Ejemplo n.º 1
0
void
ContactMaster::updateContactSet(bool beginning_of_step)
{
  std::map<dof_id_type, PenetrationInfo *>::iterator
    it  = _penetration_locator._penetration_info.begin(),
    end = _penetration_locator._penetration_info.end();
  for (; it!=end; ++it)
  {
    const dof_id_type slave_node_num = it->first;
    PenetrationInfo * pinfo = it->second;

    // Skip this pinfo if there are no DOFs on this node.
    if ( ! pinfo || pinfo->_node->n_comp(_sys.number(), _vars(_component)) < 1 )
      continue;

    if (beginning_of_step)
    {
      pinfo->_locked_this_step = 0;
      pinfo->_starting_elem = it->second->_elem;
      pinfo->_starting_side_num = it->second->_side_num;
      pinfo->_starting_closest_point_ref = it->second->_closest_point_ref;
      pinfo->_contact_force_old = pinfo->_contact_force;
      pinfo->_accumulated_slip_old = pinfo->_accumulated_slip;
      pinfo->_frictional_energy_old = pinfo->_frictional_energy;
    }

    const Real contact_pressure = -(pinfo->_normal * pinfo->_contact_force) / nodalArea(*pinfo);
    const Real distance = pinfo->_normal * (pinfo->_closest_point - _mesh.node(slave_node_num));

    // Capture
    if ( ! pinfo->isCaptured() && MooseUtils::absoluteFuzzyGreaterEqual(distance, 0, _capture_tolerance))
    {
      pinfo->capture();

      // Increment the lock count every time the node comes back into contact from not being in contact.
      if (_formulation == CF_KINEMATIC)
        ++pinfo->_locked_this_step;
    }
    // Release
    else if (_model != CM_GLUED &&
             pinfo->isCaptured() &&
             _tension_release >= 0 &&
             -contact_pressure >= _tension_release &&
             pinfo->_locked_this_step < 2)
    {
      pinfo->release();
      pinfo->_contact_force.zero();
    }

    if (_formulation == CF_AUGMENTED_LAGRANGE && pinfo->isCaptured())
      pinfo->_lagrange_multiplier -= getPenalty(*pinfo) * distance;
  }
}
Ejemplo n.º 2
0
void
ContactMaster::addPoints()
{
  _point_to_info.clear();

  std::map<dof_id_type, PenetrationInfo *>::iterator
    it  = _penetration_locator._penetration_info.begin(),
    end = _penetration_locator._penetration_info.end();

  for (; it!=end; ++it)
  {
    PenetrationInfo * pinfo = it->second;

    // Skip this pinfo if there are no DOFs on this node.
    if ( ! pinfo || pinfo->_node->n_comp(_sys.number(), _vars(_component)) < 1 )
      continue;

    if ( pinfo->isCaptured() )
    {
      addPoint(pinfo->_elem, pinfo->_closest_point);
      _point_to_info[pinfo->_closest_point] = pinfo;
      computeContactForce(pinfo);
    }
  }
}
Ejemplo n.º 3
0
void
SlaveConstraint::addPoints()
{
  _point_to_info.clear();

  std::map<dof_id_type, PenetrationInfo *>::iterator
      it = _penetration_locator._penetration_info.begin(),
      end = _penetration_locator._penetration_info.end();

  const auto & node_to_elem_map = _mesh.nodeToElemMap();
  for (; it != end; ++it)
  {
    PenetrationInfo * pinfo = it->second;

    // Skip this pinfo if there are no DOFs on this node.
    if (!pinfo || pinfo->_node->n_comp(_sys.number(), _vars[_component]) < 1)
      continue;

    dof_id_type slave_node_num = it->first;
    const Node * node = pinfo->_node;

    if (pinfo->isCaptured() && node->processor_id() == processor_id())
    {
      // Find an element that is connected to this node that and that is also on this processor
      auto node_to_elem_pair = node_to_elem_map.find(slave_node_num);
      mooseAssert(node_to_elem_pair != node_to_elem_map.end(), "Missing node in node to elem map");
      const std::vector<dof_id_type> & connected_elems = node_to_elem_pair->second;

      Elem * elem = NULL;

      for (unsigned int i = 0; i < connected_elems.size() && !elem; ++i)
      {
        Elem * cur_elem = _mesh.elemPtr(connected_elems[i]);
        if (cur_elem->processor_id() == processor_id())
          elem = cur_elem;
      }

      mooseAssert(elem,
                  "Couldn't find an element on this processor that is attached to the slave node!");

      addPoint(elem, *node);
      _point_to_info[*node] = pinfo;
    }
  }
}
Ejemplo n.º 4
0
unsigned int
FrictionalContactProblem::numLocalFrictionalConstraints()
{
  GeometricSearchData & displaced_geom_search_data = getDisplacedProblem()->geomSearchData();
  std::map<std::pair<unsigned int, unsigned int>, PenetrationLocator *> * penetration_locators = &displaced_geom_search_data._penetration_locators;

  unsigned int num_constraints(0);

  for (std::map<std::pair<unsigned int, unsigned int>, PenetrationLocator *>::iterator plit = penetration_locators->begin();
      plit != penetration_locators->end();
      ++plit)
  {
    PenetrationLocator & pen_loc = *plit->second;

    bool frictional_contact_this_interaction = false;

    std::map<std::pair<int,int>,InteractionParams>::iterator ipit;
    std::pair<int,int> ms_pair(pen_loc._master_boundary,pen_loc._slave_boundary);
    ipit = _interaction_params.find(ms_pair);
    if (ipit != _interaction_params.end())
      frictional_contact_this_interaction = true;

    if (frictional_contact_this_interaction)
    {
      std::vector<dof_id_type> & slave_nodes = pen_loc._nearest_node._slave_nodes;

      for (unsigned int i=0; i<slave_nodes.size(); i++)
      {
        dof_id_type slave_node_num = slave_nodes[i];

        PenetrationInfo * pinfo = pen_loc._penetration_info[slave_node_num];
        if (pinfo)
          if (pinfo->isCaptured())
            ++num_constraints;
      }
    }
  }
  return num_constraints;
}
Ejemplo n.º 5
0
bool
MechanicalContactConstraint::shouldApply()
{
  bool in_contact = false;

  std::map<dof_id_type, PenetrationInfo *>::iterator found =
    _penetration_locator._penetration_info.find(_current_node->id());
  if ( found != _penetration_locator._penetration_info.end() )
  {
    PenetrationInfo * pinfo = found->second;
    if ( pinfo != NULL && pinfo->isCaptured() )
    {
      in_contact = true;

      // This does the contact force once per constraint, rather than once per quad point and for
      // both master and slave cases.
      computeContactForce(pinfo);
    }
  }

  return in_contact;
}
Ejemplo n.º 6
0
Real
PenetrationAux::computeValue()
{
  const Node * current_node = NULL;

  if (_nodal)
    current_node = _current_node;
  else
    current_node = _mesh.getQuadratureNode(_current_elem, _current_side, _qp);

  PenetrationInfo * pinfo = _penetration_locator._penetration_info[current_node->id()];

  Real retVal(NotPenetrated);

  if (pinfo)
    switch (_quantity)
    {
      case PA_DISTANCE:
        retVal = pinfo->_distance;
        break;
      case PA_TANG_DISTANCE:
        retVal = pinfo->_tangential_distance;
        break;
      case PA_NORMAL_X:
        retVal = pinfo->_normal(0);
        break;
      case PA_NORMAL_Y:
        retVal = pinfo->_normal(1);
        break;
      case PA_NORMAL_Z:
        retVal = pinfo->_normal(2);
        break;
      case PA_CLOSEST_POINT_X:
        retVal = pinfo->_closest_point(0);
        break;
      case PA_CLOSEST_POINT_Y:
        retVal = pinfo->_closest_point(1);
        break;
      case PA_CLOSEST_POINT_Z:
        retVal = pinfo->_closest_point(2);
        break;
      case PA_ELEM_ID:
        retVal = static_cast<Real>(pinfo->_elem->id() + 1);
        break;
      case PA_SIDE:
        retVal = static_cast<Real>(pinfo->_side_num);
        break;
      case PA_INCREMENTAL_SLIP_MAG:
        retVal = pinfo->isCaptured() ? pinfo->_incremental_slip.norm() : 0;
        break;
      case PA_INCREMENTAL_SLIP_X:
        retVal = pinfo->isCaptured() ? pinfo->_incremental_slip(0) : 0;
        break;
      case PA_INCREMENTAL_SLIP_Y:
        retVal = pinfo->isCaptured() ? pinfo->_incremental_slip(1) : 0;
        break;
      case PA_INCREMENTAL_SLIP_Z:
        retVal = pinfo->isCaptured() ? pinfo->_incremental_slip(2) : 0;
        break;
      case PA_ACCUMULATED_SLIP:
        retVal = pinfo->_accumulated_slip;
        break;
      case PA_FORCE_X:
        retVal = pinfo->_contact_force(0);
        break;
      case PA_FORCE_Y:
        retVal = pinfo->_contact_force(1);
        break;
      case PA_FORCE_Z:
        retVal = pinfo->_contact_force(2);
        break;
      case PA_NORMAL_FORCE_MAG:
        retVal = -pinfo->_contact_force * pinfo->_normal;
        break;
      case PA_NORMAL_FORCE_X:
        retVal = (pinfo->_contact_force * pinfo->_normal) * pinfo->_normal(0);
        break;
      case PA_NORMAL_FORCE_Y:
        retVal = (pinfo->_contact_force * pinfo->_normal) * pinfo->_normal(1);
        break;
      case PA_NORMAL_FORCE_Z:
        retVal = (pinfo->_contact_force * pinfo->_normal) * pinfo->_normal(2);
        break;
      case PA_TANGENTIAL_FORCE_MAG:
      {
        RealVectorValue contact_force_normal((pinfo->_contact_force * pinfo->_normal) *
                                             pinfo->_normal);
        RealVectorValue contact_force_tangential(pinfo->_contact_force - contact_force_normal);
        retVal = contact_force_tangential.norm();
        break;
      }
      case PA_TANGENTIAL_FORCE_X:
        retVal =
            pinfo->_contact_force(0) - (pinfo->_contact_force * pinfo->_normal) * pinfo->_normal(0);
        break;
      case PA_TANGENTIAL_FORCE_Y:
        retVal =
            pinfo->_contact_force(1) - (pinfo->_contact_force * pinfo->_normal) * pinfo->_normal(1);
        break;
      case PA_TANGENTIAL_FORCE_Z:
        retVal =
            pinfo->_contact_force(2) - (pinfo->_contact_force * pinfo->_normal) * pinfo->_normal(2);
        break;
      case PA_FRICTIONAL_ENERGY:
        retVal = pinfo->_frictional_energy;
        break;
      case PA_LAGRANGE_MULTIPLIER:
        retVal = pinfo->_lagrange_multiplier;
        break;
      case PA_MECH_STATUS:
        retVal = pinfo->_mech_status;
        break;
      default:
        mooseError("Unknown PA_ENUM");
    } // switch

  return retVal;
}