Ejemplo n.º 1
0
/*! Draw connected line segments in page coordinates (pts), with options to close
 * /and/or fill the curve, or to set the curve as a clip area.
 */
void PSpage::polyline(VecDoub &x, VecDoub &y, Int close, Int fill, Int clip)
{
	Int i,n = min(x.size(),y.size());
	fprintf(PSpage::PLT,"np %g %g mt\n",x[0],y[0]);
	for (i=1;i<n;i++) fprintf(PSpage::PLT,"%g %g lt\n",x[i],y[i]);
	if (close || fill || clip) fprintf(PSpage::PLT,"cp ");
	if (fill) fprintf(PSpage::PLT,"fi\n");
	else if (clip) fprintf(PSpage::PLT,"clip\n");
	else fprintf(PSpage::PLT,"st\n");
}
Ejemplo n.º 2
0
VecDoub SphericalPolarToCartesian(const VecDoub& Spherical){
    VecDoub SPolar = {Spherical[0]*sin(Spherical[2])*cos(Spherical[1]),
    					Spherical[0]*sin(Spherical[2])*sin(Spherical[1]),
    					Spherical[0]*cos(Spherical[2])};
    if(Spherical.size()==3)	return SPolar;
    return SPolar;
}
Ejemplo n.º 3
0
std::vector<VecDoub> EquatorialToGalacticwithErrors(const VecDoub &Equatorial,
	const VecDoub &Errors){
	//alpha, dec, s => l,b,s
	double alpha = Equatorial[0], delta = Equatorial[1];
	double cd = cos(delta), sd = sin(delta);
	double dalpha = alpha-RA_GP;
	double b=asin(sdGP*sd+cdGP*cd*cos(dalpha));
	double l=lCP-atan2(cd*sin(alpha-RA_GP),cdGP*sd-sdGP*cd*cos(dalpha));
	if(l<0.)l+=2.*PI;
	if(Equatorial.size()==3){	std::vector<VecDoub> Galactic {{l,b,Equatorial[2]},Errors};
								return Galactic;}
	else{
		//vlos, ma_cos(d), md => vlos, ml_cos(b), mb
		double cb = cos(b), sb = sin(b);
		double A11=(sdGP*cd-cdGP*sd*cos(dalpha))/cb;
		double A12=-cdGP*sin(dalpha)/cb;
		double A21,A22;
		double dl = lCP-l;
		if(fabs(cos(dl))>fabs(sin(dl))){
			A21=(sd*sin(dalpha)-sb*sin(dl)*A11)/cos(dl);
			A22=-(cos(dalpha)+sb*sin(dl)*A12)/cos(dl);
		}else{
			A21=(cdGP*cd+sdGP*sd*cos(dalpha)+sb*cos(dl)*A11)/sin(dl);
			A22=(sdGP*sin(dalpha)+sb*cos(dl)*A12)/sin(dl);
		}

		std::vector<VecDoub> Galactic {
		{l,b,Equatorial[2],Equatorial[3],
		A21*Equatorial[5]+A22*Equatorial[4],A11*Equatorial[5]+A12*Equatorial[4]}
		,{Errors[0],Errors[1],Errors[2],Errors[3],
		sqrt(A21*A21*Errors[5]*Errors[5]+A22*A22*Errors[4]*Errors[4]),
		sqrt(A11*A11*Errors[5]*Errors[5]+A12*A12*Errors[4]*Errors[4])}};
		return Galactic;
		}
}
Ejemplo n.º 4
0
VecDoub EquatorialToGalactic(const VecDoub &Equatorial){
	//alpha, dec, s => l,b,s
	double alpha = Equatorial[0], delta = Equatorial[1];
	double cd = cos(delta), sd = sin(delta);
	double dalpha = alpha-RA_GP;
	double b=asin(sdGP*sd+cdGP*cd*cos(dalpha));
	double l=lCP-atan2(cd*sin(alpha-RA_GP),cdGP*sd-sdGP*cd*cos(dalpha));
	if(l<0.)l+=2.*PI;
	VecDoub Galactic {l,b,Equatorial[2]};
	if(Equatorial.size()==3)return Galactic;
	else{
		//vlos, ma_cos(d), md => vlos, ml_cos(b), mb
		double cb = cos(b), sb = sin(b);
		double dl = lCP-l;
		double A11=(sdGP*cd-cdGP*sd*cos(dalpha))/cb;
		double A12=-cdGP*sin(dalpha)/cb;
		double A21,A22;
		if(fabs(cos(dl))>fabs(sin(dl))){
			A21= (sd*sin(dalpha)-sb*sin(dl)*A11)/cos(dl);
			A22=-(   cos(dalpha)+sb*sin(dl)*A12)/cos(dl);
		}else{
			A21=(cdGP*cd+sdGP*sd*cos(dalpha)+sb*cos(dl)*A11)/sin(dl);
			A22=(sdGP*sin(dalpha)+sb*cos(dl)*A12)/sin(dl);
		}

		VecDoub GalVel {Equatorial[3],A21*Equatorial[5]+A22*Equatorial[4],
						A11*Equatorial[5]+A12*Equatorial[4]};
		for (	VecDoub::iterator it = GalVel.begin();
				it != GalVel.end(); ++it) Galactic.push_back(*it);
		return Galactic;
		}
}
Ejemplo n.º 5
0
VecDoub GalacticToEquatorial(const VecDoub &Galactic){
	//l,b,s => alpha, dec, s
	double l = Galactic[0], b = Galactic[1];
	double cb = cos(b),sb = sin(b);
	double dl = lCP-l;
	double delta=asin(cdGP*cb*cos(-dl)+sb*sdGP);
	double alpha=RA_GP+atan2(cb*sin(dl),sb*cdGP-cb*sdGP*cos(-dl));
	if(alpha>2.*PI)alpha-=2.*PI;
	VecDoub Equatorial {alpha,delta,Galactic[2]};
	if(Galactic.size()==3)return Equatorial;
	else{
		double dalpha = alpha-RA_GP;
		//vlos, ml_cos(b), mb => vlos, ma_cos(d), md
		double cd = cos(delta), sd = sin(delta);
		double A11=(sdGP*cd-cdGP*sd*cos(dalpha))/cb;
		double A12=-cdGP*sin(dalpha)/cb;
		double A21,A22;
		if(fabs(cos(dl))>fabs(sin(dl))){
			A21=(sd*sin(dalpha)-sb*sin(dl)*A11)/cos(dl);
			A22=-(cos(dalpha)+sb*sin(dl)*A12)/cos(dl);
		}else{
			A21=(cdGP*cd+sdGP*sd*cos(dalpha)+sb*cos(dl)*A11)/sin(dl);
			A22=(sdGP*sin(dalpha)+sb*cos(dl)*A12)/sin(dl);
		}
		double Prod = A11*A22-A12*A21;
		VecDoub EqVel {Galactic[3],(A11*Galactic[4]-A21*Galactic[5])/Prod,
						(A22*Galactic[5]-A12*Galactic[4])/Prod};
		for (	VecDoub::iterator it = EqVel.begin();
				it != EqVel.end(); ++it) Equatorial.push_back(*it);
		return Equatorial;
		}
}
Ejemplo n.º 6
0
VecDoub CartesianToGalactic(const VecDoub &Cartesian,
									const VecDoub& SolarPosition){
	// X,Y,Z->l,b,s
	double tmp1 = SolarPosition[0]-Cartesian[0];
	double tmp2 = -Cartesian[1];
	double tmp3 = Cartesian[2]-SolarPosition[1];
	// Need to rotate to account for the height of the Sun above the plane
	double h = sqrt(SolarPosition[0]*SolarPosition[0]
	                +SolarPosition[1]*SolarPosition[1]);
	double ct = SolarPosition[0]/h, st = SolarPosition[1]/h;

	double x = tmp1*ct-tmp3*st, z = tmp1*st+tmp3*ct;

	double Distance = norm<double>({x,tmp2,z});

	VecDoub Galactic {	atan2(tmp2,x),
						asin(z/Distance),
						Distance};
	if(Cartesian.size()==3)return Galactic;
	// vx,vy,vz -> vlos,mu_lcos(b),mu_b
	// in units km/s -> km/s mas/yr
	else{ 	double vx=-Cartesian[3]*ct-Cartesian[5]*st-SolarPosition[2];
			double vy = -Cartesian[4]-SolarPosition[3];
			double vz = Cartesian[5]*ct+Cartesian[3]*st-SolarPosition[4];
			double 	cl = cos(Galactic[0]), sl = sin(Galactic[0]),
			cb = cos(Galactic[1]), sb = sin(Galactic[1]);
			VecDoub GalVel {vx*cl*cb+vy*sl*cb+vz*sb,(-vx*sl+vy*cl)/(PM_Const*Distance),
				        	(-vx*cl*sb-vy*sl*sb+vz*cb)/(PM_Const*Distance)};
			for (	VecDoub::iterator it = GalVel.begin();
					it != GalVel.end(); ++it) Galactic.push_back(*it);
			return Galactic;
		}
}
Ejemplo n.º 7
0
// ======================================================================================
// Galactic <==> Cartesian
VecDoub GalacticToCartesian(const VecDoub &Galactic,
								      const VecDoub& SolarPosition){
	// l,b,s->X,Y,Z
	double 	cl = cos(Galactic[0]), sl = sin(Galactic[0]),
			cb = cos(Galactic[1]), sb = sin(Galactic[1]);

	double x = Galactic[2]*cb*cl;
	double z = Galactic[2]*sb;
	// Need to rotate to account for the height of the Sun above the plane
	double h = sqrt(SolarPosition[0]*SolarPosition[0]
	                +SolarPosition[1]*SolarPosition[1]);
	double ct = SolarPosition[0]/h, st = SolarPosition[1]/h;

	VecDoub Cartesian {	SolarPosition[0]-ct*x-st*z,
						-Galactic[2]*cb*sl,
						-st*x+ct*z+SolarPosition[1]};
	if(Galactic.size()==3)return Cartesian;
	// vlos,mu_lcos(b),mu_b -> vx,vy,vz
	// in units km/s, mas/yr -> km/s
	else{
		double vl = PM_Const*Galactic[2]*Galactic[4];
		double vb = PM_Const*Galactic[2]*Galactic[5];
		double tmp = cb*Galactic[3]-sb*vb;

		double vx = cl*tmp-sl*vl+SolarPosition[2];
		double vy = sl*tmp+cl*vl+SolarPosition[3];
		double vz = sb*Galactic[3]+cb*vb+SolarPosition[4];
		VecDoub CartVel{-(vx*ct+vz*st),-vy,-vx*st+vz*ct};
	  	for (	VecDoub::iterator it = CartVel.begin();
				it != CartVel.end(); ++it) Cartesian.push_back(*it);
			return Cartesian;
	}
}
Ejemplo n.º 8
0
VecDoub CartesianToSphericalPolar(const VecDoub& Cartesian){
	double r = sqrt(Cartesian[0]*Cartesian[0]+Cartesian[1]*Cartesian[1]+Cartesian[2]*Cartesian[2]);
    VecDoub SPolar = {r,atan2(Cartesian[1],Cartesian[0]),acos(Cartesian[2]/r)};
    if(Cartesian.size()==3)	return SPolar;
    SPolar.push_back((Cartesian[3]*cos(SPolar[1])+Cartesian[4]*sin(SPolar[1]))*sin(SPolar[2])+cos(SPolar[2])*Cartesian[5]);
    SPolar.push_back(-Cartesian[3]*sin(SPolar[1])+Cartesian[4]*cos(SPolar[1]));
    SPolar.push_back((Cartesian[3]*cos(SPolar[1])+Cartesian[4]*sin(SPolar[1]))*cos(SPolar[2])-sin(SPolar[2])*Cartesian[5]);
    return SPolar;
}
/*
 Utility method used by the Spectral method to find
 which node, when moved gives the maximum change in the
 Modularity value.
 */
void maxModularity(double &qmax) {

    int N = si.size();

    VecDoub qstored(N);
    for(int i=0; i<N; i++)
        qstored[i]     = 0;


    double Q = 0.0;

    for(int k=0; k<N; k++) {

        if( visited[k] < 1 ) {

            Q          = 0.0;

            deltaModularityMax( k, Q );

            qstored[k] = Q;

        }
    }

    qmax        =  0;//qstored(0);
    int ind_max =  -1;//0;
    for(int i=0; i<N; i++) {

        if( qstored[i] > qmax ) {
            qmax    = qstored[i];
            ind_max = i;
        }

    }


    for(int i=0; i<N; i++) {

        if( i != ind_max )
            ;
        else {
            visited[i] = 1;
            if( si[i] == 1 ) {
                si[i] = -1;
                SI[i][0] = 0;
                SI[i][1] = 1;
            } else {
                si[i] = 1;
                SI[i][0] = 1;
                SI[i][1] = 0;
            }
        }
    }


}
Ejemplo n.º 10
0
// ============================================================================
// Dehnen Potential
// ============================================================================
double Dehnen::Phi(const VecDoub &x){
	/* potential at Cartesian x */
	assert(x.size()==3);
	double r = norm<double>(x);
	double chi = pow(r/rs,1./alpha);
	chi=chi/(1+chi);
	return -conv::FPG*rhoS*rs*rs*alpha*
	(rs/r*incomplete_beta(alpha*(3-gamma),alpha*(beta-3),chi)
	+incomplete_beta(alpha*(beta-2),alpha*(2-gamma),1-chi));
}
Ejemplo n.º 11
0
VecDoub Dehnen::Forces(const VecDoub &x){
 	/* Forces at Cartesian x */
 	assert(x.size()==3);
 	double r = norm<double>(x);
	double chi = pow(r/rs,1./alpha);
	double dchi = chi/r/alpha/(1+chi)*(1.-chi/(1+chi));
	chi = chi/(1+chi);
	r = -conv::FPG*rhoS*rs*rs*alpha*
	(-rs/r/r*incomplete_beta(alpha*(3-gamma),alpha*(beta-3),chi)
	+rs/r*pow(chi,alpha*(3-gamma)-1)*pow(1-chi,alpha*(beta-3)-1)*dchi
	-pow(1-chi,alpha*(beta-2)-1)*pow(chi,alpha*(2-gamma)-1)*dchi);
 	VecDoub F = x*-r;
 	return F;
}
Ejemplo n.º 12
0
VecDoub PolarToCartesian(const VecDoub& Polar){
	// R,phi,z -> X,Y,Z
	double cp = cos(Polar[1]), sp = sin(Polar[1]);
	VecDoub Cartesian {	Polar[0]*cp,
						Polar[0]*sp,
						Polar[2]};
	if(Polar.size()==3) return Cartesian;
	// vR,vphi,vz -> vx,vy,vz
	else{
		VecDoub CartVel {Polar[3]*cp-Polar[4]*sp,Polar[4]*cp+Polar[3]*sp,Polar[5]};
		for (	VecDoub::iterator it = CartVel.begin();
				it != CartVel.end(); ++it) Cartesian.push_back(*it);
		return Cartesian;
		}
}
Ejemplo n.º 13
0
// ======================================================================================
// Cartesian <==> Polar
VecDoub CartesianToPolar(const VecDoub& Cartesian){
	// X,Y,Z -> R,phi,z
	VecDoub Polar {	sqrt(Cartesian[0]*Cartesian[0]+Cartesian[1]*Cartesian[1]),
					atan2(Cartesian[1],Cartesian[0]),
					Cartesian[2]};
	if(Cartesian.size()==3)	return Polar;
	// vx,vy,vz -> vR,vphi,vz
	else{
		double cp = cos(Polar[1]), sp = sin(Polar[1]);
		VecDoub PolarVel {	Cartesian[3]*cp+Cartesian[4]*sp,Cartesian[4]*cp-Cartesian[3]*sp,
					        Cartesian[5]};
		for (	VecDoub::iterator it = PolarVel.begin();
				it != PolarVel.end(); ++it) Polar.push_back(*it);
		return Polar;
		}
}
Ejemplo n.º 14
0
/*
 Utility method used by the Spectral method fine-tune an initial
 given community split.
 */
void modifySplit( double tol, int countmax ) {

    double qmax  = 0;
    double qold  = 0;
    int count    = 0;
    int Ng       = si.size();

    visited.resize(Ng);

    VecDoub Gsi(Ng);
    MatDoub GSI(Ng,2);

    for(int i=0; i<Ng; i++) {
        Gsi[i]    = si[i];
        GSI[i][0] = SI[i][0];
        GSI[i][1] = SI[i][1];
    }

    maxModularity( qmax );

    while( count < countmax ) {

        if( qmax > qold ) {
            for(int i=0; i<Ng; i++) {
                Gsi[i]    = si[i];
                GSI[i][0] = SI[i][0];
                GSI[i][1] = SI[i][1];
            }
        }

        qold = qmax;
        qmax = 0.0;

        maxModularity(qmax);

        count++;

    }

    for(int i=0; i<Ng; i++) {
        si[i]    = Gsi[i];
        SI[i][0] = GSI[i][0];
        SI[i][1] = GSI[i][1];
    }

}
Ejemplo n.º 15
0
/*
 The change in Modularity used during the fine-tuning
 method; where node si_i is moved from one community to
 the other: if si^old_i = +-1 => si^new_i = -+1
 deltaQ = deltaQ^new - deltaQ^old
        = Sum_ij { Big_ij * si^new_i * si^new_j }
        - Sum_ij { Big_ij * si^old_i * si^old_j }
        = Sum_(i!=k,j!=k) { Bgi_ij * si^new_i * si^new_j
	                    + Sum_(j!=k) Big_kj * si^new_k * si^new_j
                            + Sum_(i!=k) Big_ik * si^new_i * si^new_k
                            + Big_kk }
        - Sum_(i!=k,j!=k) { Big_ij si^old_i * si^old_j
                            - Sum_(j!=k) Big_kj * si^old_k * si^old_j
	                    - Sum_(i!=k) Big_ik * si^old_i * si^old_k
			    - Big_kk }
        = Sum_(j!=k) { Big_kj * ( si^new_k - si^old_k ) * si^old_j }
	+ Sum_(i!=k) { Big_ik * si^old_i * ( si^new_k - si^old_k ) }
	=  2 * ( si^new_k - si^old_k ) * Sum_(i!=k) { Big_ik * si^old_i }
	= -4 * si^old_k * Sum_(i!=k) { Big_ik * si^old_i }
*/
void deltaModularityMax( int k, double &mod ) {

    mod          = 0;

    int N        = si.size();
    double sumi  = 0.0;

    for(int i=0; i<N; i++) {

        if( i!=k )
            sumi += Bgi[i][k] * si[i];

    }

    mod = -4.0 * si[k] * sumi;


}
Ejemplo n.º 16
0
/*
 The change in Modularity used for the Spectral method.
 deltaQ = Sum_k { Sum_ij { si_ki * Bgi_ij * si_jk } }
*/
void deltaModularity( double &mod ) {

    mod         = 0;

    int N       = si.size();
    double ele  = 0.0;
    double sum  = 0.0;

    MatDoub deltaQ(2,2);
    MatDoub SIt(N,2);

    for(int i=0; i<N; i++) {
        SIt[i][0] = 0;
        SIt[i][1] = 0;
        for(int j=0; j<N; j++) {
            SIt[i][0] += Bgi[i][j] * SI[j][0];
            SIt[i][1] += Bgi[i][j] * SI[j][1];
        }
    }

    for(int i=0; i<2; i++) {
        double sum1 = 0;
        double sum2 = 0;
        for(int j=0; j<N; j++) {
            sum1 += SI[j][0] * SIt[j][0];
            sum2 += SI[j][1] * SIt[j][1];
        }
        deltaQ[i][0] = sum1;
        deltaQ[i][1] = sum2;
    }

    for(int k=0; k<2; k++)
        sum += deltaQ[k][k];

    mod = _norm * sum;

}
Ejemplo n.º 17
0
double Dehnen::Density(const VecDoub& x){
	assert(x.size()==3);
	double r = norm<double>(x)/rs;
	return rhoS*pow(r,-gamma)*pow(1.+pow(r,1./alpha),(gamma-beta)*alpha);

}
Ejemplo n.º 18
0
double Potential_JS::R_E(const VecDoub &x){
	assert(x.size()==6);
	return R_E(H(x),norm<double>({x[0],x[1],x[2]}));
}
Ejemplo n.º 19
0
int main(int argc, char*argv[]){

	#ifdef TORUS
	GalPot Pot("pot/Piffl14.Tpot");
	WrapperTorusPotential TPot(&Pot);
	// GalPot Pot("../Torus/pot/PJM11.Tpot");
	std::cout<<TPot.KapNuOm(8.29)*conv::kpcMyr2kms<<std::endl;
	#else
	Logarithmic Pot(220.,1.,0.9);
	#endif

	VecDoub X(6,1e-4);

	if(argc>2)
		X[0]=atof(argv[2]);
	else
		X[0]=conv::StandardSolarPAUL[0];
	X[2]=0.001;
	X[4]=sqrt(X[0]*-Pot.Forces(X)[0]);
	printVector(X);
	Orbit O(&Pot,1e-8);
	// Fudge
	Actions_AxisymmetricStackel_Fudge AA(&Pot,-30.);

	// Iterative Torus
	#ifdef TORUS
	IterativeTorusMachine Tor(&AA,&Pot,1e-8,5,1e-3);
	#endif

	// Generating Function
	Actions_Genfunc AG(&Pot,"axisymmetric");

	// Average generating Function
	Actions_Genfunc_Average AGav(&Pot,"axisymmetric");

	// uvorb
	uv_orb UV(&Pot,4.,30.,50,50,"example.delta_uv");

	// Cylindrical Adiabatic
	Actions_CylindricalAdiabaticApproximation PAA(&Pot,"example.paa",true,false,4.,30.,15.,100);

	// Spheroidal Adiabatic
	Actions_SpheroidalAdiabaticApproximation SAA(&Pot,"example.saa",true,false,100.,4.,30.,15.,100);

	// Spheroidal Adiabatic
	Actions_StackelFit SF(&Pot,1e-8);

	std::ofstream outfile;
	outfile.open(argv[1]);
	outfile<<"# JR Lz Jz JRJzLz ";
	#ifdef TORUS
	outfile<<"Rperi Rapo Zmax ";
	#endif
	outfile<<"OmR Omp Omz Fudgev1 ItTC O2GF AvGF Fudgev2 CAA SAA Fit\n";
	double VMax = sqrt((Pot.Phi({50.,0.,50.})-Pot.Phi(X))-.5*X[4]*X[4]);
	int number = 500;
	if(argc>3)
		number=atoi(argv[3]);
	VecDoub range = create_log_range(0.03*VMax,0.8*VMax,number);
	int count=0;
	high_resolution_clock::time_point t1 = high_resolution_clock::now();
	for(auto j: range){
		count+=1;
		X[3]=j;
		X[5]=j*.8;
		printVector(X);
		double Torb = Pot.torb(X), tstep=0.204*Torb, tmax=10.*Torb;
		O.integrate(X,tmax,tstep);
		int guess_alpha=1;
		MatDoub FResults,ITResults,GResults,GAvResults,UVResults,PAAResults,SAAResults,FITResults;
		VecDoub Fudge, ITorus, Genfunc, GenfuncAv, uvAct, paaAct, saaAct, fitAct,Energy;
		MatDoub dvdJ_e;
		t1 = high_resolution_clock::now();
		std::vector<nanoseconds> times(8,duration_cast<nanoseconds>(t1-t1));
		for(auto i:O.results()){
			t1 = high_resolution_clock::now();
			Genfunc = AG.actions(i);
			times[2]+=duration_cast<nanoseconds>(high_resolution_clock::now()-t1);GenfuncAv.resize(3);
			VecDoub aa = AG.angles(i);
			GResults.push_back({Genfunc[0],Genfunc[2],aa[0],aa[1],aa[2],aa[3],aa[4],aa[5]});
			Energy.push_back(Pot.H(i));
		}
		VecDoub acts = {columnMean(GResults)[0],Pot.Lz(X),columnMean(GResults)[1],columnMean(GResults)[5],columnMean(GResults)[6],columnMean(GResults)[7]};

		VecDoub GF_SD = columncarefulSD(GResults);
		outfile<<acts[0]<<" "<<acts[1]<<" "<<acts[2]<<" "<<(acts[0]+acts[2])/fabs(acts[1])<<" ";
		#ifdef TORUS
		Actions J;J[0]=acts[0]/conv::kpcMyr2kms;
		J[2]=acts[1]/conv::kpcMyr2kms;J[1]=acts[2]/conv::kpcMyr2kms;
		Torus T; T.AutoFit(J,&TPot,1e-5);
		outfile<<T.minR()<<" "<<T.maxR()<<" "<<" "<<T.maxz()<<" ";
		MatDoub Hess = dOmdJ(J,.1*J,&TPot);
		#endif
		outfile<<acts[3]<<" "<<acts[4]<<" "<<acts[5]<<" "<<carefulSD(Energy)/Mean(Energy)<<" ";

		int N=0;
		for(auto i:O.results()){
			VecDoub ang = AG.angles(i);
			t1 = high_resolution_clock::now();
			Fudge = AA.actions(i,&guess_alpha);
			times[0]+=duration_cast<nanoseconds>(high_resolution_clock::now()-t1);
			VecDoub ang2 = AA.angles(i,&guess_alpha);
			FResults.push_back({Fudge[0]-acts[0],Fudge[2]-acts[2],ang2[0]-ang[0],ang2[1]-ang[1],ang2[2]-ang[2],ang2[3]-ang[3],ang2[4]-ang[4],ang2[5]-ang[5]});
			for(unsigned k=2;k<5;++k){
				if(FResults[N][k]>PI) FResults[N][k] = 2.*PI-FResults[N][k];
				if(FResults[N][k]<-PI) FResults[N][k] = 2.*PI+FResults[N][k];
			}
			t1 = high_resolution_clock::now();
			#ifdef TORUS
			ITorus = Tor.actions(i);
			times[1]+=duration_cast<nanoseconds>(high_resolution_clock::now()-t1);
			ITResults.push_back({ITorus[0]-acts[0],ITorus[2]-acts[2],ITorus[6]-ang[0],ITorus[7]-ang[1],ITorus[8]-ang[2],ITorus[3]-ang[3],ITorus[4]-ang[4],ITorus[5]-ang[5]});
			for(unsigned k=2;k<5;++k){
				if(ITResults[N][k]>PI) ITResults[N][k]=2.*PI-ITResults[N][k];
				if(ITResults[N][k]<-PI) ITResults[N][k]=2.*PI+ITResults[N][k];
			}
			#endif
			t1 = high_resolution_clock::now();
			GenfuncAv = AGav.actions(i);
			times[3]+=duration_cast<nanoseconds>(high_resolution_clock::now()-t1);
			GAvResults.push_back({GenfuncAv[0]-acts[0],GenfuncAv[2]-acts[2],0.,0.,0.,0.,0.,0.});
			t1 = high_resolution_clock::now();
			uvAct = UV.actions(i);
			times[4]+=duration_cast<nanoseconds>(high_resolution_clock::now()-t1);
			ang2 = UV.angles(i);
			UVResults.push_back({uvAct[0]-acts[0],uvAct[2]-acts[2],ang2[0]-ang[0],ang2[1]-ang[1],ang2[2]-ang[2],ang2[3]-ang[3],ang2[4]-ang[4],ang2[5]-ang[5]});
			for(unsigned k=2;k<5;++k){
				if(UVResults[N][k]>PI) UVResults[N][k]=2.*PI-UVResults[N][k];
				if(UVResults[N][k]<-PI) UVResults[N][k]=2.*PI+UVResults[N][k];
			}
			t1 = high_resolution_clock::now();
			paaAct = PAA.actions(i);
			times[5]+=duration_cast<nanoseconds>(high_resolution_clock::now()-t1);
			ang2 = PAA.angles(i);
			PAAResults.push_back({paaAct[0]-acts[0],paaAct[2]-acts[2],ang2[0]-ang[0],ang2[1]-ang[1],ang2[2]-ang[2],ang2[3]-ang[3],ang2[4]-ang[4],ang2[5]-ang[5]});
			for(unsigned k=2;k<5;++k){
				if(PAAResults[N][k]>PI)PAAResults[N][k]=2.*PI-PAAResults[N][k];
				if(PAAResults[N][k]<-PI)PAAResults[N][k]=2.*PI+PAAResults[N][k];
			}
			t1 = high_resolution_clock::now();
			saaAct = SAA.actions(i,&guess_alpha);
			times[6]+=duration_cast<nanoseconds>(high_resolution_clock::now()-t1);
			ang2 = SAA.angles(i,&guess_alpha);
			SAAResults.push_back({saaAct[0]-acts[0],saaAct[2]-acts[2],ang2[0]-ang[0],ang2[1]-ang[1],ang2[2]-ang[2],ang2[3]-ang[3],ang2[4]-ang[4],ang2[5]-ang[5]});
			for(unsigned k=2;k<5;++k){
				if(SAAResults[N][k]>PI)SAAResults[N][k]=2.*PI-SAAResults[N][k];
				if(SAAResults[N][k]<-PI)SAAResults[N][k]=2.*PI+SAAResults[N][k];
			}
			t1 = high_resolution_clock::now();
			fitAct = SF.actions(i);
			times[7]+=duration_cast<nanoseconds>(high_resolution_clock::now()-t1);
			ang2 = SF.angles(i);
			FITResults.push_back({fitAct[0]-acts[0],fitAct[2]-acts[2],ang2[0]-ang[0],ang2[1]-ang[1],ang2[2]-ang[2],ang2[3]-ang[3],ang2[4]-ang[4],ang2[5]-ang[5]});
			for(unsigned k=2;k<5;++k){
				if(FITResults[N][k]>PI)FITResults[N][k]=2.*PI-FITResults[N][k];
				if(FITResults[N][k]<-PI)FITResults[N][k]=2.*PI+FITResults[N][k];
			}
			++N;
		}
		double timeT=tstep;VecDoub freqs;
		for(int i=1;i<N;++i){
			freqs=columnMean(GResults)*timeT;
			GResults[i][2]-=GResults[0][2]+freqs[5];
			GResults[i][3]-=GResults[0][3]+freqs[6];
			GResults[i][4]-=GResults[0][4]+freqs[7];
			timeT+=tstep;
			for(unsigned k=2;k<5;++k)
				while(GResults[i][k]<-PI)GResults[i][k]+=2.*PI;
		}
		for(int k=2;k<5;++k) GResults[0][k]=0.;
		for(auto k:columnRMS(FResults)) outfile<<k<<" ";
		#ifdef TORUS
		for(auto k:columnRMS(ITResults)) outfile<<k<<" ";
		#endif
		for(auto k:columncarefulSD(GResults)) outfile<<k<<" ";
		for(auto k:columnRMS(GAvResults)) outfile<<k<<" ";
		for(auto k:columnRMS(UVResults)) outfile<<k<<" ";
		for(auto k:columnRMS(PAAResults)) outfile<<k<<" ";
		for(auto k:columnRMS(SAAResults)) outfile<<k<<" ";
		for(auto k:columnRMS(FITResults)) outfile<<k<<" ";
		for(unsigned N=0;N<8;++N) outfile<<times[N].count()/range.size()<<" ";
		#ifdef TORUS
		for(unsigned kk=0;kk<3;++kk)
			for(unsigned pp=0;pp<3;++pp)
				outfile<<Hess[kk][pp]<<" ";
		#endif
		outfile<<std::endl;
	}
	outfile.close();
}
Ejemplo n.º 20
0
//-------------------------------------------------------------------
// Method to calculate the Spectral Modularity
//-------------------------------------------------------------------
void calculateSpectralModularity() {

    int N = si.size();
    MatDoub Bg(N,N);
    Bg.resize(N,N);
    Bg = Bgi;

    //--- Calculate eigenvectors, and values, from Bgi...
    calculateEigenVectors();

    int ind = -1;
    findLeadingEigenVectors(ind);

    cout << "> max EigenValue is " << betai[ind] << " with ind " << ind << endl;
    //--- set up the index vectors, si and SI, for the initial split
    maximiseIndexVectors(ind);

    double tol        = 0.00001;//the tolerance value, 10^-5; eigenvalues below this threshold are not used
    int dummy         = -1000;
    double deltaQ_old = 0.0;
    double deltaQ_new = 0.0;

    //--- Calculate the Spectral Modularity
    deltaModularity(deltaQ_old);
    cout << "> Spectral Q: " << deltaQ_old << endl;

    double diff = deltaQ_old;

    //--- Fine tuning stage to maximum deltaModularity for the initial split
    while( diff > tol ) {

        modifySplit( tol, N );

        deltaModularity( deltaQ_new );
        cout << "> Modified Q: " << deltaQ_new << endl;

        diff = fabs( deltaQ_new - deltaQ_old );

        deltaQ_old = deltaQ_new;

    }

    //--- Keep recorded of maximum fine-tuned Modularity value.
    specQ += deltaQ_old;

    cout << "> node list " << endl;
    for(int i=1; i<n.size(); i++) {
        keys_p[i-1]   = 0;
        keys_n[i-1]   = 0;
        if(si[i-1] > 0) {
            keys_p[i-1] = n[i].k;
            keys_n[i-1] = dummy;
            n[i].c      = 1;
        } else {
            keys_p[i-1] = dummy;
            keys_n[i-1] = n[i].k;
            n[i].c      = 2;
        }

        n[i].print();
    }

    //--- Recursively split the group of positive eigenvector nodes
    splitP(Bg, keys_p, dummy, tol);

    //--- Recursively split the group of negative eigenvector nodes
    splitN(Bg, keys_n, dummy, tol);


}