boost::function<void()> zd11_c::netcdf_define(NcFile &nc, std::string const &vname) { auto oneDim = giss::get_or_add_dim(nc, "one", 1); auto infoVar = nc.add_var((vname + ".info").c_str(), ncDouble, oneDim); infoVar->add_att("m", this->m); infoVar->add_att("n", this->n); auto neDim = nc.add_dim((vname + ".ne").c_str(), this->ne); nc.add_var((vname + ".row").c_str(), ncInt, neDim); nc.add_var((vname + ".col").c_str(), ncInt, neDim); nc.add_var((vname + ".val").c_str(), ncDouble, neDim); return boost::bind(&netcdf_write, this, &nc, vname); }
NCDataSet* NCDataSetBuilder::createDataSet() { returned = true; if (RepastProcess::instance()->rank() == 0) { NcFile* ncfile = new NcFile(dataSet->file_.c_str(), NcFile::Replace, NULL, 0, NcFile::Offset64Bits); NcDim* runDim = ncfile->add_dim("run", 1); NcDim* tickDim = ncfile->add_dim("tick"); ncfile->add_var("tick", ncDouble, tickDim); for (size_t i = 0; i < dataSet->dataSources.size(); i++) { NCDataSource* ds = dataSet->dataSources[i]; ncfile->add_var(ds->name().c_str(), ds->ncType(), tickDim, runDim); } dataSet->ncfile = ncfile; } return dataSet; }
boost::function<void ()> Grid_LonLat::netcdf_define(NcFile &nc, std::string const &vname) const { auto parent = Grid::netcdf_define(nc, vname); NcDim *lonbDim = nc.add_dim((vname + ".lon_boundaries.length").c_str(), this->lonb.size()); NcVar *lonb_var = nc.add_var((vname + ".lon_boundaries").c_str(), ncDouble, lonbDim); NcDim *latbDim = nc.add_dim((vname + ".lat_boundaries.length").c_str(), this->latb.size()); NcVar *latb_var = nc.add_var((vname + ".lat_boundaries").c_str(), ncDouble, latbDim); NcVar *info_var = nc.get_var((vname + ".info").c_str()); info_var->add_att("north_pole_cap", north_pole ? 1 : 0); info_var->add_att("south_pole_cap", south_pole ? 1 : 0); info_var->add_att("points_in_side", points_in_side); info_var->add_att("nlon", nlon()); info_var->add_att("nlat", nlat()); return boost::bind(&Grid_LonLat_netcdf_write, parent, &nc, this, vname); }
void ConstantSet::netcdf_define(NcFile &nc, std::string const &vname) { // Create the variable to store our constants NcVar *ncvar = giss::get_var_safe(nc, vname.c_str(), false); if (!ncvar) { auto oneDim = giss::get_or_add_dim(nc, "one", 1); ncvar = nc.add_var(vname.c_str(), ncDouble, oneDim); } // Store the constants as attributes for (int i=0; i<fields.size_withunit(); ++i) { CoupledField const &field(fields.field(i)); ncvar->add_att(field.name.c_str(), vals[i]); ncvar->add_att((field.name + "_units").c_str(), field.units.c_str()); ncvar->add_att((field.name + "_description").c_str(), field.description.c_str()); } }
boost::function<void ()> netcdf_define( NcFile &nc, std::string const &vname, blitz::Array<T,rank> const &val, std::vector<NcDim *> const &ddims = {}) { // Type-check for unit strides int stride = 1; for (int i=rank-1; i>=0; --i) { if (val.stride(i) != stride) { fprintf(stderr, "Unexpected stride of %d (should be %d) in dimension %d (extent=%d) of %s (rank=%d)\n", val.stride(i), stride, i, val.extent(i), vname.c_str(), rank); fprintf(stderr, "Are you trying to write a Fortran-style array? Use f_to_c() in blitz.hpp first\n"); throw std::exception(); } //printf("(stride=%d) *= (val.extent[%d]=%d)\n", stride, i, val.extent(i)); stride *= val.extent(i); } // Create the required dimensions NcDim const *dims[rank]; for (int i=0; i<rank; ++i) { if (i >= ddims.size()) { char dim_name[200]; sprintf(dim_name, "%s.dim%d", vname.c_str(), i); dims[i] = nc.add_dim(dim_name, val.extent(i)); } else { dims[i] = ddims[i]; } assert(dims[i] != NULL); } // Create the variable NcVar *nc_var = nc.add_var(vname.c_str(), get_nc_type<T>(), rank, dims); assert(nc_var != NULL); // Write it out (later) return boost::bind(&netcdf_write_blitz<T,rank>, nc_var, val); }
void CCohortdriver::createSoilClimate(BgcData *bd, EnvData *ed, Vegetation_Env *ve, string& datadir){ string file = datadir+ "calirestart.nc"; NcFile* resFile = new NcFile(file.c_str(), NcFile::Replace); NcDim * chtD = resFile->add_dim("CHTID", 1); NcDim * monD = resFile->add_dim("MON", 12); NcDim * layD = resFile->add_dim("LAYER", MAX_SOI_LAY); NcVar* drgV = resFile->add_var("DRG",ncInt, chtD); NcVar* vegV = resFile->add_var("VEG",ncInt, chtD); NcVar* numslV = resFile->add_var("NUMSL",ncInt, chtD); NcVar* rsoilcV = resFile->add_var("RSOILC", ncDouble, layD); NcVar* nsoilcV = resFile->add_var("NSOILC", ncDouble, layD); NcVar* dzV = resFile->add_var("DZ", ncDouble, layD); NcVar* typeV = resFile->add_var("TYPE", ncDouble, layD); NcVar* poroV = resFile->add_var("PORO", ncDouble, layD); NcVar* rootfracV = resFile->add_var("ROOTFRAC", ncDouble, layD); NcVar* taV = resFile->add_var("TA",ncDouble, monD); NcVar* growV = resFile->add_var("GROW",ncDouble, monD); NcVar* co2V = resFile->add_var("CO2",ncDouble, monD); NcVar* petV = resFile->add_var("PET",ncDouble, monD); NcVar* eetV = resFile->add_var("EET",ncDouble, monD); NcVar* parV = resFile->add_var("PAR",ncDouble, monD); NcVar* envlaiV = resFile->add_var("ENVLAI",ncFloat, monD); NcVar* tsV = resFile->add_var("TS", ncDouble, monD, layD); NcVar* ch4V = resFile->add_var("CH4",ncDouble, monD, layD); NcVar* liqV = resFile->add_var("LIQ",ncDouble, monD, layD); NcVar* vwcV = resFile->add_var("VSM",ncDouble, monD, layD); NcVar* swsV = resFile->add_var("SWS",ncDouble, monD, layD); NcVar* iceV = resFile->add_var("ICE",ncDouble, monD, layD); NcVar* yreetV = resFile->add_var("YREET",ncDouble, chtD); NcVar* yrpetV = resFile->add_var("YRPET",ncDouble, chtD); NcVar* yrco2V = resFile->add_var("YRCO2",ncDouble, chtD); NcVar* prveetmxV = resFile->add_var("PRVEETMX",ncDouble, chtD); NcVar* prvpetmxV = resFile->add_var("PRVPETMX",ncDouble, chtD); numslV->put(&ed->m_soid.actual_num_soil, 1); drgV->put(&ed->cd->drgtype, 1); vegV->put(&ed->cd->vegtype, 1); poroV->put(&ed->m_sois.por[0], MAX_SOI_LAY); typeV->put(&ed->m_sois.type[0], MAX_SOI_LAY); dzV->put(&ed->m_sois.dz[0], MAX_SOI_LAY); rsoilcV->put(&bd->m_sois.reac[0], MAX_SOI_LAY); nsoilcV->put(&bd->m_sois.nonc[0], MAX_SOI_LAY); rootfracV->put(&ed->m_sois.rootfrac[0], MAX_SOI_LAY); tsV->put(&ed->eq_ts[0][0], 12, MAX_SOI_LAY); ch4V->put(&ed->eq_ch4[0][0], 12, MAX_SOI_LAY); liqV->put(&ed->eq_liq[0][0], 12, MAX_SOI_LAY); iceV->put(&ed->eq_ice[0][0], 12, MAX_SOI_LAY); vwcV->put(&ed->eq_vwc[0][0], 12, MAX_SOI_LAY); swsV->put(&ed->eq_sws[0][0], 12, MAX_SOI_LAY); taV->put(&ed->eq_ta[0], 12); petV->put(&ed->eq_pet[0], 12); eetV->put(&ed->eq_eet[0], 12); co2V->put(&ed->eq_co2[0], 12); parV->put(&ed->eq_par[0], 12); growV->put(&ed->eq_grow[0], 12); envlaiV->put(&ve->envlaiall[0], 12); yreetV->put(&ed->eq_y_eet, 1); yrpetV->put(&ed->eq_y_pet, 1); yrco2V->put(&ed->eq_y_co2, 1); prveetmxV->put(&ed->eq_prveetmx); prvpetmxV->put(&ed->eq_prvpetmx); resFile->close(); delete resFile; //Yuan: if not, memory leaking may occur // exit(0); };
void CopyNcVar( NcFile & ncIn, NcFile & ncOut, const std::string & strVarName, bool fCopyAttributes, bool fCopyData ) { if (!ncIn.is_valid()) { _EXCEPTIONT("Invalid input file specified"); } if (!ncOut.is_valid()) { _EXCEPTIONT("Invalid output file specified"); } NcVar * var = ncIn.get_var(strVarName.c_str()); if (var == NULL) { _EXCEPTION1("NetCDF file does not contain variable \"%s\"", strVarName.c_str()); } NcVar * varOut; std::vector<NcDim *> dimOut; dimOut.resize(var->num_dims()); std::vector<long> counts; counts.resize(var->num_dims()); long nDataSize = 1; for (int d = 0; d < var->num_dims(); d++) { NcDim * dimA = var->get_dim(d); dimOut[d] = ncOut.get_dim(dimA->name()); if (dimOut[d] == NULL) { if (dimA->is_unlimited()) { dimOut[d] = ncOut.add_dim(dimA->name()); } else { dimOut[d] = ncOut.add_dim(dimA->name(), dimA->size()); } if (dimOut[d] == NULL) { _EXCEPTION2("Failed to add dimension \"%s\" (%i) to file", dimA->name(), dimA->size()); } } if (dimOut[d]->size() != dimA->size()) { if (dimA->is_unlimited() && !dimOut[d]->is_unlimited()) { _EXCEPTION2("Mismatch between input file dimension \"%s\" and " "output file dimension (UNLIMITED / %i)", dimA->name(), dimOut[d]->size()); } else if (!dimA->is_unlimited() && dimOut[d]->is_unlimited()) { _EXCEPTION2("Mismatch between input file dimension \"%s\" and " "output file dimension (%i / UNLIMITED)", dimA->name(), dimA->size()); } else if (!dimA->is_unlimited() && !dimOut[d]->is_unlimited()) { _EXCEPTION3("Mismatch between input file dimension \"%s\" and " "output file dimension (%i / %i)", dimA->name(), dimA->size(), dimOut[d]->size()); } } counts[d] = dimA->size(); nDataSize *= counts[d]; } // ncByte / ncChar type if ((var->type() == ncByte) || (var->type() == ncChar)) { DataVector<char> data; data.Initialize(nDataSize); varOut = ncOut.add_var( var->name(), var->type(), dimOut.size(), (const NcDim**)&(dimOut[0])); if (varOut == NULL) { _EXCEPTION1("Cannot create variable \"%s\"", var->name()); } var->get(&(data[0]), &(counts[0])); varOut->put(&(data[0]), &(counts[0])); } // ncShort type if (var->type() == ncShort) { DataVector<short> data; data.Initialize(nDataSize); varOut = ncOut.add_var( var->name(), var->type(), dimOut.size(), (const NcDim**)&(dimOut[0])); if (varOut == NULL) { _EXCEPTION1("Cannot create variable \"%s\"", var->name()); } if (fCopyData) { var->get(&(data[0]), &(counts[0])); varOut->put(&(data[0]), &(counts[0])); } } // ncInt type if (var->type() == ncInt) { DataVector<int> data; data.Initialize(nDataSize); varOut = ncOut.add_var( var->name(), var->type(), dimOut.size(), (const NcDim**)&(dimOut[0])); if (varOut == NULL) { _EXCEPTION1("Cannot create variable \"%s\"", var->name()); } if (fCopyData) { var->get(&(data[0]), &(counts[0])); varOut->put(&(data[0]), &(counts[0])); } } // ncFloat type if (var->type() == ncFloat) { DataVector<float> data; data.Initialize(nDataSize); varOut = ncOut.add_var( var->name(), var->type(), dimOut.size(), (const NcDim**)&(dimOut[0])); if (varOut == NULL) { _EXCEPTION1("Cannot create variable \"%s\"", var->name()); } if (fCopyData) { var->get(&(data[0]), &(counts[0])); varOut->put(&(data[0]), &(counts[0])); } } // ncDouble type if (var->type() == ncDouble) { DataVector<double> data; data.Initialize(nDataSize); varOut = ncOut.add_var( var->name(), var->type(), dimOut.size(), (const NcDim**)&(dimOut[0])); if (varOut == NULL) { _EXCEPTION1("Cannot create variable \"%s\"", var->name()); } if (fCopyData) { var->get(&(data[0]), &(counts[0])); varOut->put(&(data[0]), &(counts[0])); } } // ncInt64 type if (var->type() == ncInt64) { DataVector<ncint64> data; data.Initialize(nDataSize); varOut = ncOut.add_var( var->name(), var->type(), dimOut.size(), (const NcDim**)&(dimOut[0])); if (varOut == NULL) { _EXCEPTION1("Cannot create variable \"%s\"", var->name()); } if (fCopyData) { var->get(&(data[0]), &(counts[0])); varOut->put(&(data[0]), &(counts[0])); } } // Check output variable exists if (varOut == NULL) { _EXCEPTION1("Unable to create output variable \"%s\"", var->name()); } // Copy attributes if (fCopyAttributes) { CopyNcVarAttributes(var, varOut); } }
// // Creates NetCDF product // bool NetCDFProduct(MSG_header *PRO_head, MSG_data* PRO_data, int totalsegs, int *segsindexes, MSG_header *header, MSG_data *msgdat) { struct tm *tmtime; char NcName[1024]; char reftime[64]; char projname[16]; int wd, hg; int bpp; int ncal; float *cal; NcVar *ivar; NcVar *tvar; NcDim *tdim; NcDim *ldim; NcDim *cdim; NcDim *caldim; int npix = header[0].image_structure->number_of_columns; int nlin = header[0].image_structure->number_of_lines; size_t npixperseg = npix*nlin; size_t total_size = totalsegs*npixperseg; MSG_SAMPLE *pixels = new MSG_SAMPLE[total_size]; memset(pixels, 0, total_size*sizeof(MSG_SAMPLE)); size_t pos = 0; for (int i = 0; i < totalsegs; i ++) { if (segsindexes[i] >= 0) memcpy(pixels+pos, msgdat[segsindexes[i]].image->data, npixperseg*sizeof(MSG_SAMPLE)); pos += npixperseg; } nlin = nlin*totalsegs; // Manage subarea if (is_subarea) { if (AreaLinStart < 0 || AreaLinStart > nlin - AreaNlin || AreaNlin > nlin - AreaLinStart) { std::cerr << "Wrong Subarea in lines...." << std::endl; throw; } if (AreaPixStart < 0 || AreaPixStart > npix - AreaNpix || AreaNpix > npix - AreaPixStart) { std::cerr << "Wrong Subarea in Pixels...." << std::endl; throw; } size_t newsize = AreaNpix * AreaNlin; MSG_SAMPLE *newpix = new MSG_SAMPLE[newsize]; memset(newpix, 0, newsize*sizeof(MSG_SAMPLE)); for (int i = 0; i < AreaNlin; i ++) memcpy(newpix + i * AreaNpix, pixels + (AreaLinStart + i) * npix + AreaPixStart, AreaNpix * sizeof(MSG_SAMPLE)); delete [ ] pixels; pixels = newpix; total_size = newsize; } else { AreaNpix = npix; AreaNlin = nlin; } tmtime = PRO_data->prologue->image_acquisition.PlannedAquisitionTime.TrueRepeatCycleStart.get_timestruct( ); t_enum_MSG_spacecraft spc = header[0].segment_id->spacecraft_id; uint_1 chn = header[0].segment_id->spectral_channel_id; float sublon = header[0].image_navigation->subsatellite_longitude; int cfac = header[0].image_navigation->column_scaling_factor; int lfac = header[0].image_navigation->line_scaling_factor; int coff = header[0].image_navigation->column_offset; int loff = header[0].image_navigation->line_offset; float sh = header[0].image_navigation->satellite_h; char *channelstring = strdup(MSG_channel_name(spc, chn).c_str( )); char *channel = chname(channelstring, strlen(channelstring) + 1); // Build up output NetCDF file name and open it sprintf( NcName, "%s_%4d%02d%02d_%02d%02d.nc", channel, tmtime->tm_year + 1900, tmtime->tm_mon + 1, tmtime->tm_mday, tmtime->tm_hour, tmtime->tm_min ); NcFile ncf ( NcName , NcFile::Replace ); if (! ncf.is_valid()) return false; // Fill arrays on creation ncf.set_fill(NcFile::Fill); // Add Global Attributes if (! ncf.add_att("Satellite", MSG_spacecraft_name(spc).c_str())) return false; sprintf(reftime, "%04d-%02d-%02d %02d:%02d:00 UTC", tmtime->tm_year + 1900, tmtime->tm_mon + 1, tmtime->tm_mday, tmtime->tm_hour, tmtime->tm_min); if (! ncf.add_att("Antenna", "Fixed") ) return false; if (! ncf.add_att("Receiver", "HIMET") ) return false; if (! ncf.add_att("Time", reftime) ) return false; if (! ncf.add_att("Area_Name", "SpaceView" ) ) return false; sprintf(projname, "GEOS(%3.1f)", sublon); if (! ncf.add_att("Projection", projname) ) return false; if (! ncf.add_att("Columns", AreaNpix ) ) return false; if (! ncf.add_att("Lines", AreaNlin ) ) return false; if (! ncf.add_att("SampleX", 1.0 ) ) return false; if (! ncf.add_att("SampleY", 1.0 ) ) return false; if (! ncf.add_att("AreaStartPix", AreaPixStart ) ) return false; if (! ncf.add_att("AreaStartLin", AreaLinStart ) ) return false; if (! ncf.add_att("Column_Scale_Factor", cfac) ) return false; if (! ncf.add_att("Line_Scale_Factor", lfac) ) return false; if (! ncf.add_att("Column_Offset", coff) ) return false; if (! ncf.add_att("Line_Offset", loff) ) return false; if (! ncf.add_att("Orbit_Radius", sh) ) return false; if (! ncf.add_att("Longitude", sublon) ) return false; if (! ncf.add_att("NortPolar", 1) ) return false; if (! ncf.add_att("NorthSouth", 1) ) return false; if (! ncf.add_att("title", TITLE) ) return false; if (! ncf.add_att("Institution", INSTITUTION) ) return false; if (! ncf.add_att("Type", TYPE) ) return false; if (! ncf.add_att("Version", HIMET_VERSION) ) return false; if (! ncf.add_att("Conventions", "COARDS") ) return false; if (! ncf.add_att("history", "Created from raw data") ) return false; // Dimensions wd = AreaNpix; hg = AreaNlin; bpp = header[0].image_structure->number_of_bits_per_pixel; ncal = (int) pow(2.0, bpp); tdim = ncf.add_dim("time"); if (!tdim->is_valid()) return false; ldim = ncf.add_dim("line", hg); if (!ldim->is_valid()) return false; cdim = ncf.add_dim("column", wd); if (!cdim->is_valid()) return false; caldim = ncf.add_dim("calibration", ncal); if (!caldim->is_valid()) return false; // Get calibration values cal = PRO_data->prologue->radiometric_proc.get_calibration((int) chn, bpp); // Add Calibration values NcVar *cvar = ncf.add_var("calibration", ncFloat, caldim); if (!cvar->is_valid()) return false; cvar->add_att("long_name", "Calibration coefficients"); cvar->add_att("variable", channel); if (chn > 3 && chn < 12) cvar->add_att("units", "K"); else cvar->add_att("units", "mW m^-2 sr^-1 (cm^-1)^-1"); if (!cvar->put(cal, ncal)) return false; tvar = ncf.add_var("time", ncDouble, tdim); if (!tvar->is_valid()) return false; tvar->add_att("long_name", "Time"); tvar->add_att("units", "seconds since 2000-01-01 00:00:00 UTC"); double atime; time_t ttime; extern long timezone; ttime = mktime(tmtime); atime = ttime - 946684800 - timezone; if (!tvar->put(&atime, 1)) return false; ivar = ncf.add_var(channel, ncShort, tdim, ldim, cdim); if (!ivar->is_valid()) return false; if (!ivar->add_att("add_offset", 0.0)) return false; if (!ivar->add_att("scale_factor", 1.0)) return false; if (!ivar->add_att("chnum", chn)) return false; // Write output values if (!ivar->put((const short int *) pixels, 1, hg, wd)) return false; // Close NetCDF output (void) ncf.close( ); delete [ ] pixels; delete [ ] cal; return( true ); }
void ice_write ( std::string filename, int dim, int vertices, int edges, int triangles, int quadrilaterals, int tetrahedrons, int hexahedrons, double vertex_coordinate[], int vertex_label[], int edge_vertex[], int edge_label[], int triangle_vertex[], int triangle_label[], int quadrilateral_vertex[], int quadrilateral_label[], int tetrahedron_vertex[], int tetrahedron_label[], int hexahedron_vertex[], int hexahedron_label[] ) //****************************************************************************80 // // Purpose: // // ICE_WRITE writes 3D ICE sizes and data to a NETCDF file. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 30 November 2010 // // Author: // // John Burkardt // // Reference: // // Pascal Frey, // MEDIT: An interactive mesh visualization software, // Technical Report RT-0253, // Institut National de Recherche en Informatique et en Automatique, // 03 December 2001. // // Parameters: // // Input, string FILENAME, the name of the file to be created. // Ordinarily, the name should include the extension ".nc". // // Input, int DIM, the spatial dimension, which should be 3. // // Input, int VERTICES, the number of vertices. // // Input, int EDGES, the number of edges (may be 0). // // Input, int TRIANGLES, the number of triangles (may be 0). // // Input, int QUADRILATERALS, the number of quadrilaterals (may be 0). // // Input, int TETRAHEDRONS, the number of tetrahedrons (may be 0). // // Input, int HEXAHEDRONS, the number of hexahedrons (may be 0). // // Input, double VERTEX_COORDINATE[3*VERTICES], the XYZ coordinates // of each vertex. // // Input, int VERTEX_LABEL[VERTICES], a label for each vertex. // // Input, int EDGE_VERTEX[2*EDGES], the vertices that form each edge. // // Input, int EDGE_LABEL[EDGES], a label for each edge. // // Input, int TRIANGLE_VERTEX[3*TRIANGLES], the vertices that form // each triangle. // // Input, int TRIANGLE_LABEL[TRIANGLES], a label for each triangle. // // Input, int QUADRILATERAL_VERTEX[4*QUADRILATERALS], the vertices that // form each quadrilateral. // // Input, int QUADRILATERAL_LABEL[QUADRILATERALS], a label for // each quadrilateral. // // Input, int TETRAHEDRON_VERTEX[4*TETRAHEDRONS], the vertices that // form each tetrahedron. // // Input, int TETRAHEDRON_LABEL[TETRAHEDRONS], a label for // each tetrahedron. // // Input, int HEXAHEDRON_VERTEX[8*HEXAHEDRONS], the vertices that form // each hexahedron. // // Input, int HEXAHEDRON_LABEL[HEXAHEDRONS], a label for each hexahedron. // { NcDim *dim_dimension; NcDim *dim_edges; NcDim *dim_eight; NcDim *dim_four; NcDim *dim_hexahedrons; NcDim *dim_quadrilaterals; NcDim *dim_tetrahedrons; NcDim *dim_three; NcDim *dim_triangles; NcDim *dim_two; NcDim *dim_vertices; NcVar *var_edge_vertex; NcVar *var_edge_label; NcVar *var_hexahedron_vertex; NcVar *var_hexahedron_label; NcVar *var_quadrilateral_vertex; NcVar *var_quadrilateral_label; NcVar *var_tetrahedron_vertex; NcVar *var_tetrahedron_label; NcVar *var_triangle_vertex; NcVar *var_triangle_label; NcVar *var_vertex_coordinate; NcVar *var_vertex_label; // // Create the file. // NcFile dataFile ( filename.c_str ( ), NcFile::Replace ); if ( !dataFile.is_valid ( ) ) { cout << "\n"; cout << "ICE_WRITE - Fatal error!\n"; cout << " Could not open the file.\n"; exit ( 1 ); } // // Dimension information. // dim_dimension = dataFile.add_dim ( "Dimension", dim ); dim_vertices = dataFile.add_dim ( "Vertices", vertices ); if ( 0 < edges ) { dim_edges = dataFile.add_dim ( "Edges", edges ); } if ( 0 < triangles ) { dim_triangles = dataFile.add_dim ( "Triangles", triangles ); } if ( 0 < quadrilaterals ) { dim_quadrilaterals = dataFile.add_dim ( "Quadrilaterals", quadrilaterals ); } if ( 0 < tetrahedrons ) { dim_tetrahedrons = dataFile.add_dim ( "Tetrahedrons", tetrahedrons ); } if ( 0 < hexahedrons ) { dim_hexahedrons = dataFile.add_dim ( "Hexahedrons", hexahedrons ); } dim_two = dataFile.add_dim ( "Two", 2 ); dim_three = dataFile.add_dim ( "Three", 3 ); dim_four = dataFile.add_dim ( "Four", 4 ); dim_eight = dataFile.add_dim ( "Eight", 8 ); // // Define variables. // var_vertex_coordinate = dataFile.add_var ( "Vertex_Coordinate", ncDouble, dim_three, dim_vertices ); var_vertex_label = dataFile.add_var ( "Vertex_Label", ncInt, dim_vertices ); if ( 0 < edges ) { var_edge_vertex = dataFile.add_var ( "Edge_Vertex", ncInt, dim_two, dim_edges ); var_edge_label = dataFile.add_var ( "Edge_Label", ncInt, dim_edges ); } if ( 0 < triangles ) { var_triangle_vertex = dataFile.add_var ( "Triangle_Vertex", ncInt, dim_three, dim_triangles ); var_triangle_label = dataFile.add_var ( "Triangle_Label", ncInt, dim_triangles ); } if ( 0 < quadrilaterals ) { var_quadrilateral_vertex = dataFile.add_var ( "Quadrilateral_Vertex", ncInt, dim_four, dim_quadrilaterals ); var_quadrilateral_label = dataFile.add_var ( "Quadrilateral_Label", ncInt, dim_quadrilaterals ); } if ( 0 < tetrahedrons ) { var_tetrahedron_vertex = dataFile.add_var ( "Tetrahedron_Vertex", ncInt, dim_four, dim_tetrahedrons ); var_tetrahedron_label = dataFile.add_var ( "Tetrahedron_Label", ncInt, dim_tetrahedrons ); } if ( 0 < hexahedrons ) { var_hexahedron_vertex = dataFile.add_var ( "Hexahedron_Vertex", ncInt, dim_eight, dim_hexahedrons ); var_hexahedron_label = dataFile.add_var ( "Hexahedron_Label", ncInt, dim_hexahedrons ); } // // Write the data. // var_vertex_coordinate->put ( &vertex_coordinate[0], 3, vertices ); var_vertex_label->put ( &vertex_label[0], vertices ); if ( 0 < edges ) { var_edge_vertex->put ( &edge_vertex[0], 2, edges ); var_edge_label->put ( &edge_label[0], edges ); } if ( 0 < triangles ) { var_triangle_vertex->put ( &triangle_vertex[0], 3, triangles ); var_triangle_label->put ( &triangle_label[0], triangles ); } if ( 0 < quadrilaterals ) { var_quadrilateral_vertex->put ( &quadrilateral_vertex[0], 4, quadrilaterals ); var_quadrilateral_label->put ( &quadrilateral_label[0], quadrilaterals ); } if ( 0 < tetrahedrons ) { var_tetrahedron_vertex->put ( &tetrahedron_vertex[0], 4, tetrahedrons ); var_tetrahedron_label->put ( &tetrahedron_label[0], tetrahedrons ); } if ( 0 < hexahedrons ) { var_hexahedron_vertex->put ( &hexahedron_vertex[0], 8, hexahedrons ); var_hexahedron_label->put ( &hexahedron_label[0], hexahedrons ); } // // Close the file. // dataFile.close ( ); return; }