Ejemplo n.º 1
0
boost::function<void()> zd11_c::netcdf_define(NcFile &nc, std::string const &vname)
{
    auto oneDim = giss::get_or_add_dim(nc, "one", 1);
    auto infoVar = nc.add_var((vname + ".info").c_str(), ncDouble, oneDim);
    infoVar->add_att("m", this->m);
    infoVar->add_att("n", this->n);

    auto neDim = nc.add_dim((vname + ".ne").c_str(), this->ne);

    nc.add_var((vname + ".row").c_str(), ncInt, neDim);
    nc.add_var((vname + ".col").c_str(), ncInt, neDim);
    nc.add_var((vname + ".val").c_str(), ncDouble, neDim);

    return boost::bind(&netcdf_write, this, &nc, vname);
}
Ejemplo n.º 2
0
NCDataSet* NCDataSetBuilder::createDataSet() {
	returned = true;
	if (RepastProcess::instance()->rank() == 0) {

		NcFile* ncfile = new NcFile(dataSet->file_.c_str(), NcFile::Replace, NULL, 0, NcFile::Offset64Bits);
		NcDim* runDim = ncfile->add_dim("run", 1);
		NcDim* tickDim = ncfile->add_dim("tick");

		ncfile->add_var("tick", ncDouble, tickDim);

		for (size_t i = 0; i < dataSet->dataSources.size(); i++) {
			NCDataSource* ds = dataSet->dataSources[i];
			ncfile->add_var(ds->name().c_str(), ds->ncType(), tickDim, runDim);
		}
		dataSet->ncfile = ncfile;
	}

	return dataSet;
}
Ejemplo n.º 3
0
boost::function<void ()> Grid_LonLat::netcdf_define(NcFile &nc, std::string const &vname) const
{
	auto parent = Grid::netcdf_define(nc, vname);

	NcDim *lonbDim = nc.add_dim((vname + ".lon_boundaries.length").c_str(),
		this->lonb.size());
	NcVar *lonb_var = nc.add_var((vname + ".lon_boundaries").c_str(),
		ncDouble, lonbDim);

	NcDim *latbDim = nc.add_dim((vname + ".lat_boundaries.length").c_str(),
		this->latb.size());
	NcVar *latb_var = nc.add_var((vname + ".lat_boundaries").c_str(),
		ncDouble, latbDim);

	NcVar *info_var = nc.get_var((vname + ".info").c_str());
	info_var->add_att("north_pole_cap", north_pole ? 1 : 0);
	info_var->add_att("south_pole_cap", south_pole ? 1 : 0);
	info_var->add_att("points_in_side", points_in_side);
	info_var->add_att("nlon", nlon());
	info_var->add_att("nlat", nlat());

	return boost::bind(&Grid_LonLat_netcdf_write, parent, &nc, this, vname);
}
Ejemplo n.º 4
0
void ConstantSet::netcdf_define(NcFile &nc, std::string const &vname)
{
	// Create the variable to store our constants
	NcVar *ncvar = giss::get_var_safe(nc, vname.c_str(), false);
	if (!ncvar) {
		auto oneDim = giss::get_or_add_dim(nc, "one", 1);
		ncvar = nc.add_var(vname.c_str(), ncDouble, oneDim);
	}

	// Store the constants as attributes
	for (int i=0; i<fields.size_withunit(); ++i) {
		CoupledField const &field(fields.field(i));
		ncvar->add_att(field.name.c_str(), vals[i]);
		ncvar->add_att((field.name + "_units").c_str(), field.units.c_str());
		ncvar->add_att((field.name + "_description").c_str(), field.description.c_str());
	}
}
Ejemplo n.º 5
0
boost::function<void ()> netcdf_define(
	NcFile &nc,
	std::string const &vname,
	blitz::Array<T,rank> const &val,
	std::vector<NcDim *> const &ddims = {})
{
	// Type-check for unit strides
	int stride = 1;
	for (int i=rank-1; i>=0; --i) {
		if (val.stride(i) != stride) {
			fprintf(stderr, "Unexpected stride of %d (should be %d) in dimension %d (extent=%d) of %s (rank=%d)\n", val.stride(i), stride, i, val.extent(i), vname.c_str(), rank);
			fprintf(stderr, "Are you trying to write a Fortran-style array?  Use f_to_c() in blitz.hpp first\n");
			throw std::exception();
		}
//printf("(stride=%d) *= (val.extent[%d]=%d)\n", stride, i, val.extent(i));
		stride *= val.extent(i);
	}

	// Create the required dimensions
	NcDim const *dims[rank];
	for (int i=0; i<rank; ++i) {
		if (i >= ddims.size()) {
			char dim_name[200];
			sprintf(dim_name, "%s.dim%d", vname.c_str(), i);
			dims[i] = nc.add_dim(dim_name, val.extent(i));
		} else {
			dims[i] = ddims[i];
		}
        assert(dims[i] != NULL);
	}

	// Create the variable
	NcVar *nc_var = nc.add_var(vname.c_str(), get_nc_type<T>(), rank, dims);
        assert(nc_var != NULL);

	// Write it out (later)
	return boost::bind(&netcdf_write_blitz<T,rank>, nc_var, val);
}
Ejemplo n.º 6
0
void CCohortdriver::createSoilClimate(BgcData *bd, EnvData *ed, Vegetation_Env *ve,
                                    string& datadir){
	
	string file = datadir+ "calirestart.nc";
	NcFile* resFile = new NcFile(file.c_str(), NcFile::Replace);

	NcDim * chtD = resFile->add_dim("CHTID", 1);
	NcDim * monD = resFile->add_dim("MON", 12);
	NcDim * layD = resFile->add_dim("LAYER", MAX_SOI_LAY);

	NcVar* drgV = resFile->add_var("DRG",ncInt, chtD);
	NcVar* vegV = resFile->add_var("VEG",ncInt, chtD);
	NcVar* numslV = resFile->add_var("NUMSL",ncInt, chtD);

	NcVar* rsoilcV = resFile->add_var("RSOILC", ncDouble, layD);
	NcVar* nsoilcV = resFile->add_var("NSOILC", ncDouble, layD);
	NcVar* dzV = resFile->add_var("DZ", ncDouble, layD);
	NcVar* typeV = resFile->add_var("TYPE", ncDouble, layD);
	NcVar* poroV = resFile->add_var("PORO", ncDouble, layD);
	NcVar* rootfracV = resFile->add_var("ROOTFRAC", ncDouble, layD);

	NcVar* taV = resFile->add_var("TA",ncDouble, monD);
	NcVar* growV = resFile->add_var("GROW",ncDouble, monD);
	NcVar* co2V = resFile->add_var("CO2",ncDouble, monD);
	NcVar* petV = resFile->add_var("PET",ncDouble, monD);
	NcVar* eetV = resFile->add_var("EET",ncDouble, monD);
	NcVar* parV = resFile->add_var("PAR",ncDouble, monD);
	NcVar* envlaiV = resFile->add_var("ENVLAI",ncFloat, monD);

	NcVar* tsV = resFile->add_var("TS", ncDouble, monD, layD);
	NcVar* ch4V = resFile->add_var("CH4",ncDouble, monD, layD);
	NcVar* liqV = resFile->add_var("LIQ",ncDouble, monD, layD);
	NcVar* vwcV = resFile->add_var("VSM",ncDouble, monD, layD);
	NcVar* swsV = resFile->add_var("SWS",ncDouble, monD, layD);
	NcVar* iceV = resFile->add_var("ICE",ncDouble, monD, layD);

	NcVar* yreetV = resFile->add_var("YREET",ncDouble, chtD);
	NcVar* yrpetV = resFile->add_var("YRPET",ncDouble, chtD);
	NcVar* yrco2V = resFile->add_var("YRCO2",ncDouble, chtD);
	NcVar* prveetmxV = resFile->add_var("PRVEETMX",ncDouble, chtD);
	NcVar* prvpetmxV = resFile->add_var("PRVPETMX",ncDouble, chtD);
	
	numslV->put(&ed->m_soid.actual_num_soil, 1);
	drgV->put(&ed->cd->drgtype, 1);
	vegV->put(&ed->cd->vegtype, 1);

	poroV->put(&ed->m_sois.por[0], MAX_SOI_LAY);
	typeV->put(&ed->m_sois.type[0], MAX_SOI_LAY);
	dzV->put(&ed->m_sois.dz[0], MAX_SOI_LAY);
	rsoilcV->put(&bd->m_sois.reac[0], MAX_SOI_LAY);
	nsoilcV->put(&bd->m_sois.nonc[0], MAX_SOI_LAY);
	rootfracV->put(&ed->m_sois.rootfrac[0], MAX_SOI_LAY);

	tsV->put(&ed->eq_ts[0][0], 12, MAX_SOI_LAY);
	ch4V->put(&ed->eq_ch4[0][0], 12, MAX_SOI_LAY);
	liqV->put(&ed->eq_liq[0][0], 12, MAX_SOI_LAY);
	iceV->put(&ed->eq_ice[0][0], 12, MAX_SOI_LAY);
	vwcV->put(&ed->eq_vwc[0][0], 12, MAX_SOI_LAY);
	swsV->put(&ed->eq_sws[0][0], 12, MAX_SOI_LAY);
	
	taV->put(&ed->eq_ta[0], 12);
	petV->put(&ed->eq_pet[0], 12);
    eetV->put(&ed->eq_eet[0], 12);
	co2V->put(&ed->eq_co2[0], 12);
	parV->put(&ed->eq_par[0], 12);
	growV->put(&ed->eq_grow[0], 12);
	envlaiV->put(&ve->envlaiall[0], 12);

	yreetV->put(&ed->eq_y_eet, 1);
	yrpetV->put(&ed->eq_y_pet, 1);
	yrco2V->put(&ed->eq_y_co2, 1);

	prveetmxV->put(&ed->eq_prveetmx);
	prvpetmxV->put(&ed->eq_prvpetmx);
	
	resFile->close();
	delete resFile;   //Yuan: if not, memory leaking may occur

//	exit(0);
};
void CopyNcVar(
	NcFile & ncIn,
	NcFile & ncOut,
	const std::string & strVarName,
	bool fCopyAttributes,
	bool fCopyData
) {
	if (!ncIn.is_valid()) {
		_EXCEPTIONT("Invalid input file specified");
	}
	if (!ncOut.is_valid()) {
		_EXCEPTIONT("Invalid output file specified");
	}
	NcVar * var = ncIn.get_var(strVarName.c_str());
	if (var == NULL) {
		_EXCEPTION1("NetCDF file does not contain variable \"%s\"",
			strVarName.c_str());
	}

	NcVar * varOut;

	std::vector<NcDim *> dimOut;
	dimOut.resize(var->num_dims());

	std::vector<long> counts;
	counts.resize(var->num_dims());

	long nDataSize = 1;

	for (int d = 0; d < var->num_dims(); d++) {
		NcDim * dimA = var->get_dim(d);

		dimOut[d] = ncOut.get_dim(dimA->name());

		if (dimOut[d] == NULL) {
			if (dimA->is_unlimited()) {
				dimOut[d] = ncOut.add_dim(dimA->name());
			} else {
				dimOut[d] = ncOut.add_dim(dimA->name(), dimA->size());
			}

			if (dimOut[d] == NULL) {
				_EXCEPTION2("Failed to add dimension \"%s\" (%i) to file",
					dimA->name(), dimA->size());
			}
		}
		if (dimOut[d]->size() != dimA->size()) {
			if (dimA->is_unlimited() && !dimOut[d]->is_unlimited()) {
				_EXCEPTION2("Mismatch between input file dimension \"%s\" and "
					"output file dimension (UNLIMITED / %i)",
					dimA->name(), dimOut[d]->size());
			} else if (!dimA->is_unlimited() && dimOut[d]->is_unlimited()) {
				_EXCEPTION2("Mismatch between input file dimension \"%s\" and "
					"output file dimension (%i / UNLIMITED)",
					dimA->name(), dimA->size());
			} else if (!dimA->is_unlimited() && !dimOut[d]->is_unlimited()) {
				_EXCEPTION3("Mismatch between input file dimension \"%s\" and "
					"output file dimension (%i / %i)",
					dimA->name(), dimA->size(), dimOut[d]->size());
			}
		}

		counts[d] = dimA->size();
		nDataSize *= counts[d];
	}

	// ncByte / ncChar type
	if ((var->type() == ncByte) || (var->type() == ncChar)) {
		DataVector<char> data;
		data.Initialize(nDataSize);

		varOut =
			ncOut.add_var(
				var->name(), var->type(),
				dimOut.size(), (const NcDim**)&(dimOut[0]));

		if (varOut == NULL) {
			_EXCEPTION1("Cannot create variable \"%s\"", var->name());
		}

		var->get(&(data[0]), &(counts[0]));
		varOut->put(&(data[0]), &(counts[0]));
	}

	// ncShort type
	if (var->type() == ncShort) {
		DataVector<short> data;
		data.Initialize(nDataSize);

		varOut =
			ncOut.add_var(
				var->name(), var->type(),
				dimOut.size(), (const NcDim**)&(dimOut[0]));

		if (varOut == NULL) {
			_EXCEPTION1("Cannot create variable \"%s\"", var->name());
		}

		if (fCopyData) {
			var->get(&(data[0]), &(counts[0]));
			varOut->put(&(data[0]), &(counts[0]));
		}
	}

	// ncInt type
	if (var->type() == ncInt) {
		DataVector<int> data;
		data.Initialize(nDataSize);

		varOut =
			ncOut.add_var(
				var->name(), var->type(),
				dimOut.size(), (const NcDim**)&(dimOut[0]));

		if (varOut == NULL) {
			_EXCEPTION1("Cannot create variable \"%s\"", var->name());
		}

		if (fCopyData) {
			var->get(&(data[0]), &(counts[0]));
			varOut->put(&(data[0]), &(counts[0]));
		}
	}

	// ncFloat type
	if (var->type() == ncFloat) {
		DataVector<float> data;
		data.Initialize(nDataSize);

		varOut =
			ncOut.add_var(
				var->name(), var->type(),
				dimOut.size(), (const NcDim**)&(dimOut[0]));

		if (varOut == NULL) {
			_EXCEPTION1("Cannot create variable \"%s\"", var->name());
		}

		if (fCopyData) {
			var->get(&(data[0]), &(counts[0]));
			varOut->put(&(data[0]), &(counts[0]));
		}
	}

	// ncDouble type
	if (var->type() == ncDouble) {
		DataVector<double> data;
		data.Initialize(nDataSize);

		varOut =
			ncOut.add_var(
				var->name(), var->type(),
				dimOut.size(), (const NcDim**)&(dimOut[0]));

		if (varOut == NULL) {
			_EXCEPTION1("Cannot create variable \"%s\"", var->name());
		}

		if (fCopyData) {
			var->get(&(data[0]), &(counts[0]));
			varOut->put(&(data[0]), &(counts[0]));
		}
	}

	// ncInt64 type
	if (var->type() == ncInt64) {
		DataVector<ncint64> data;
		data.Initialize(nDataSize);

		varOut =
			ncOut.add_var(
				var->name(), var->type(),
				dimOut.size(), (const NcDim**)&(dimOut[0]));

		if (varOut == NULL) {
			_EXCEPTION1("Cannot create variable \"%s\"", var->name());
		}

		if (fCopyData) {
			var->get(&(data[0]), &(counts[0]));
			varOut->put(&(data[0]), &(counts[0]));
		}
	}

	// Check output variable exists
	if (varOut == NULL) {
		_EXCEPTION1("Unable to create output variable \"%s\"",
			var->name());
	}

	// Copy attributes
	if (fCopyAttributes) {
		CopyNcVarAttributes(var, varOut);
	}
}
Ejemplo n.º 8
0
//
// Creates NetCDF product
//
bool NetCDFProduct(MSG_header *PRO_head, MSG_data* PRO_data,
                   int totalsegs, int *segsindexes,
		   MSG_header *header, MSG_data *msgdat)
{
  struct tm *tmtime;
  char NcName[1024];
  char reftime[64];
  char projname[16];
  int wd, hg;
  int bpp;
  int ncal;
  float *cal;
  NcVar *ivar;
  NcVar *tvar;
  NcDim *tdim;
  NcDim *ldim;
  NcDim *cdim;
  NcDim *caldim;

  int npix = header[0].image_structure->number_of_columns;
  int nlin = header[0].image_structure->number_of_lines;
  size_t npixperseg = npix*nlin;

  size_t total_size = totalsegs*npixperseg;
  MSG_SAMPLE *pixels = new MSG_SAMPLE[total_size];
  memset(pixels, 0, total_size*sizeof(MSG_SAMPLE));
  size_t pos = 0;
  for (int i = 0; i < totalsegs; i ++)
  {
    if (segsindexes[i] >= 0)
      memcpy(pixels+pos, msgdat[segsindexes[i]].image->data,
             npixperseg*sizeof(MSG_SAMPLE));
    pos += npixperseg;
  }

  nlin = nlin*totalsegs;

  // Manage subarea
  if (is_subarea)
  {
    if (AreaLinStart < 0                             ||
        AreaLinStart > nlin - AreaNlin ||
        AreaNlin > nlin - AreaLinStart)
    {
      std::cerr << "Wrong Subarea in lines...." << std::endl;
      throw;
    }
    if (AreaPixStart < 0               ||
        AreaPixStart > npix - AreaNpix ||
        AreaNpix > npix - AreaPixStart)
    {
      std::cerr << "Wrong Subarea in Pixels...." << std::endl;
      throw;
    }
    size_t newsize = AreaNpix * AreaNlin;
    MSG_SAMPLE *newpix = new MSG_SAMPLE[newsize];
    memset(newpix, 0, newsize*sizeof(MSG_SAMPLE));
    for (int i = 0; i < AreaNlin; i ++)
      memcpy(newpix + i * AreaNpix,
             pixels + (AreaLinStart + i) * npix + AreaPixStart,
             AreaNpix * sizeof(MSG_SAMPLE));
    delete [ ] pixels;
    pixels = newpix;
    total_size = newsize;
  }
  else
  {
    AreaNpix = npix;
    AreaNlin = nlin;
  }

  tmtime = PRO_data->prologue->image_acquisition.PlannedAquisitionTime.TrueRepeatCycleStart.get_timestruct( );
  t_enum_MSG_spacecraft spc = header[0].segment_id->spacecraft_id;
  uint_1 chn = header[0].segment_id->spectral_channel_id;
  float sublon = header[0].image_navigation->subsatellite_longitude;
  int cfac = header[0].image_navigation->column_scaling_factor;
  int lfac = header[0].image_navigation->line_scaling_factor;
  int coff = header[0].image_navigation->column_offset;
  int loff = header[0].image_navigation->line_offset;
  float sh = header[0].image_navigation->satellite_h;

  char *channelstring = strdup(MSG_channel_name(spc, chn).c_str( ));
  char *channel = chname(channelstring, strlen(channelstring) + 1);

  // Build up output NetCDF file name and open it
  sprintf( NcName, "%s_%4d%02d%02d_%02d%02d.nc", channel,
           tmtime->tm_year + 1900, tmtime->tm_mon + 1, tmtime->tm_mday,
	   tmtime->tm_hour, tmtime->tm_min );
  NcFile ncf ( NcName , NcFile::Replace );
  if (! ncf.is_valid()) return false;

  // Fill arrays on creation
  ncf.set_fill(NcFile::Fill);

  // Add Global Attributes
  if (! ncf.add_att("Satellite", MSG_spacecraft_name(spc).c_str()))
	            return false;
  sprintf(reftime, "%04d-%02d-%02d %02d:%02d:00 UTC",
      tmtime->tm_year + 1900, tmtime->tm_mon + 1, tmtime->tm_mday,
      tmtime->tm_hour, tmtime->tm_min);
  if (! ncf.add_att("Antenna", "Fixed") ) return false;
  if (! ncf.add_att("Receiver", "HIMET") ) return false;
  if (! ncf.add_att("Time", reftime) ) return false;
  if (! ncf.add_att("Area_Name", "SpaceView" ) ) return false;
  sprintf(projname, "GEOS(%3.1f)", sublon);
  if (! ncf.add_att("Projection", projname) ) return false;
  if (! ncf.add_att("Columns", AreaNpix ) ) return false;
  if (! ncf.add_att("Lines", AreaNlin ) ) return false;
  if (! ncf.add_att("SampleX", 1.0 ) ) return false;
  if (! ncf.add_att("SampleY", 1.0 ) ) return false;
  if (! ncf.add_att("AreaStartPix", AreaPixStart ) ) return false;
  if (! ncf.add_att("AreaStartLin", AreaLinStart ) ) return false;
  if (! ncf.add_att("Column_Scale_Factor", cfac) ) return false;
  if (! ncf.add_att("Line_Scale_Factor", lfac) ) return false;
  if (! ncf.add_att("Column_Offset", coff) ) return false;
  if (! ncf.add_att("Line_Offset", loff) ) return false;
  if (! ncf.add_att("Orbit_Radius", sh) ) return false;
  if (! ncf.add_att("Longitude", sublon) ) return false;
  if (! ncf.add_att("NortPolar", 1) ) return false;
  if (! ncf.add_att("NorthSouth", 1) ) return false;
  if (! ncf.add_att("title", TITLE) ) return false;
  if (! ncf.add_att("Institution", INSTITUTION) ) return false;
  if (! ncf.add_att("Type", TYPE) ) return false;
  if (! ncf.add_att("Version", HIMET_VERSION) ) return false;
  if (! ncf.add_att("Conventions", "COARDS") ) return false;
  if (! ncf.add_att("history", "Created from raw data") ) return false;

  // Dimensions
  wd = AreaNpix;
  hg = AreaNlin;
  bpp = header[0].image_structure->number_of_bits_per_pixel;
  ncal = (int) pow(2.0, bpp);

  tdim = ncf.add_dim("time");
  if (!tdim->is_valid()) return false;
  ldim = ncf.add_dim("line", hg);
  if (!ldim->is_valid()) return false;
  cdim = ncf.add_dim("column", wd);
  if (!cdim->is_valid()) return false;
  caldim = ncf.add_dim("calibration", ncal);
  if (!caldim->is_valid()) return false;

  // Get calibration values
  cal = PRO_data->prologue->radiometric_proc.get_calibration((int) chn, bpp);

  // Add Calibration values
  NcVar *cvar = ncf.add_var("calibration", ncFloat, caldim);
  if (!cvar->is_valid()) return false;
  cvar->add_att("long_name", "Calibration coefficients");
  cvar->add_att("variable", channel);
  if (chn > 3 && chn < 12)
    cvar->add_att("units", "K");
  else
    cvar->add_att("units", "mW m^-2 sr^-1 (cm^-1)^-1");
  if (!cvar->put(cal, ncal)) return false;

  tvar = ncf.add_var("time", ncDouble, tdim);
  if (!tvar->is_valid()) return false;
  tvar->add_att("long_name", "Time");
  tvar->add_att("units", "seconds since 2000-01-01 00:00:00 UTC");
  double atime;
  time_t ttime;
  extern long timezone;
  ttime = mktime(tmtime);
  atime = ttime - 946684800 - timezone;
  if (!tvar->put(&atime, 1)) return false;

  ivar = ncf.add_var(channel, ncShort, tdim, ldim, cdim);
  if (!ivar->is_valid()) return false;
  if (!ivar->add_att("add_offset", 0.0)) return false;
  if (!ivar->add_att("scale_factor", 1.0)) return false;
  if (!ivar->add_att("chnum", chn)) return false;

  // Write output values
  if (!ivar->put((const short int *) pixels, 1, hg, wd)) return false;

  // Close NetCDF output
  (void) ncf.close( );

  delete [ ] pixels;
  delete [ ] cal;

  return( true );
}
Ejemplo n.º 9
0
void ice_write ( std::string filename, int dim, int vertices, int edges,
  int triangles, int quadrilaterals, int tetrahedrons, int hexahedrons,
  double vertex_coordinate[], int vertex_label[], int edge_vertex[],
  int edge_label[], int triangle_vertex[], int triangle_label[],
  int quadrilateral_vertex[], int quadrilateral_label[],
  int tetrahedron_vertex[], int tetrahedron_label[],
  int hexahedron_vertex[], int hexahedron_label[] )

//****************************************************************************80
//
//  Purpose:
//
//    ICE_WRITE writes 3D ICE sizes and data to a NETCDF file.
//
//  Licensing:
//
//    This code is distributed under the GNU LGPL license.
//
//  Modified:
//
//    30 November 2010
//
//  Author:
//
//    John Burkardt
//
//  Reference:
//
//    Pascal Frey,
//    MEDIT: An interactive mesh visualization software,
//    Technical Report RT-0253,
//    Institut National de Recherche en Informatique et en Automatique,
//    03 December 2001.
//
//  Parameters:
//
//    Input, string FILENAME, the name of the file to be created.
//    Ordinarily, the name should include the extension ".nc".
//
//    Input, int DIM, the spatial dimension, which should be 3.
//
//    Input, int VERTICES, the number of vertices.
//
//    Input, int EDGES, the number of edges (may be 0).
//
//    Input, int TRIANGLES, the number of triangles (may be 0).
//
//    Input, int QUADRILATERALS, the number of quadrilaterals (may be 0).
//
//    Input, int TETRAHEDRONS, the number of tetrahedrons (may be 0).
//
//    Input, int HEXAHEDRONS, the number of hexahedrons (may be 0).
//
//    Input, double VERTEX_COORDINATE[3*VERTICES], the XYZ coordinates
//    of each vertex.
//
//    Input, int VERTEX_LABEL[VERTICES], a label for each vertex.
//
//    Input, int EDGE_VERTEX[2*EDGES], the vertices that form each edge.
//
//    Input, int EDGE_LABEL[EDGES], a label for each edge.
//
//    Input, int TRIANGLE_VERTEX[3*TRIANGLES], the vertices that form
//    each triangle.
//
//    Input, int TRIANGLE_LABEL[TRIANGLES], a label for each triangle.
//
//    Input, int QUADRILATERAL_VERTEX[4*QUADRILATERALS], the vertices that
//    form each quadrilateral.
//
//    Input, int QUADRILATERAL_LABEL[QUADRILATERALS], a label for
//    each quadrilateral.
//
//    Input, int TETRAHEDRON_VERTEX[4*TETRAHEDRONS], the vertices that
//    form each tetrahedron.
//
//    Input, int TETRAHEDRON_LABEL[TETRAHEDRONS], a label for
//    each tetrahedron.
//
//    Input, int HEXAHEDRON_VERTEX[8*HEXAHEDRONS], the vertices that form
//    each hexahedron.
//
//    Input, int HEXAHEDRON_LABEL[HEXAHEDRONS], a label for each hexahedron.
//
{
  NcDim *dim_dimension;
  NcDim *dim_edges;
  NcDim *dim_eight;
  NcDim *dim_four;
  NcDim *dim_hexahedrons;
  NcDim *dim_quadrilaterals;
  NcDim *dim_tetrahedrons;
  NcDim *dim_three;
  NcDim *dim_triangles;
  NcDim *dim_two;
  NcDim *dim_vertices;
  NcVar *var_edge_vertex;
  NcVar *var_edge_label;
  NcVar *var_hexahedron_vertex;
  NcVar *var_hexahedron_label;
  NcVar *var_quadrilateral_vertex;
  NcVar *var_quadrilateral_label;
  NcVar *var_tetrahedron_vertex;
  NcVar *var_tetrahedron_label;
  NcVar *var_triangle_vertex;
  NcVar *var_triangle_label;
  NcVar *var_vertex_coordinate;
  NcVar *var_vertex_label;
//
//  Create the file.
//
  NcFile dataFile ( filename.c_str ( ), NcFile::Replace );

  if ( !dataFile.is_valid ( ) )
  {
    cout << "\n";
    cout << "ICE_WRITE - Fatal error!\n";
    cout << "  Could not open the file.\n";
    exit ( 1 );
  }
//
//  Dimension information.
//
  dim_dimension = dataFile.add_dim ( "Dimension", dim );
  dim_vertices = dataFile.add_dim ( "Vertices", vertices );

  if ( 0 < edges )
  {
    dim_edges = dataFile.add_dim ( "Edges", edges );
  }

  if ( 0 < triangles )
  {
    dim_triangles = dataFile.add_dim ( "Triangles", triangles );
  }

  if ( 0 < quadrilaterals )
  {
    dim_quadrilaterals = dataFile.add_dim ( "Quadrilaterals", quadrilaterals );
  }

  if ( 0 < tetrahedrons )
  {
    dim_tetrahedrons = dataFile.add_dim ( "Tetrahedrons", tetrahedrons );
  }

  if ( 0 < hexahedrons )
  {
    dim_hexahedrons = dataFile.add_dim ( "Hexahedrons", hexahedrons );
  }

  dim_two = dataFile.add_dim ( "Two", 2 );
  dim_three = dataFile.add_dim ( "Three", 3 );
  dim_four = dataFile.add_dim ( "Four", 4 );
  dim_eight = dataFile.add_dim ( "Eight", 8 );
//
//  Define variables.
//
  var_vertex_coordinate      = dataFile.add_var ( "Vertex_Coordinate",    ncDouble, dim_three, dim_vertices );
  var_vertex_label           = dataFile.add_var ( "Vertex_Label",         ncInt,               dim_vertices );

  if ( 0 < edges )
  {
    var_edge_vertex          = dataFile.add_var ( "Edge_Vertex",          ncInt,    dim_two,   dim_edges );
    var_edge_label           = dataFile.add_var ( "Edge_Label",           ncInt,               dim_edges );
  }

  if ( 0 < triangles )
  {
    var_triangle_vertex      = dataFile.add_var ( "Triangle_Vertex",      ncInt, dim_three, dim_triangles );
    var_triangle_label       = dataFile.add_var ( "Triangle_Label",       ncInt,            dim_triangles );
  }

  if ( 0 < quadrilaterals )
  {
    var_quadrilateral_vertex = dataFile.add_var ( "Quadrilateral_Vertex", ncInt, dim_four, dim_quadrilaterals );
    var_quadrilateral_label  = dataFile.add_var ( "Quadrilateral_Label",  ncInt,           dim_quadrilaterals );
  }

  if ( 0 < tetrahedrons )
  {
    var_tetrahedron_vertex   = dataFile.add_var ( "Tetrahedron_Vertex",   ncInt, dim_four,  dim_tetrahedrons );
    var_tetrahedron_label    = dataFile.add_var ( "Tetrahedron_Label",    ncInt,            dim_tetrahedrons );
  }

  if ( 0 < hexahedrons )
  {
    var_hexahedron_vertex    = dataFile.add_var ( "Hexahedron_Vertex",    ncInt, dim_eight, dim_hexahedrons );
    var_hexahedron_label     = dataFile.add_var ( "Hexahedron_Label",     ncInt,            dim_hexahedrons );
  }
//
//  Write the data.
//
  var_vertex_coordinate->put      ( &vertex_coordinate[0],    3, vertices );
  var_vertex_label->put           ( &vertex_label[0],            vertices );
  if ( 0 < edges )
  {
    var_edge_vertex->put          ( &edge_vertex[0],          2, edges );
    var_edge_label->put           ( &edge_label[0],              edges );
  }
  if ( 0 < triangles )
  {
    var_triangle_vertex->put      ( &triangle_vertex[0],      3, triangles );
    var_triangle_label->put       ( &triangle_label[0],          triangles );
  }
  if ( 0 < quadrilaterals )
  {
    var_quadrilateral_vertex->put ( &quadrilateral_vertex[0], 4, quadrilaterals );
    var_quadrilateral_label->put  ( &quadrilateral_label[0],     quadrilaterals );
  }
  if ( 0 < tetrahedrons )
  {
    var_tetrahedron_vertex->put   ( &tetrahedron_vertex[0],   4, tetrahedrons );
    var_tetrahedron_label->put    ( &tetrahedron_label[0],       tetrahedrons );
  }
  if ( 0 < hexahedrons )
  {
    var_hexahedron_vertex->put    ( &hexahedron_vertex[0],      8, hexahedrons );
    var_hexahedron_label->put     ( &hexahedron_label[0],          hexahedrons );
  }
//
//  Close the file.
//
  dataFile.close ( );

  return;
}