
    FPoly prod;
    fterm *iptr,*pos;
    fterm *ptr=b.start;
    if (&a==&b)
    { // squaring
        pos=NULL;
        while (ptr!=NULL)
        { // diagonal terms
            pos=prod.addterm(ptr->an*ptr->an,ptr->n+ptr->n,pos);
            ptr=ptr->next;
        }
        ptr=b.start;
        while (ptr!=NULL)
        { // above the diagonal
            iptr=ptr->next;
            pos=NULL;
            while (iptr!=NULL)
            {
                pos=prod.addterm(2*ptr->an*iptr->an,ptr->n+iptr->n,pos);
                iptr=iptr->next;
            }
            ptr=ptr->next; 
        }

    }
    else while (ptr!=NULL)
    {
        FPoly t=a; 
        t.multerm(ptr->an,ptr->n);
        ptr=ptr->next;
        prod+=t;
    }

    return prod;
}
Ejemplo n.º 2
0
Archivo: cm.cpp Proyecto: asgene/sm2
void class_poly(Complex& lam,Float *Fi2,Big A,Big B,Big C,Big D,BOOL conj,BOOL P1363)
{
    Big ac,l,t;
    int i,j,k,g,e,m,n,dm8;
    Complex cinv;

    if (P1363)
    {
        g=1;
        if (D%3==0) g=3;

        ac=A*C;
        if (ac%2==1) 
        {
            j=0;
            l=A-C+A*A*C;
        }
        if (C%2==0)  j=1;
        if (A%2==0)  j=2;

        if (A%2==0)
        {
            t=(C*C-1)/8;
            if (t%2==0) m=1;
            else        m=-1;
        }
        else
        {
            t=(A*A-1)/8;
            if (t%2==0) m=1;
            else        m=-1;
        }
    
        dm8=D%8;
        i=geti(D);
        k=getk(D);
        switch (dm8)
        {
        case 1: 
        case 2:    n=m;
                   if (C%2==0) l=A+2*C-A*C*C;
                   if (A%2==0) l=A-C-A*C*C;
                   break;
        case 3:    if (ac%2==1) n=1;
                   else         n=-m;
                   if (C%2==0) l=A+2*C-A*C*C;
                   if (A%2==0) l=A-C+5*A*C*C;
                   break;
        case 5:    n=1;
                   if (C%2==0) l=A-C+A*A*C;
                   if (A%2==0) l=A-C-A*C*C;
                   break;
        case 6:    n=m;
                   if (C%2==0) l=A+2*C-A*C*C;
                   if (A%2==0) l=A-C-A*C*C;
                   break;
        case 7:    if (ac%2==0) n=1;
                   else         n=m;
                   if (C%2==0) l=A+2*C-A*C*C;
                   if (A%2==0) l=A-C-A*C*C;
                   break;
               
        default: break;
        }
        e=(k*B*l)%48;
        if (e<0) e+=48;
        cinv=pow(lam,e);
        cinv*=(n*Fi2[i]);
        cinv=pow(cinv*pow(F(j,A,B,C,D,0),k),g);
    }
    else
    {
        int N=getN(D);   
// adjust A and B

        if (N==2)
        {
            j=3;
            if (A%3!=0)
            {
                if (B%3!=0)
                {
                    if ((B+A+A)%3!=0) B+=(4*A);
                    else              B+=(A+A);
                }
            }
            else
            {
                if (B%3!=0)
                {
                    if (C%3!=0)
                    {
                        if ((C+B)%3!=0) B+=(4*A);
                        else            B+=(A+A);
                    }
                }
            }
            A*=3;
        }
        else
        {
            j=4;
            if ((A%N)==0) 
            {
                A=C;
                B=-B;
            }
            while (B%N!=0) B+=(A+A);
            A*=N;
        }
        cinv=F(j,A,B,C,D,N);
    }


 // multiply polynomial by new term(s)

    FPoly F;
    if (conj)
    { // conjugate pair
      // t^2-2a+(a^2+b^2) , where cinv=a+ib
        F.addterm((Float)1,2);
        F.addterm(-2*real(cinv),1);
        F.addterm(real(cinv)*real(cinv)+imaginary(cinv)*imaginary(cinv),0);
    }
    else 
    { // t-cinv
        F.addterm((Float)1,1);
        F.addterm(-real(cinv),0);

// store as a linear polynomial, or combine 2 to make a quadratic
        if (T[0].iszero())
        {
            T[0]=F;
            return;
        }
        else 
        {
            F=T[0]*F;      // got a quadratic
            T[0].clear();
        }
    }

// accumulate Polynomial as 2^m degree components
// This allows the use of karatsuba via the "special" function
// This is the time critical bit....

    for (i=1;;i++)
    {
        if (T[i].iszero())
        {
            T[i]=F;             // store this 2^i degree polynomial
            break;
        }
        else
        {
            F=special(T[i],F);  // e.g. if i=1 two quadratics make a quartic..
            T[i].clear();
        }
    }
}