/*! Draw connected line segments in page coordinates (pts), with options to close * /and/or fill the curve, or to set the curve as a clip area. */ void PSpage::polyline(VecDoub &x, VecDoub &y, Int close, Int fill, Int clip) { Int i,n = min(x.size(),y.size()); fprintf(PSpage::PLT,"np %g %g mt\n",x[0],y[0]); for (i=1;i<n;i++) fprintf(PSpage::PLT,"%g %g lt\n",x[i],y[i]); if (close || fill || clip) fprintf(PSpage::PLT,"cp "); if (fill) fprintf(PSpage::PLT,"fi\n"); else if (clip) fprintf(PSpage::PLT,"clip\n"); else fprintf(PSpage::PLT,"st\n"); }
VecDoub SphericalPolarToCartesian(const VecDoub& Spherical){ VecDoub SPolar = {Spherical[0]*sin(Spherical[2])*cos(Spherical[1]), Spherical[0]*sin(Spherical[2])*sin(Spherical[1]), Spherical[0]*cos(Spherical[2])}; if(Spherical.size()==3) return SPolar; return SPolar; }
std::vector<VecDoub> EquatorialToGalacticwithErrors(const VecDoub &Equatorial, const VecDoub &Errors){ //alpha, dec, s => l,b,s double alpha = Equatorial[0], delta = Equatorial[1]; double cd = cos(delta), sd = sin(delta); double dalpha = alpha-RA_GP; double b=asin(sdGP*sd+cdGP*cd*cos(dalpha)); double l=lCP-atan2(cd*sin(alpha-RA_GP),cdGP*sd-sdGP*cd*cos(dalpha)); if(l<0.)l+=2.*PI; if(Equatorial.size()==3){ std::vector<VecDoub> Galactic {{l,b,Equatorial[2]},Errors}; return Galactic;} else{ //vlos, ma_cos(d), md => vlos, ml_cos(b), mb double cb = cos(b), sb = sin(b); double A11=(sdGP*cd-cdGP*sd*cos(dalpha))/cb; double A12=-cdGP*sin(dalpha)/cb; double A21,A22; double dl = lCP-l; if(fabs(cos(dl))>fabs(sin(dl))){ A21=(sd*sin(dalpha)-sb*sin(dl)*A11)/cos(dl); A22=-(cos(dalpha)+sb*sin(dl)*A12)/cos(dl); }else{ A21=(cdGP*cd+sdGP*sd*cos(dalpha)+sb*cos(dl)*A11)/sin(dl); A22=(sdGP*sin(dalpha)+sb*cos(dl)*A12)/sin(dl); } std::vector<VecDoub> Galactic { {l,b,Equatorial[2],Equatorial[3], A21*Equatorial[5]+A22*Equatorial[4],A11*Equatorial[5]+A12*Equatorial[4]} ,{Errors[0],Errors[1],Errors[2],Errors[3], sqrt(A21*A21*Errors[5]*Errors[5]+A22*A22*Errors[4]*Errors[4]), sqrt(A11*A11*Errors[5]*Errors[5]+A12*A12*Errors[4]*Errors[4])}}; return Galactic; } }
VecDoub EquatorialToGalactic(const VecDoub &Equatorial){ //alpha, dec, s => l,b,s double alpha = Equatorial[0], delta = Equatorial[1]; double cd = cos(delta), sd = sin(delta); double dalpha = alpha-RA_GP; double b=asin(sdGP*sd+cdGP*cd*cos(dalpha)); double l=lCP-atan2(cd*sin(alpha-RA_GP),cdGP*sd-sdGP*cd*cos(dalpha)); if(l<0.)l+=2.*PI; VecDoub Galactic {l,b,Equatorial[2]}; if(Equatorial.size()==3)return Galactic; else{ //vlos, ma_cos(d), md => vlos, ml_cos(b), mb double cb = cos(b), sb = sin(b); double dl = lCP-l; double A11=(sdGP*cd-cdGP*sd*cos(dalpha))/cb; double A12=-cdGP*sin(dalpha)/cb; double A21,A22; if(fabs(cos(dl))>fabs(sin(dl))){ A21= (sd*sin(dalpha)-sb*sin(dl)*A11)/cos(dl); A22=-( cos(dalpha)+sb*sin(dl)*A12)/cos(dl); }else{ A21=(cdGP*cd+sdGP*sd*cos(dalpha)+sb*cos(dl)*A11)/sin(dl); A22=(sdGP*sin(dalpha)+sb*cos(dl)*A12)/sin(dl); } VecDoub GalVel {Equatorial[3],A21*Equatorial[5]+A22*Equatorial[4], A11*Equatorial[5]+A12*Equatorial[4]}; for ( VecDoub::iterator it = GalVel.begin(); it != GalVel.end(); ++it) Galactic.push_back(*it); return Galactic; } }
VecDoub GalacticToEquatorial(const VecDoub &Galactic){ //l,b,s => alpha, dec, s double l = Galactic[0], b = Galactic[1]; double cb = cos(b),sb = sin(b); double dl = lCP-l; double delta=asin(cdGP*cb*cos(-dl)+sb*sdGP); double alpha=RA_GP+atan2(cb*sin(dl),sb*cdGP-cb*sdGP*cos(-dl)); if(alpha>2.*PI)alpha-=2.*PI; VecDoub Equatorial {alpha,delta,Galactic[2]}; if(Galactic.size()==3)return Equatorial; else{ double dalpha = alpha-RA_GP; //vlos, ml_cos(b), mb => vlos, ma_cos(d), md double cd = cos(delta), sd = sin(delta); double A11=(sdGP*cd-cdGP*sd*cos(dalpha))/cb; double A12=-cdGP*sin(dalpha)/cb; double A21,A22; if(fabs(cos(dl))>fabs(sin(dl))){ A21=(sd*sin(dalpha)-sb*sin(dl)*A11)/cos(dl); A22=-(cos(dalpha)+sb*sin(dl)*A12)/cos(dl); }else{ A21=(cdGP*cd+sdGP*sd*cos(dalpha)+sb*cos(dl)*A11)/sin(dl); A22=(sdGP*sin(dalpha)+sb*cos(dl)*A12)/sin(dl); } double Prod = A11*A22-A12*A21; VecDoub EqVel {Galactic[3],(A11*Galactic[4]-A21*Galactic[5])/Prod, (A22*Galactic[5]-A12*Galactic[4])/Prod}; for ( VecDoub::iterator it = EqVel.begin(); it != EqVel.end(); ++it) Equatorial.push_back(*it); return Equatorial; } }
VecDoub CartesianToGalactic(const VecDoub &Cartesian, const VecDoub& SolarPosition){ // X,Y,Z->l,b,s double tmp1 = SolarPosition[0]-Cartesian[0]; double tmp2 = -Cartesian[1]; double tmp3 = Cartesian[2]-SolarPosition[1]; // Need to rotate to account for the height of the Sun above the plane double h = sqrt(SolarPosition[0]*SolarPosition[0] +SolarPosition[1]*SolarPosition[1]); double ct = SolarPosition[0]/h, st = SolarPosition[1]/h; double x = tmp1*ct-tmp3*st, z = tmp1*st+tmp3*ct; double Distance = norm<double>({x,tmp2,z}); VecDoub Galactic { atan2(tmp2,x), asin(z/Distance), Distance}; if(Cartesian.size()==3)return Galactic; // vx,vy,vz -> vlos,mu_lcos(b),mu_b // in units km/s -> km/s mas/yr else{ double vx=-Cartesian[3]*ct-Cartesian[5]*st-SolarPosition[2]; double vy = -Cartesian[4]-SolarPosition[3]; double vz = Cartesian[5]*ct+Cartesian[3]*st-SolarPosition[4]; double cl = cos(Galactic[0]), sl = sin(Galactic[0]), cb = cos(Galactic[1]), sb = sin(Galactic[1]); VecDoub GalVel {vx*cl*cb+vy*sl*cb+vz*sb,(-vx*sl+vy*cl)/(PM_Const*Distance), (-vx*cl*sb-vy*sl*sb+vz*cb)/(PM_Const*Distance)}; for ( VecDoub::iterator it = GalVel.begin(); it != GalVel.end(); ++it) Galactic.push_back(*it); return Galactic; } }
// ====================================================================================== // Galactic <==> Cartesian VecDoub GalacticToCartesian(const VecDoub &Galactic, const VecDoub& SolarPosition){ // l,b,s->X,Y,Z double cl = cos(Galactic[0]), sl = sin(Galactic[0]), cb = cos(Galactic[1]), sb = sin(Galactic[1]); double x = Galactic[2]*cb*cl; double z = Galactic[2]*sb; // Need to rotate to account for the height of the Sun above the plane double h = sqrt(SolarPosition[0]*SolarPosition[0] +SolarPosition[1]*SolarPosition[1]); double ct = SolarPosition[0]/h, st = SolarPosition[1]/h; VecDoub Cartesian { SolarPosition[0]-ct*x-st*z, -Galactic[2]*cb*sl, -st*x+ct*z+SolarPosition[1]}; if(Galactic.size()==3)return Cartesian; // vlos,mu_lcos(b),mu_b -> vx,vy,vz // in units km/s, mas/yr -> km/s else{ double vl = PM_Const*Galactic[2]*Galactic[4]; double vb = PM_Const*Galactic[2]*Galactic[5]; double tmp = cb*Galactic[3]-sb*vb; double vx = cl*tmp-sl*vl+SolarPosition[2]; double vy = sl*tmp+cl*vl+SolarPosition[3]; double vz = sb*Galactic[3]+cb*vb+SolarPosition[4]; VecDoub CartVel{-(vx*ct+vz*st),-vy,-vx*st+vz*ct}; for ( VecDoub::iterator it = CartVel.begin(); it != CartVel.end(); ++it) Cartesian.push_back(*it); return Cartesian; } }
VecDoub CartesianToSphericalPolar(const VecDoub& Cartesian){ double r = sqrt(Cartesian[0]*Cartesian[0]+Cartesian[1]*Cartesian[1]+Cartesian[2]*Cartesian[2]); VecDoub SPolar = {r,atan2(Cartesian[1],Cartesian[0]),acos(Cartesian[2]/r)}; if(Cartesian.size()==3) return SPolar; SPolar.push_back((Cartesian[3]*cos(SPolar[1])+Cartesian[4]*sin(SPolar[1]))*sin(SPolar[2])+cos(SPolar[2])*Cartesian[5]); SPolar.push_back(-Cartesian[3]*sin(SPolar[1])+Cartesian[4]*cos(SPolar[1])); SPolar.push_back((Cartesian[3]*cos(SPolar[1])+Cartesian[4]*sin(SPolar[1]))*cos(SPolar[2])-sin(SPolar[2])*Cartesian[5]); return SPolar; }
/* Utility method used by the Spectral method to find which node, when moved gives the maximum change in the Modularity value. */ void maxModularity(double &qmax) { int N = si.size(); VecDoub qstored(N); for(int i=0; i<N; i++) qstored[i] = 0; double Q = 0.0; for(int k=0; k<N; k++) { if( visited[k] < 1 ) { Q = 0.0; deltaModularityMax( k, Q ); qstored[k] = Q; } } qmax = 0;//qstored(0); int ind_max = -1;//0; for(int i=0; i<N; i++) { if( qstored[i] > qmax ) { qmax = qstored[i]; ind_max = i; } } for(int i=0; i<N; i++) { if( i != ind_max ) ; else { visited[i] = 1; if( si[i] == 1 ) { si[i] = -1; SI[i][0] = 0; SI[i][1] = 1; } else { si[i] = 1; SI[i][0] = 1; SI[i][1] = 0; } } } }
// ============================================================================ // Dehnen Potential // ============================================================================ double Dehnen::Phi(const VecDoub &x){ /* potential at Cartesian x */ assert(x.size()==3); double r = norm<double>(x); double chi = pow(r/rs,1./alpha); chi=chi/(1+chi); return -conv::FPG*rhoS*rs*rs*alpha* (rs/r*incomplete_beta(alpha*(3-gamma),alpha*(beta-3),chi) +incomplete_beta(alpha*(beta-2),alpha*(2-gamma),1-chi)); }
VecDoub Dehnen::Forces(const VecDoub &x){ /* Forces at Cartesian x */ assert(x.size()==3); double r = norm<double>(x); double chi = pow(r/rs,1./alpha); double dchi = chi/r/alpha/(1+chi)*(1.-chi/(1+chi)); chi = chi/(1+chi); r = -conv::FPG*rhoS*rs*rs*alpha* (-rs/r/r*incomplete_beta(alpha*(3-gamma),alpha*(beta-3),chi) +rs/r*pow(chi,alpha*(3-gamma)-1)*pow(1-chi,alpha*(beta-3)-1)*dchi -pow(1-chi,alpha*(beta-2)-1)*pow(chi,alpha*(2-gamma)-1)*dchi); VecDoub F = x*-r; return F; }
VecDoub PolarToCartesian(const VecDoub& Polar){ // R,phi,z -> X,Y,Z double cp = cos(Polar[1]), sp = sin(Polar[1]); VecDoub Cartesian { Polar[0]*cp, Polar[0]*sp, Polar[2]}; if(Polar.size()==3) return Cartesian; // vR,vphi,vz -> vx,vy,vz else{ VecDoub CartVel {Polar[3]*cp-Polar[4]*sp,Polar[4]*cp+Polar[3]*sp,Polar[5]}; for ( VecDoub::iterator it = CartVel.begin(); it != CartVel.end(); ++it) Cartesian.push_back(*it); return Cartesian; } }
// ====================================================================================== // Cartesian <==> Polar VecDoub CartesianToPolar(const VecDoub& Cartesian){ // X,Y,Z -> R,phi,z VecDoub Polar { sqrt(Cartesian[0]*Cartesian[0]+Cartesian[1]*Cartesian[1]), atan2(Cartesian[1],Cartesian[0]), Cartesian[2]}; if(Cartesian.size()==3) return Polar; // vx,vy,vz -> vR,vphi,vz else{ double cp = cos(Polar[1]), sp = sin(Polar[1]); VecDoub PolarVel { Cartesian[3]*cp+Cartesian[4]*sp,Cartesian[4]*cp-Cartesian[3]*sp, Cartesian[5]}; for ( VecDoub::iterator it = PolarVel.begin(); it != PolarVel.end(); ++it) Polar.push_back(*it); return Polar; } }
/* Utility method used by the Spectral method fine-tune an initial given community split. */ void modifySplit( double tol, int countmax ) { double qmax = 0; double qold = 0; int count = 0; int Ng = si.size(); visited.resize(Ng); VecDoub Gsi(Ng); MatDoub GSI(Ng,2); for(int i=0; i<Ng; i++) { Gsi[i] = si[i]; GSI[i][0] = SI[i][0]; GSI[i][1] = SI[i][1]; } maxModularity( qmax ); while( count < countmax ) { if( qmax > qold ) { for(int i=0; i<Ng; i++) { Gsi[i] = si[i]; GSI[i][0] = SI[i][0]; GSI[i][1] = SI[i][1]; } } qold = qmax; qmax = 0.0; maxModularity(qmax); count++; } for(int i=0; i<Ng; i++) { si[i] = Gsi[i]; SI[i][0] = GSI[i][0]; SI[i][1] = GSI[i][1]; } }
/* The change in Modularity used during the fine-tuning method; where node si_i is moved from one community to the other: if si^old_i = +-1 => si^new_i = -+1 deltaQ = deltaQ^new - deltaQ^old = Sum_ij { Big_ij * si^new_i * si^new_j } - Sum_ij { Big_ij * si^old_i * si^old_j } = Sum_(i!=k,j!=k) { Bgi_ij * si^new_i * si^new_j + Sum_(j!=k) Big_kj * si^new_k * si^new_j + Sum_(i!=k) Big_ik * si^new_i * si^new_k + Big_kk } - Sum_(i!=k,j!=k) { Big_ij si^old_i * si^old_j - Sum_(j!=k) Big_kj * si^old_k * si^old_j - Sum_(i!=k) Big_ik * si^old_i * si^old_k - Big_kk } = Sum_(j!=k) { Big_kj * ( si^new_k - si^old_k ) * si^old_j } + Sum_(i!=k) { Big_ik * si^old_i * ( si^new_k - si^old_k ) } = 2 * ( si^new_k - si^old_k ) * Sum_(i!=k) { Big_ik * si^old_i } = -4 * si^old_k * Sum_(i!=k) { Big_ik * si^old_i } */ void deltaModularityMax( int k, double &mod ) { mod = 0; int N = si.size(); double sumi = 0.0; for(int i=0; i<N; i++) { if( i!=k ) sumi += Bgi[i][k] * si[i]; } mod = -4.0 * si[k] * sumi; }
/* The change in Modularity used for the Spectral method. deltaQ = Sum_k { Sum_ij { si_ki * Bgi_ij * si_jk } } */ void deltaModularity( double &mod ) { mod = 0; int N = si.size(); double ele = 0.0; double sum = 0.0; MatDoub deltaQ(2,2); MatDoub SIt(N,2); for(int i=0; i<N; i++) { SIt[i][0] = 0; SIt[i][1] = 0; for(int j=0; j<N; j++) { SIt[i][0] += Bgi[i][j] * SI[j][0]; SIt[i][1] += Bgi[i][j] * SI[j][1]; } } for(int i=0; i<2; i++) { double sum1 = 0; double sum2 = 0; for(int j=0; j<N; j++) { sum1 += SI[j][0] * SIt[j][0]; sum2 += SI[j][1] * SIt[j][1]; } deltaQ[i][0] = sum1; deltaQ[i][1] = sum2; } for(int k=0; k<2; k++) sum += deltaQ[k][k]; mod = _norm * sum; }
double Dehnen::Density(const VecDoub& x){ assert(x.size()==3); double r = norm<double>(x)/rs; return rhoS*pow(r,-gamma)*pow(1.+pow(r,1./alpha),(gamma-beta)*alpha); }
double Potential_JS::R_E(const VecDoub &x){ assert(x.size()==6); return R_E(H(x),norm<double>({x[0],x[1],x[2]})); }
int main(int argc, char*argv[]){ #ifdef TORUS GalPot Pot("pot/Piffl14.Tpot"); WrapperTorusPotential TPot(&Pot); // GalPot Pot("../Torus/pot/PJM11.Tpot"); std::cout<<TPot.KapNuOm(8.29)*conv::kpcMyr2kms<<std::endl; #else Logarithmic Pot(220.,1.,0.9); #endif VecDoub X(6,1e-4); if(argc>2) X[0]=atof(argv[2]); else X[0]=conv::StandardSolarPAUL[0]; X[2]=0.001; X[4]=sqrt(X[0]*-Pot.Forces(X)[0]); printVector(X); Orbit O(&Pot,1e-8); // Fudge Actions_AxisymmetricStackel_Fudge AA(&Pot,-30.); // Iterative Torus #ifdef TORUS IterativeTorusMachine Tor(&AA,&Pot,1e-8,5,1e-3); #endif // Generating Function Actions_Genfunc AG(&Pot,"axisymmetric"); // Average generating Function Actions_Genfunc_Average AGav(&Pot,"axisymmetric"); // uvorb uv_orb UV(&Pot,4.,30.,50,50,"example.delta_uv"); // Cylindrical Adiabatic Actions_CylindricalAdiabaticApproximation PAA(&Pot,"example.paa",true,false,4.,30.,15.,100); // Spheroidal Adiabatic Actions_SpheroidalAdiabaticApproximation SAA(&Pot,"example.saa",true,false,100.,4.,30.,15.,100); // Spheroidal Adiabatic Actions_StackelFit SF(&Pot,1e-8); std::ofstream outfile; outfile.open(argv[1]); outfile<<"# JR Lz Jz JRJzLz "; #ifdef TORUS outfile<<"Rperi Rapo Zmax "; #endif outfile<<"OmR Omp Omz Fudgev1 ItTC O2GF AvGF Fudgev2 CAA SAA Fit\n"; double VMax = sqrt((Pot.Phi({50.,0.,50.})-Pot.Phi(X))-.5*X[4]*X[4]); int number = 500; if(argc>3) number=atoi(argv[3]); VecDoub range = create_log_range(0.03*VMax,0.8*VMax,number); int count=0; high_resolution_clock::time_point t1 = high_resolution_clock::now(); for(auto j: range){ count+=1; X[3]=j; X[5]=j*.8; printVector(X); double Torb = Pot.torb(X), tstep=0.204*Torb, tmax=10.*Torb; O.integrate(X,tmax,tstep); int guess_alpha=1; MatDoub FResults,ITResults,GResults,GAvResults,UVResults,PAAResults,SAAResults,FITResults; VecDoub Fudge, ITorus, Genfunc, GenfuncAv, uvAct, paaAct, saaAct, fitAct,Energy; MatDoub dvdJ_e; t1 = high_resolution_clock::now(); std::vector<nanoseconds> times(8,duration_cast<nanoseconds>(t1-t1)); for(auto i:O.results()){ t1 = high_resolution_clock::now(); Genfunc = AG.actions(i); times[2]+=duration_cast<nanoseconds>(high_resolution_clock::now()-t1);GenfuncAv.resize(3); VecDoub aa = AG.angles(i); GResults.push_back({Genfunc[0],Genfunc[2],aa[0],aa[1],aa[2],aa[3],aa[4],aa[5]}); Energy.push_back(Pot.H(i)); } VecDoub acts = {columnMean(GResults)[0],Pot.Lz(X),columnMean(GResults)[1],columnMean(GResults)[5],columnMean(GResults)[6],columnMean(GResults)[7]}; VecDoub GF_SD = columncarefulSD(GResults); outfile<<acts[0]<<" "<<acts[1]<<" "<<acts[2]<<" "<<(acts[0]+acts[2])/fabs(acts[1])<<" "; #ifdef TORUS Actions J;J[0]=acts[0]/conv::kpcMyr2kms; J[2]=acts[1]/conv::kpcMyr2kms;J[1]=acts[2]/conv::kpcMyr2kms; Torus T; T.AutoFit(J,&TPot,1e-5); outfile<<T.minR()<<" "<<T.maxR()<<" "<<" "<<T.maxz()<<" "; MatDoub Hess = dOmdJ(J,.1*J,&TPot); #endif outfile<<acts[3]<<" "<<acts[4]<<" "<<acts[5]<<" "<<carefulSD(Energy)/Mean(Energy)<<" "; int N=0; for(auto i:O.results()){ VecDoub ang = AG.angles(i); t1 = high_resolution_clock::now(); Fudge = AA.actions(i,&guess_alpha); times[0]+=duration_cast<nanoseconds>(high_resolution_clock::now()-t1); VecDoub ang2 = AA.angles(i,&guess_alpha); FResults.push_back({Fudge[0]-acts[0],Fudge[2]-acts[2],ang2[0]-ang[0],ang2[1]-ang[1],ang2[2]-ang[2],ang2[3]-ang[3],ang2[4]-ang[4],ang2[5]-ang[5]}); for(unsigned k=2;k<5;++k){ if(FResults[N][k]>PI) FResults[N][k] = 2.*PI-FResults[N][k]; if(FResults[N][k]<-PI) FResults[N][k] = 2.*PI+FResults[N][k]; } t1 = high_resolution_clock::now(); #ifdef TORUS ITorus = Tor.actions(i); times[1]+=duration_cast<nanoseconds>(high_resolution_clock::now()-t1); ITResults.push_back({ITorus[0]-acts[0],ITorus[2]-acts[2],ITorus[6]-ang[0],ITorus[7]-ang[1],ITorus[8]-ang[2],ITorus[3]-ang[3],ITorus[4]-ang[4],ITorus[5]-ang[5]}); for(unsigned k=2;k<5;++k){ if(ITResults[N][k]>PI) ITResults[N][k]=2.*PI-ITResults[N][k]; if(ITResults[N][k]<-PI) ITResults[N][k]=2.*PI+ITResults[N][k]; } #endif t1 = high_resolution_clock::now(); GenfuncAv = AGav.actions(i); times[3]+=duration_cast<nanoseconds>(high_resolution_clock::now()-t1); GAvResults.push_back({GenfuncAv[0]-acts[0],GenfuncAv[2]-acts[2],0.,0.,0.,0.,0.,0.}); t1 = high_resolution_clock::now(); uvAct = UV.actions(i); times[4]+=duration_cast<nanoseconds>(high_resolution_clock::now()-t1); ang2 = UV.angles(i); UVResults.push_back({uvAct[0]-acts[0],uvAct[2]-acts[2],ang2[0]-ang[0],ang2[1]-ang[1],ang2[2]-ang[2],ang2[3]-ang[3],ang2[4]-ang[4],ang2[5]-ang[5]}); for(unsigned k=2;k<5;++k){ if(UVResults[N][k]>PI) UVResults[N][k]=2.*PI-UVResults[N][k]; if(UVResults[N][k]<-PI) UVResults[N][k]=2.*PI+UVResults[N][k]; } t1 = high_resolution_clock::now(); paaAct = PAA.actions(i); times[5]+=duration_cast<nanoseconds>(high_resolution_clock::now()-t1); ang2 = PAA.angles(i); PAAResults.push_back({paaAct[0]-acts[0],paaAct[2]-acts[2],ang2[0]-ang[0],ang2[1]-ang[1],ang2[2]-ang[2],ang2[3]-ang[3],ang2[4]-ang[4],ang2[5]-ang[5]}); for(unsigned k=2;k<5;++k){ if(PAAResults[N][k]>PI)PAAResults[N][k]=2.*PI-PAAResults[N][k]; if(PAAResults[N][k]<-PI)PAAResults[N][k]=2.*PI+PAAResults[N][k]; } t1 = high_resolution_clock::now(); saaAct = SAA.actions(i,&guess_alpha); times[6]+=duration_cast<nanoseconds>(high_resolution_clock::now()-t1); ang2 = SAA.angles(i,&guess_alpha); SAAResults.push_back({saaAct[0]-acts[0],saaAct[2]-acts[2],ang2[0]-ang[0],ang2[1]-ang[1],ang2[2]-ang[2],ang2[3]-ang[3],ang2[4]-ang[4],ang2[5]-ang[5]}); for(unsigned k=2;k<5;++k){ if(SAAResults[N][k]>PI)SAAResults[N][k]=2.*PI-SAAResults[N][k]; if(SAAResults[N][k]<-PI)SAAResults[N][k]=2.*PI+SAAResults[N][k]; } t1 = high_resolution_clock::now(); fitAct = SF.actions(i); times[7]+=duration_cast<nanoseconds>(high_resolution_clock::now()-t1); ang2 = SF.angles(i); FITResults.push_back({fitAct[0]-acts[0],fitAct[2]-acts[2],ang2[0]-ang[0],ang2[1]-ang[1],ang2[2]-ang[2],ang2[3]-ang[3],ang2[4]-ang[4],ang2[5]-ang[5]}); for(unsigned k=2;k<5;++k){ if(FITResults[N][k]>PI)FITResults[N][k]=2.*PI-FITResults[N][k]; if(FITResults[N][k]<-PI)FITResults[N][k]=2.*PI+FITResults[N][k]; } ++N; } double timeT=tstep;VecDoub freqs; for(int i=1;i<N;++i){ freqs=columnMean(GResults)*timeT; GResults[i][2]-=GResults[0][2]+freqs[5]; GResults[i][3]-=GResults[0][3]+freqs[6]; GResults[i][4]-=GResults[0][4]+freqs[7]; timeT+=tstep; for(unsigned k=2;k<5;++k) while(GResults[i][k]<-PI)GResults[i][k]+=2.*PI; } for(int k=2;k<5;++k) GResults[0][k]=0.; for(auto k:columnRMS(FResults)) outfile<<k<<" "; #ifdef TORUS for(auto k:columnRMS(ITResults)) outfile<<k<<" "; #endif for(auto k:columncarefulSD(GResults)) outfile<<k<<" "; for(auto k:columnRMS(GAvResults)) outfile<<k<<" "; for(auto k:columnRMS(UVResults)) outfile<<k<<" "; for(auto k:columnRMS(PAAResults)) outfile<<k<<" "; for(auto k:columnRMS(SAAResults)) outfile<<k<<" "; for(auto k:columnRMS(FITResults)) outfile<<k<<" "; for(unsigned N=0;N<8;++N) outfile<<times[N].count()/range.size()<<" "; #ifdef TORUS for(unsigned kk=0;kk<3;++kk) for(unsigned pp=0;pp<3;++pp) outfile<<Hess[kk][pp]<<" "; #endif outfile<<std::endl; } outfile.close(); }
//------------------------------------------------------------------- // Method to calculate the Spectral Modularity //------------------------------------------------------------------- void calculateSpectralModularity() { int N = si.size(); MatDoub Bg(N,N); Bg.resize(N,N); Bg = Bgi; //--- Calculate eigenvectors, and values, from Bgi... calculateEigenVectors(); int ind = -1; findLeadingEigenVectors(ind); cout << "> max EigenValue is " << betai[ind] << " with ind " << ind << endl; //--- set up the index vectors, si and SI, for the initial split maximiseIndexVectors(ind); double tol = 0.00001;//the tolerance value, 10^-5; eigenvalues below this threshold are not used int dummy = -1000; double deltaQ_old = 0.0; double deltaQ_new = 0.0; //--- Calculate the Spectral Modularity deltaModularity(deltaQ_old); cout << "> Spectral Q: " << deltaQ_old << endl; double diff = deltaQ_old; //--- Fine tuning stage to maximum deltaModularity for the initial split while( diff > tol ) { modifySplit( tol, N ); deltaModularity( deltaQ_new ); cout << "> Modified Q: " << deltaQ_new << endl; diff = fabs( deltaQ_new - deltaQ_old ); deltaQ_old = deltaQ_new; } //--- Keep recorded of maximum fine-tuned Modularity value. specQ += deltaQ_old; cout << "> node list " << endl; for(int i=1; i<n.size(); i++) { keys_p[i-1] = 0; keys_n[i-1] = 0; if(si[i-1] > 0) { keys_p[i-1] = n[i].k; keys_n[i-1] = dummy; n[i].c = 1; } else { keys_p[i-1] = dummy; keys_n[i-1] = n[i].k; n[i].c = 2; } n[i].print(); } //--- Recursively split the group of positive eigenvector nodes splitP(Bg, keys_p, dummy, tol); //--- Recursively split the group of negative eigenvector nodes splitN(Bg, keys_n, dummy, tol); }