bool Solver_LP_abstract::readLpFromFile(const std::string& filename,
                                        VectorX &c, VectorX &lb, VectorX &ub,
                                        MatrixXX &A, VectorX &Alb, VectorX &Aub)
{
  std::ifstream in(filename.c_str(), std::ios::in | std::ios::binary);
  typename MatrixXX::Index n=0, m=0;
  in.read((char*) (&n),sizeof(typename MatrixXX::Index));
  in.read((char*) (&m),sizeof(typename MatrixXX::Index));
  c.resize(n);
  lb.resize(n);
  ub.resize(n);
  A.resize(m,n);
  Alb.resize(m);
  Aub.resize(m);
  in.read( (char *) c.data() , n*sizeof(typename MatrixXX::Scalar) );
  in.read( (char *) lb.data() , n*sizeof(typename MatrixXX::Scalar) );
  in.read( (char *) ub.data() , n*sizeof(typename MatrixXX::Scalar) );
  in.read( (char *) A.data() , m*n*sizeof(typename MatrixXX::Scalar) );
  in.read( (char *) Alb.data() , m*sizeof(typename MatrixXX::Scalar) );
  in.read( (char *) Aub.data() , m*sizeof(typename MatrixXX::Scalar) );
  in.close();
  return true;
}
Ejemplo n.º 2
0
void TrajectoryClassifier::derive_rotation_by_svd(VecX& rot,const MatrixX3 &X, MatrixX3& Y,MatrixXXi& vtx_map)
{
	MatrixXX temp = Y;
	int verN = temp.rows();
	for (int i = 0; i < verN; i++)
	{
		Y.row(i) = temp.row(vtx_map(0,i));
	}

	Matrix33 sigma = (X.rowwise() - X.colwise().mean()).transpose() * (Y.rowwise() - Y.colwise().mean());
	Matrix33 rot_mat;

	Eigen::JacobiSVD<Matrix33> svd(sigma, Eigen::ComputeFullU | Eigen::ComputeFullV);
	if(svd.matrixU().determinant()*svd.matrixV().determinant() < 0.0) {
		Vec3 S = Vec3::Ones(); S(2) = -1.0;
		rot_mat = svd.matrixV()*S.asDiagonal()*svd.matrixU().transpose();
	} else {
		rot_mat = svd.matrixV()*svd.matrixU().transpose();
	}

	rot.block<3,1>(0,0) << rot_mat.row(0).transpose();
	rot.block<3,1>(3,0) << rot_mat.row(1).transpose();
	rot.block<3,1>(6,0) << rot_mat.row(2).transpose();
}
Ejemplo n.º 3
0
        void cxy_icp_kinematic_chain<_Scalar>::getJacobian(MatrixXX& jacobian)
        {
            long rows = cxy_config::n_num_*getModelPointSize();
            long cols = cxy_config::joint_DoFs;
            if (rows != jacobian.rows()
                    || cols != jacobian.cols())
            {
                jacobian.resize(rows, cols);
            }

            jacobian.setZero();
            int row = 0;
            for (int ii = 0; ii < points_.size(); ++ii)
            {
                row = ii*config_->n_num_;
                //jacobian.row(1);
                points_[ii]->computePointJacobian(jacobian.block(row, 0, cxy_config::n_num_, jacobian.cols()));

            }
            fout_res_<<"x = "<<std::endl;
            fout_res_<<Rad2Deg(x_)<<std::endl;
            fout_res_<<"jac = "<<std::endl;
            fout_res_<<jacobian<<std::endl;
        }
Ejemplo n.º 4
0
Eigen::Matrix<Float, Eigen::Dynamic, Eigen::Dynamic>
Prima(Eigen::SparseMatrix<Float> const& C,   // derivative conductance terms
      Eigen::SparseMatrix<Float> const& G,   // conductance
      Eigen::SparseMatrix<Float> const& B,   // input
      Eigen::SparseMatrix<Float> const& L,   // output
      std::size_t q) {                       // desired state variables
  // assert preconditions
  assert(C.rows() == C.cols());     // input matrices are square
  assert(G.rows() == G.cols());
  assert(C.rows() == G.rows());     // input matrices are of the same size
  assert(B.rows() == G.rows());
  assert(L.rows() == G.rows());
  std::size_t N = B.cols();
  std::size_t state_count = static_cast<std::size_t>(C.rows());
  assert(N < state_count);          // must have more state variables than ports
  assert(q < state_count);          // desired state count must be less than current number

  // unchecked precondition: the state variables associated with the ports must be the last N

  using namespace Eigen;
  using namespace std;

  // Step 1 of PRIMA creates the B and L matrices, and is performed by the caller.

  // Step 2: Solve GR = B for R
  SparseLU<SparseMatrix<Float>, COLAMDOrdering<int> > G_LU(G);
  assert(G_LU.info() == Success);
  SparseMatrix<Float> R = G_LU.solve(B);

  // Step 3: Set X[0] to the orthonormal basis of R as determined by QR factorization
  typedef Matrix<Float, Dynamic, Dynamic> MatrixXX;
  // The various X matrices are stored in a std::vector.  Eigen requires us to use a special
  // allocator to retain alignment:
  typedef aligned_allocator<MatrixXX> AllocatorXX;
  typedef vector<MatrixXX, AllocatorXX> MatrixXXList;
  
  SparseQR<SparseMatrix<Float>, COLAMDOrdering<int> > R_QR(R);
  assert(R_QR.info() == Success);
  // QR stores the Q "matrix" as a series of Householder reflection operations
  // that it will perform for you with the * operator.  If you store it in a matrix
  // it obligingly produces an NxN matrix but if you want the "thin" result only,
  // creating a thin identity matrix and then applying the reflections saves both
  // memory and time:
  MatrixXXList X(1, R_QR.matrixQ() * MatrixXX::Identity(B.rows(), R_QR.rank()));

  // Step 4: Set n = floor(q/N)+1 if q/N is not an integer, and q/N otherwise
  size_t n = (q % N) ? (q/N + 1) : (q/N);

  // Step 5: Block Arnoldi (see Boley for detailed explanation)
  // In some texts this is called "band Arnoldi".
  // Boley and PRIMA paper use X with both subscripts and superscripts
  // to indicate the outer (subscript) and inner (superscript) loops
  // I have used X[] for the outer, Xk for the inner
  // X[k][j] value is just the value for the current inner loop, updated from the previous
  // so a single Xkj will suffice

  for (size_t k = 1; k < n; ++k)
  {
    // because X[] will vary in number of columns, so will Xk[]
    MatrixXX Xkj;             // X[k][j] - vector in PRIMA paper but values not reused

    // Prima paper says:
    // set V = C * X[k-1]
    // solve G*X[k][0] = V for X[k][0]

    Xkj = G_LU.solve(C*X[k-1]);            // Boley: "expand Krylov space"

    for (size_t j = 1; j <= k; ++j)        // "Modified Gram-Schmidt"
    {
      auto H = X[k-j].transpose() * Xkj;   // H[k-j][k-1] per Boley

      // X[k][j] = X[k][j-1] - X[k-j]*H
      Xkj = Xkj - X[k-j] * H;              // update X[k][j] from X[k][j-1]
    }

    // set X[k] to the orthonormal basis of X[k][k] via QR factorization
    // per Boley the "R" produced is H[k][k-1]
    if (Xkj.cols() == 1)
    {
      // a single column is automatically orthogonalized; just normalize
      X.push_back(Xkj.normalized());
    } else {
      auto xkkQR = Xkj.fullPivHouseholderQr();
      X.push_back(xkkQR.matrixQ() * MatrixXX::Identity(Xkj.rows(), xkkQR.rank()));
    }
  }

  // Step 6: Set Xfinal to the concatenation of X[0] to X[n-1],
  //         truncated to q columns
  size_t cols = accumulate(X.begin(), X.end(), 0,
                           [](size_t sum, MatrixXX const& m) { return sum + m.cols(); });
  cols = std::min(q, cols);  // truncate to q

  MatrixXX Xfinal(state_count, cols);
  size_t col = 0;
  for (size_t k = 0; (k <= n) && (col < cols); ++k)
  {
    // copy columns from X[k] to Xfinal
    for (int j = 0; (j < X[k].cols()) && (col < cols); ++j)
    {
      Xfinal.col(col++) = X[k].col(j);
    }
  }

  return Xfinal;

}