Ejemplo n.º 1
0
void MultiCollide(const Triangle &tri0, const Triangle &tri1, const Triangle &tri2, const Triangle &tri3,
					ShadowContext &ctx, int sidx, int firstA, int lastA) {
	//TODO: ulozyc odpowiednio (wektorowo) i liczyc test RayInterval - 4 trojkaty
	Vec3q tnrm[4], tvec0[4], tvec1[4];
	floatq tmul[4], zero(0.0f), one(1.0f);

	tri0.Prepare(ctx, tnrm[0], tvec0[0], tvec1[0], tmul[0]);
	tri1.Prepare(ctx, tnrm[1], tvec0[1], tvec1[1], tmul[1]);
	tri2.Prepare(ctx, tnrm[2], tvec0[2], tvec1[2], tmul[2]);
	tri3.Prepare(ctx, tnrm[3], tvec0[3], tvec1[3], tmul[3]);

	for(int q = firstA; q <= lastA; q++) {
		Vec3q dir = ctx.rayDir[q];
		floatq distance = ctx.distance[q];

		floatq idet[4] = { Inv(dir | tnrm[0]), Inv(dir | tnrm[1]), Inv(dir | tnrm[2]), Inv(dir | tnrm[3]) };
		floatq dist[4] = { idet[0] * tmul[0], idet[1] * tmul[1], idet[2] * tmul[2], idet[3] * tmul[3] };

		floatq v[4] = {
			(dir | tvec0[0]) * idet[0],
			(dir | tvec0[1]) * idet[1],
			(dir | tvec0[2]) * idet[2],
			(dir | tvec0[3]) * idet[3],
		};
		floatq u[4] = {
			(dir | tvec1[0]) * idet[0],
			(dir | tvec1[1]) * idet[1],
			(dir | tvec1[2]) * idet[2],
			(dir | tvec1[3]) * idet[3],
		};

		f32x4b test[4] = {
			Min(u[0], v[0]) >= zero && u[0] + v[0] <= one,
			Min(u[1], v[1]) >= zero && u[1] + v[1] <= one,
			Min(u[2], v[2]) >= zero && u[2] + v[2] <= one,
			Min(u[3], v[3]) >= zero && u[3] + v[3] <= one,
		};
		
		
		test[0] = test[0] /*&& idet[0] > zero*/ && dist[0] >= zero;
		test[1] = test[1] /*&& idet[1] > zero*/ && dist[1] >= zero;
		test[2] = test[2] /*&& idet[2] > zero*/ && dist[2] >= zero;
		test[3] = test[3] /*&& idet[3] > zero*/ && dist[3] >= zero;
		
		f32x4 minDist = distance;
		minDist = Condition(test[0] && dist[0] < minDist, dist[0], minDist);
		minDist = Condition(test[1] && dist[1] < minDist, dist[1], minDist);
		minDist = Condition(test[2] && dist[2] < minDist, dist[2], minDist);
		minDist = Condition(test[3] && dist[3] < minDist, dist[3], minDist);

		test[0] = test[0] && dist[0] <= minDist;
		test[1] = test[1] && dist[1] <= minDist;
		test[2] = test[2] && dist[2] <= minDist;
		test[3] = test[3] && dist[3] <= minDist;

		ctx.distance[q] = minDist;
	}
}
Ejemplo n.º 2
0
Scene::Scene()
    :   m_AmbientLight(0)
{
#if 0
#if 1
    for (int i=0; i < 100; i++) {
        DefaultShader *ds = new DefaultShader;
        Sphere *s = new Sphere(Vector3d(Libvec::Random(-50, 50), Libvec::Random(-50, 50), Libvec::Random(-50, 50)), Libvec::Random(1, 20));
        ds->SetDiffuseColor(colorf::RandColor());
        ds->SetShinyness(0.0f);
        s->SetShader(ShaderPtr(ds));
        s->Prepare();
        m_DrawableList.push_back(s);
    }
#endif

    Sphere *s = new Sphere(Vector3d(0.0, 0.0, 0.0), 50.0);
    {
        DefaultShader *ds = new DefaultShader;
        ds->SetShinyness(0.0f);
        s->SetShader(ShaderPtr(ds));
        s->Prepare();
    }
    m_DrawableList.push_back(s);

    Plane *p = new Plane(Ray(Vector3d(0.0, 0.0, -50.0), Vector3d(0.0, 0.0, 1.0)));
    {
        DefaultShader *ds = new DefaultShader;
        ds->SetShinyness(0.2f);
        p->SetShader(ShaderPtr(ds));
        p->Prepare();
    }
    m_DrawableList.push_back(p);

    p = new Plane(Ray(Vector3d(-50.0, 0.0, 0.0), Vector3d(1.0, 0.0, 0.0)));
    {
        DefaultShader *ds = new DefaultShader;
        ds->SetShinyness(0.0f);
        p->SetShader(ShaderPtr(ds));
        p->Prepare();
    }
    m_DrawableList.push_back(p);

    m_SimpleLightList.push_back(new SimpleLight(Vector3d(0.0, 0.0, 100.0), colorf(1.0, 0.0, 0.0), 100));
    m_SimpleLightList.push_back(new SimpleLight(Vector3d(100.0, 0.0, 5.0), colorf(0.0, 1.0, 0.0), 100));
    m_SimpleLightList.push_back(new SimpleLight(Vector3d(0.0, 100.0, 5.0), colorf(0.0, 0.0, 1.0), 100));
    m_SimpleLightList.push_back(new SimpleLight(Vector3d(0.0, 60.0, 60.0), colorf(1.0, 1.0, 1.0), 100));
#endif
#if 0
    m_AmbientLight = colorf(0.0f, 0.0f, 0.0f);
    {
        Sphere *s = new Sphere(Vector3d(10.0, 10.0, 10.0), 8.0);
        {
            DefaultShader *ds = new DefaultShader;
            ds->SetShinyness(0.8f);
            s->SetShader(ShaderPtr(ds));
            s->Prepare();
        }
        m_DrawableList.push_back(s);
    }

    // bottom
    {
        Plane *p = new Plane(Ray(Vector3d(0.0, 0.0, 0.0), Vector3d(0.0, 0.0, 1.0)));
        DefaultShader *ds = new DefaultShader;
        ds->SetDiffuseColor(colorf(1.0, 0.2, 0.2));
        ds->SetShinyness(0.5f);
        p->SetShader(ShaderPtr(ds));
        p->Prepare();
        m_DrawableList.push_back(p);
    }
    {
        Plane *p = new Plane(Ray(Vector3d(0.0, 0.0, 0.0), Vector3d(0.0, 1.0, 0.0)));
        DefaultShader *ds = new DefaultShader;
        ds->SetDiffuseColor(colorf(0.2, 1.0, 0.2));
        ds->SetShinyness(0.5f);
        p->SetShader(ShaderPtr(ds));
        p->Prepare();
        m_DrawableList.push_back(p);
    }
    // back
    {
        Plane *p = new Plane(Ray(Vector3d(0.0, 0.0, 0.0), Vector3d(1.0, 0.0, 0.0)));
        DefaultShader *ds = new DefaultShader;
        ds->SetDiffuseColor(colorf(0.2, 0.2, 1.0));
        ds->SetShinyness(0.5f);
        p->SetShader(ShaderPtr(ds));
        p->Prepare();
        m_DrawableList.push_back(p);
    }

//  m_SimpleLightList.push_back(new SimpleLight(Vector3d(1.0, 1.0, 100.0), colorf(1.0, 0.0, 0.0), 100));
//  m_SimpleLightList.push_back(new SimpleLight(Vector3d(100.0, 1.0, 5.0), colorf(0.0, 1.0, 0.0), 100));
//  m_SimpleLightList.push_back(new SimpleLight(Vector3d(1.0, 100.0, 5.0), colorf(0.0, 0.0, 1.0), 100));
    m_SimpleLightList.push_back(new SimpleLight(Vector3d(20.0, 10.0, 20), colorf(1.0, 1.0, 1.0), 100));
#endif

#if 1
    m_AmbientLight = colorf(0.0f, 0.0f, 0.2f);
    if (0) {
        Triangle *t = new Triangle(Vector3d(0.0, 0.0, 10.0), Vector3d(20.0, 0.0, 0.0), Vector3d(0.0, 20.0, 0.0));
        DefaultShader *ds = new DefaultShader;
        ds->SetDiffuseColor(colorf(0.2, 0.2, 1.0));
        ds->SetShinyness(0.5f);
        t->SetShader(ShaderPtr(ds));
        t->Prepare();
        m_DrawableList.push_back(t);
    }
    if (1) {
        Plane *p = new Plane(Ray(Vector3d(0.0, 0.0, -3.0), Vector3d(0.0, 0.0, 1.0)));
        DefaultShader *ds = new DefaultShader;
        ds->SetDiffuseColor(colorf(1.0, 0.0, 0.0));
        ds->SetShinyness(0.2f);
        p->SetShader(ShaderPtr(ds));
        p->Prepare();
        m_DrawableList.push_back(p);
    }

//  m_SimpleLightList.push_back(new SimpleLight(Vector3d(1.0, 1.0, 100.0), colorf(1.0, 0.0, 0.0), 100));
//  m_SimpleLightList.push_back(new SimpleLight(Vector3d(100.0, 1.0, 5.0), colorf(0.0, 1.0, 0.0), 100));
    m_SimpleLightList.push_back(new SimpleLight(Vector3d(1.0, 100.0, 5.0), colorf(0.0, 0.0, 1.0), 100));
//  m_SimpleLightList.push_back(new SimpleLight(Vector3d(20.0, 10.0, 20), colorf(1.0, 1.0, 1.0), 100));
#endif

    if (0) {
        MeshDrawable *md = LoadMesh("resources/cbox.obj");

        DefaultShader *ds = new DefaultShader;
        ds->SetDiffuseColor(colorf(1.0, 1.0, 0.0));
        ds->SetShinyness(0.0f);
        md->SetShader(ShaderPtr(ds));
        md->Prepare();
        m_DrawableList.push_back(md);
    }
    if (1) {
        MeshDrawable *md = LoadMesh("resources/dude.obj");

        DefaultShader *ds = new DefaultShader;
        ds->SetDiffuseColor(colorf(1.0, 1.0, 0.0));
        ds->SetShinyness(0.0f);
//          DebugShader *ds = new DebugShader;
//          ds->SetMode(DebugShader::MODE_NORMAL);
        md->SetShader(ShaderPtr(ds));
        md->Prepare();
        m_DrawableList.push_back(md);
    }
    if (0) {
        MeshDrawable *md = LoadMesh("resources/plane.obj");
        DefaultShader *ds = new DefaultShader;
        ds->SetDiffuseColor(colorf(0.0, 0.0, 1.0));
        ds->SetShinyness(0.0f);
        md->SetShader(ShaderPtr(ds));
        md->Prepare();
        m_DrawableList.push_back(md);
    }
    if (0) {
        MeshDrawable *md = LoadMesh("resources/csphere.obj");
        DefaultShader *ds = new DefaultShader;
        ds->SetDiffuseColor(colorf(0.0, 0.0, 1.0));
        ds->SetShinyness(0.0f);
        md->SetShader(ShaderPtr(ds));
        md->Prepare();
        m_DrawableList.push_back(md);
    }
    if (0) {
        MeshDrawable *md = LoadMesh("resources/blob.obj");
        DefaultShader *ds = new DefaultShader;
        ds->SetDiffuseColor(colorf(1.0, 0.5, 0.5));
        ds->SetShinyness(0.0f);
        md->SetShader(ShaderPtr(ds));
        md->Prepare();
        m_DrawableList.push_back(md);
    }
    if (0) {
        MeshDrawable *md = LoadMesh("resources/lerp.obj");
        DebugShader *ds = new DebugShader;
        ds->SetMode(DebugShader::MODE_NORMAL);
        md->SetShader(ShaderPtr(ds));
        md->Prepare();
        m_DrawableList.push_back(md);
    }

//  m_SimpleLightList.push_back(new SimpleLight(Vector3d(0.0, 0.0, 20), colorf(1.0, 1.0, 1.0), 100));

    m_Camera = Libvec::Vector3d(2.0f, 2.0f, 2.0f);
    m_SimpleLightList.push_back(new SimpleLight(Vector3d(1.0f, 4.0f, 7.0f), colorf(0.5, 1.0, 0.5), 100));
//  m_Camera = Libvec::Vector3d(80.0f, 80.0f, 10.0f);

    m_Target = Libvec::Vector3d(0.0f, 0.0f, 0.0f);
}
Ejemplo n.º 3
0
void MultiCollide(const Triangle &tri0, const Triangle &tri1, const Triangle &tri2, const Triangle &tri3,
					PrimaryContext &ctx, int sidx, int firstA, int lastA) {
	//TODO: ulozyc odpowiednio (wektorowo) i liczyc test RayInterval - 4 trojkaty
	Vec3q tnrm[4], tvec0[4], tvec1[4];
	floatq tmul[4], zero(0.0f), one(1.0f);
	i32x4 idx[4] = { sidx, sidx + 1, sidx + 2, sidx + 3 };

/*	{
		Vec3q ttnrm(	floatq(tri0.plane.x, tri1.plane.x, tri2.plane.x, tri3.plane.x),
						floatq(tri0.plane.y, tri1.plane.y, tri2.plane.y, tri3.plane.y),
						floatq(tri0.plane.z, tri1.plane.z, tri2.plane.z, tri3.plane.z) );
		Vec3q tvec = ctx.rayOrigin - Vec3q(
				floatq(tri0.a.x, tri1.a.x, tri2.a.x, tri3.a.x),
				floatq(tri0.a.y, tri1.a.y, tri2.a.y, tri3.a.y),
				floatq(tri0.a.z, tri1.a.z, tri2.a.z, tri3.a.z) );
		Vec3q tba(	floatq(tri0.ba.x, tri1.ba.x, tri2.ba.x, tri3.ba.x),
					floatq(tri0.ba.y, tri1.ba.y, tri2.ba.y, tri3.ba.y),
					floatq(tri0.ba.z, tri1.ba.z, tri2.ba.z, tri3.ba.z) );
		Vec3q tca(	floatq(tri0.ca.x, tri1.ca.x, tri2.ca.x, tri3.ca.x),
					floatq(tri0.ca.y, tri1.ca.y, tri2.ca.y, tri3.ca.y),
					floatq(tri0.ca.z, tri1.ca.z, tri2.ca.z, tri3.ca.z) );
		floatq tit0(tri0.it0, tri1.it0, tri2.it0, tri3.it0);
		Vec3q ttvec0 = (tba ^ tvec) * tit0;
		Vec3q ttvec1 = (tvec ^ tca) * tit0;
		floatq ttmul = -(tvec | ttnrm);
		for(int k = 0; k < 4; k++) {
			tnrm[k] = Vec3q(ttnrm.x[k], ttnrm.y[k], ttnrm.z[k]);
			tvec0[k] = Vec3q(ttvec0.x[k], ttvec0.y[k], ttvec0.z[k]);
			tvec1[k] = Vec3q(ttvec1.x[k], ttvec1.y[k], ttvec1.z[k]);
			tmul[k] = ttmul[k];
		}
	} */

	tri0.Prepare(ctx, tnrm[0], tvec0[0], tvec1[0], tmul[0]);
	tri1.Prepare(ctx, tnrm[1], tvec0[1], tvec1[1], tmul[1]);
	tri2.Prepare(ctx, tnrm[2], tvec0[2], tvec1[2], tmul[2]);
	tri3.Prepare(ctx, tnrm[3], tvec0[3], tvec1[3], tmul[3]);

	for(int q = firstA; q <= lastA; q++) {
		Vec3q dir = ctx.rayDir[q];
		floatq distance = ctx.distance[q];
		i32x4 triIds = ctx.triIds[q];

		floatq idet[4] = { Inv(dir | tnrm[0]), Inv(dir | tnrm[1]), Inv(dir | tnrm[2]), Inv(dir | tnrm[3]) };
		floatq dist[4] = { idet[0] * tmul[0], idet[1] * tmul[1], idet[2] * tmul[2], idet[3] * tmul[3] };
		Vec2q barycentric = ctx.barycentric[q];
		Vec3q normals = ctx.normals[q];

		floatq v[4] = {
			(dir | tvec0[0]) * idet[0],
			(dir | tvec0[1]) * idet[1],
			(dir | tvec0[2]) * idet[2],
			(dir | tvec0[3]) * idet[3],
		};
		floatq u[4] = {
			(dir | tvec1[0]) * idet[0],
			(dir | tvec1[1]) * idet[1],
			(dir | tvec1[2]) * idet[2],
			(dir | tvec1[3]) * idet[3],
		};

		f32x4b test[4] = {
			Min(u[0], v[0]) >= zero && u[0] + v[0] <= one,
			Min(u[1], v[1]) >= zero && u[1] + v[1] <= one,
			Min(u[2], v[2]) >= zero && u[2] + v[2] <= one,
			Min(u[3], v[3]) >= zero && u[3] + v[3] <= one,
		};
		
		
		test[0] = test[0] /*&& idet[0] > zero*/ && dist[0] >= zero;
		test[1] = test[1] /*&& idet[1] > zero*/ && dist[1] >= zero;
		test[2] = test[2] /*&& idet[2] > zero*/ && dist[2] >= zero;
		test[3] = test[3] /*&& idet[3] > zero*/ && dist[3] >= zero;
		
		f32x4 minDist = distance;
		minDist = Condition(test[0] && dist[0] < minDist, dist[0], minDist);
		minDist = Condition(test[1] && dist[1] < minDist, dist[1], minDist);
		minDist = Condition(test[2] && dist[2] < minDist, dist[2], minDist);
		minDist = Condition(test[3] && dist[3] < minDist, dist[3], minDist);

		test[0] = test[0] && dist[0] <= minDist;
		test[1] = test[1] && dist[1] <= minDist;
		test[2] = test[2] && dist[2] <= minDist;
		test[3] = test[3] && dist[3] <= minDist;

		ctx.distance[q] = minDist;
		ctx.normals[q] =
			Condition(test[0], tnrm[0],
			Condition(test[1], tnrm[1],
			Condition(test[2], tnrm[2],
			Condition(test[3], tnrm[3], normals))));
		ctx.triIds[q] =
			Condition(i32x4b(test[0]), idx[0],
			Condition(i32x4b(test[1]), idx[1],
			Condition(i32x4b(test[2]), idx[2],
			Condition(i32x4b(test[3]), idx[3], triIds))));
		ctx.barycentric[q] =
			Condition(test[0], Vec2q(u[0], v[0]),
			Condition(test[1], Vec2q(u[1], v[1]),
			Condition(test[2], Vec2q(u[2], v[2]),
			Condition(test[3], Vec2q(u[3], v[3]), barycentric))));
	}
}
Ejemplo n.º 4
0
void MultiCollide(const Triangle &tri0, const Triangle &tri1, const Triangle &tri2, const Triangle &tri3,
					SecondaryContext &ctx, int sidx, int firstA, int lastA) {
	//TODO: ulozyc odpowiednio (wektorowo) i liczyc test RayInterval - 4 trojkaty
	Vec3q tnrm[4], ta[4], tca[4], tba[4];
	floatq tit0[4], zero(0.0f), one(1.0f);
	i32x4 idx(sidx + 0, sidx + 1, sidx + 2, sidx + 3);

	tri0.Prepare(ctx, tnrm[0], ta[0], tba[0], tca[0], tit0[0]);
	tri1.Prepare(ctx, tnrm[1], ta[1], tba[1], tca[1], tit0[1]);
	tri2.Prepare(ctx, tnrm[2], ta[2], tba[2], tca[2], tit0[2]);
	tri3.Prepare(ctx, tnrm[3], ta[3], tba[3], tca[3], tit0[3]);

	for(int q = firstA; q <= lastA; q++) {
		Vec3q dir = ctx.rayDir[q];
		Vec3q origin = ctx.rayOrigin[q];
		floatq distance = ctx.distance[q];
		i32x4 triIds = ctx.triIds[q];

		floatq idet[4] = { Inv(dir | tnrm[0]), Inv(dir | tnrm[1]), Inv(dir | tnrm[2]), Inv(dir | tnrm[3]) };
		Vec3q tvec[4] = { origin - ta[0], origin - ta[1], origin - ta[2], origin - ta[3] };
		floatq dist[4] = {
			-idet[0] * (tvec[0] | tnrm[0]),
			-idet[1] * (tvec[1] | tnrm[1]),
			-idet[2] * (tvec[2] | tnrm[2]),
			-idet[3] * (tvec[3] | tnrm[3]) };
		Vec2q barycentric = ctx.barycentric[q];
		Vec3q normals = ctx.normals[q];

		Vec3q tvec0[4] = { tba[0] ^ tvec[0], tba[1] ^ tvec[1], tba[2] ^ tvec[2], tba[3] ^ tvec[3] };
		Vec3q tvec1[4] = { tvec[0] ^ tca[0], tvec[1] ^ tca[1], tvec[2] ^ tca[2], tvec[3] ^ tca[3] };
		idet[0] *= tit0[0];
		idet[1] *= tit0[1];
		idet[2] *= tit0[2];
		idet[3] *= tit0[3];

		floatq v[4] = {
			(dir | tvec0[0]) * idet[0],
			(dir | tvec0[1]) * idet[1],
			(dir | tvec0[2]) * idet[2],
			(dir | tvec0[3]) * idet[3],
		};
		floatq u[4] = {
			(dir | tvec1[0]) * idet[0],
			(dir | tvec1[1]) * idet[1],
			(dir | tvec1[2]) * idet[2],
			(dir | tvec1[3]) * idet[3],
		};

		f32x4b test[4] = {
			Min(u[0], v[0]) >= zero && u[0] + v[0] <= one,
			Min(u[1], v[1]) >= zero && u[1] + v[1] <= one,
			Min(u[2], v[2]) >= zero && u[2] + v[2] <= one,
			Min(u[3], v[3]) >= zero && u[3] + v[3] <= one,
		};
		
		
		test[0] = test[0] && /*idet[0] > zero &&*/ dist[0] >= zero;
		test[1] = test[1] && /*idet[1] > zero &&*/ dist[1] >= zero;
		test[2] = test[2] && /*idet[2] > zero &&*/ dist[2] >= zero;
		test[3] = test[3] && /*idet[3] > zero &&*/ dist[3] >= zero;
		
		f32x4 minDist = distance;
		minDist = Condition(test[0] && dist[0] < minDist, dist[0], minDist);
		minDist = Condition(test[1] && dist[1] < minDist, dist[1], minDist);
		minDist = Condition(test[2] && dist[2] < minDist, dist[2], minDist);
		minDist = Condition(test[3] && dist[3] < minDist, dist[3], minDist);

		test[0] = test[0] && dist[0] <= minDist;
		test[1] = test[1] && dist[1] <= minDist;
		test[2] = test[2] && dist[2] <= minDist;
		test[3] = test[3] && dist[3] <= minDist;

		ctx.distance[q] = minDist;
		ctx.normals[q] =
			Condition(test[0], tnrm[0],
			Condition(test[1], tnrm[1],
			Condition(test[2], tnrm[2],
			Condition(test[3], tnrm[3], normals))));
		ctx.triIds[q] =
			Condition(i32x4b(test[0]), idx[0],
			Condition(i32x4b(test[1]), idx[1],
			Condition(i32x4b(test[2]), idx[2],
			Condition(i32x4b(test[3]), idx[3], triIds))));
		ctx.barycentric[q] =
			Condition(test[0], Vec2q(u[0], v[0]),
			Condition(test[1], Vec2q(u[1], v[1]),
			Condition(test[2], Vec2q(u[2], v[2]),
			Condition(test[3], Vec2q(u[3], v[3]), barycentric))));
	}
}