void Eigsym::eig(const MatDoub &A, MatDoub &V, VecDoub &lambda) { unsigned int n = A.ncols(); /* size of the matrix */ double a[n*n]; /* store initial matrix */ double w[n]; /* store eigenvalues */ int matz = 1; /* return both eigenvalues as well as eigenvectors */ double x[n*n]; /* store eigenvectors */ for(unsigned int i=0; i<n; i++) { for(unsigned int j=0; j<n; j++) { a[i*n+j] = A[i][j]; } } unsigned int ierr = 0; ierr = rs ( n, a, w, matz, x ); V.assign(n,n,0.0); lambda.resize(n); for(unsigned int i=0; i<n; i++) { lambda[i] = w[i]; for(unsigned int j=0; j<n; j++) { V[j][i] = x[i*n+j]; } } }
/* Calculate the eigenvalues, betai, and eigenvectors, u, for the current Modularity matrix Bgi. */ void calculateEigenVectors() { int Ng = Bgi.ncols(); if(u.ncols() != Ng) { u.resize(Ng,Ng); betai.resize(Ng); } u.resize(Ng,Ng); betai.resize(Ng); Symmeig h(Bgi, true); for(int i=0; i<Ng; i++) { betai[i] = h.d[i]; for(int j=0; j<Ng; j++) { u[j][i] = h.z[j][i]; } } }
/* Utility method used by the Spectral method fine-tune an initial given community split. */ void modifySplit( double tol, int countmax ) { double qmax = 0; double qold = 0; int count = 0; int Ng = si.size(); visited.resize(Ng); VecDoub Gsi(Ng); MatDoub GSI(Ng,2); for(int i=0; i<Ng; i++) { Gsi[i] = si[i]; GSI[i][0] = SI[i][0]; GSI[i][1] = SI[i][1]; } maxModularity( qmax ); while( count < countmax ) { if( qmax > qold ) { for(int i=0; i<Ng; i++) { Gsi[i] = si[i]; GSI[i][0] = SI[i][0]; GSI[i][1] = SI[i][1]; } } qold = qmax; qmax = 0.0; maxModularity(qmax); count++; } for(int i=0; i<Ng; i++) { si[i] = Gsi[i]; SI[i][0] = GSI[i][0]; SI[i][1] = GSI[i][1]; } }
/* Update the index vectors, si and SI, for each node in the current split such that: si(i) = 1 if eigenvector_max(i) > 0 = -1 if eigenvector_max(i) < 0 SI(i,0) = 1 SI(i,1) = 0 if eigenvector_max(i) > 0 = 0 = 1 if eigenvector_max(i) < 0 */ void maximiseIndexVectors( int ind ) { int Ng = u.ncols(); si.resize(Ng); SI.resize(Ng,2); for(int i=0; i<Ng; i++) { if(u[i][ind] < 0) { si[i] = -1; SI[i][0] = 0; SI[i][1] = 1; } else { si[i] = 1; SI[i][0] = 1; SI[i][1] = 0; } } }
/* Calculate the split of nodes belonging to the last group of nodes with negative eigenvector values. */ void splitN(MatDoub Bg, VecInt keys, int dummy, double tol) { cout << "> In splitN method... " << endl; int N = Bg.nrows(); MatDoub Bgii(N,N); MatDoub Bgiii(N,N); VecInt keysi_n (N); //--- Starting from the group Modularity matrix Bg, //--- resize matrices: Bgi, keysi_p, keysi_n, u and betai. Bgiii = Bg; int Ng = 0; for(int i=0; i<keys.size(); i++) { if(keys[i] != dummy) { Ng++; } else { for(int k=0; k<Bgiii.nrows(); k++) { Bgiii[i][k] = dummy; Bgiii[k][i] = dummy; } } } keysi_n.resize(Ng); VecInt keysi_p(Ng); int k=0; for(int i=0; i<keys.size(); i++) { if(keys[i] != dummy) keysi_n[k++] = keys[i]; } Bgii.resize(Ng,Ng); removeMatrixRow(Bgiii,Bgii); Bgi.resize(Bgii.nrows(),Bgii.nrows()); //--- Calculate the Modularity matrix Bgi for the new node group calculateB(Bgii, Bgi); u.resize(Ng,Ng); betai.resize(Ng); //--- Calculate eigenvectors, and values, from Bgi... calculateEigenVectors(); int ind = 0; findLeadingEigenVectors(ind); //--- Check that maximum eigenvalue is greater than the tolerance. cout << "> max EigenValue is " << betai[ind] << " with ind " << ind << endl; if(betai[ind] > tol ) { //--- set up the index vectors, si and SI, for the initial split maximiseIndexVectors(ind); double deltaQ_old = 0.0; double deltaQ_new = 0.0; int cp = 0; int cn = 0; //--- Calculate the Spectral Modularity deltaModularity(deltaQ_old); cout << "> Spectral Q: " << deltaQ_old << endl; double diff = fabs(deltaQ_old); int count = 0; //--- Fine tuning stage to maximum deltaModularity for the initial split while( diff > tol ) { modifySplit( tol, Ng ); deltaModularity(deltaQ_new); cout << "> Modified Q: " << deltaQ_new << endl; diff = fabs( deltaQ_new - deltaQ_old ); deltaQ_old = deltaQ_new; } //--- Keep recorded of maximum fine-tuned Modularity value. specQ += deltaQ_old; for(int i=0; i<Ng; i++) { si[i] = si[i]; if(si[i] > 0) cp++; else cn++; } if(cp < 1 || cn < 1) { cout << "> Stop splitting. " << endl; return; } int Ncomn = maxCommunity() + 1; int Ncomp = Ncomn + 1; cout << "> node list " << endl; for(int i=0; i<keysi_n.size(); i++) { if( si[i] < 0) { keysi_n[i] = keysi_n[i]; keysi_p[i] = dummy; n[(int)keysi_n[i]].c = Ncomn; cout << "> Node: " << keysi_n[i] << " c = " << n[(int)keysi_n[i]].c << endl; } else { keysi_p[i] = keysi_n[i]; keysi_n[i] = dummy; cout << "> Node: " << keysi_p[i] << " c = " << n[(int)keysi_p[i]].c << endl; } } //--- Recursively split the group of positive eigenvector nodes splitP(Bgii, keysi_p, dummy, tol); //--- Recursively split the group of negative eigenvector nodes splitN(Bgii, keysi_n, dummy, tol); } else { cout << "> Stop splitting. " << endl; return ; } }
//--- MAIN PROGRAM //------------------------------------------------------------------------------------- int main(int argc, char * argv[]) { int seed; int a_type; int w_type; string title; string if_weighted; string if_help; const char *file_network; const char *file_names; if ( argc != 5 ) { printHelpMessage( argv[0] ); } if_help = argv[1]; if( if_help.compare("-h") == 0 || if_help.compare("-help") == 0 ) { printHelpMessage( argv[0] ); } seed = atoi(argv[1]); cout << "> seed is " << seed << endl; //--- Initialize random seed: _rand.setSeed(seed); a_type = atoi(argv[2]); if( a_type < 1 || a_type > 3 ) { cout << "argument 2: the type of algorithm to run needs to be either (1,2,3): " << endl; cout << " : 1 = Geodesic edge Betweenness" << endl; cout << " : 2 = Random edge Betweenness" << endl; cout << " : 3 = Spectral Betweenness" << endl; exit(1); } switch(a_type) { case 1: cout << "> Using Geodesic edge Betweenness." << endl; title = "Geodesic edge Betweenness."; break; case 2: cout << "> Using Random edge Betweenness." << endl; title = "RandomWalk edge Betweenness."; break; case 3: cout << "> Using Spectral Betweenness." << endl; title = "Spectral Betweenness."; break; default: break; } if_weighted = argv[3]; if( if_weighted.compare("w") == 0 ) { w_type = 3; cout << "> Using a weighted network " << endl; } else { if( if_weighted.compare("nw") == 0 ) { w_type = 2; cout << "> Using a non-weighted network " << endl; } else { cout << "argument 3: specify if network file is weighted or not: " << endl; cout << " : w = Using a weighted network file " << endl; cout << " : nw = Using a non-weighted network file " << endl; exit(1); } } file_network = argv[4]; //--- Default values for parameters which may be modified from the commandline ihelper = Helper(); reader.readFile(file_network, w_type); Gn = reader.getNodeSet(); Gelist = reader.getEdgeSet(); vector<int> key_listi; vector<int> key_listj; vector<int> key_listk; cout << "> The Global node list..." << endl; for(int i=1; i<Gn.size(); i++) { key_listi.push_back(Gn[i].ID); key_listj.push_back(Gn[i].ID); key_listk.push_back(-1); Gn[i].print(); Gn[i].printEdges(); } //--- To use getSubSample, comment following two lines, and //--- uncomment getSubSample(key_listj). n = Gn; elist = Gelist; //getSubSample(key_listj); //cout << "The sub-node list ... " << endl; //for(int i=1; i<n.size(); i++){ //n[i].print(); //n[i].printEdges(); //} cout << "> The Global edge list..." << endl; for(int i=0; i<elist.size(); i++) { elist[i].print(); } forcytoscape = new fstream("OUT/communities_newman.txt",ios_base::out); (*forcytoscape) << "communities" << endl; removededges = new fstream("OUT/removededges.txt",ios_base::out); (*removededges) << "Removed Edges" << endl; (*removededges) << "so \t IDso \t si \t IDsi \t we \t Globalweight \t key" << endl; totallist = ihelper.cloneEdgeList(elist); com_max = 0; specQ = 0.0; double Q = 0.0; double Q_SD = 0.0; double Q_old = 0.0; double Q_SD_old = 0.0; int loop = elist.size(); int E = loop; double Q_max = 0.0; double Q_limit = 1.0; bool stopping = false; int N = n.size()-1; R.resize(N,N); Ri.resize(N,N); A.resize(N,N); Ai.resize(N,N); Bi.resize(N,N); C.resize(N); S.resize(N,1); V.resize(N,1); T.resize(N,N); Ti.resize(N,N); Rc.resize((N-1),(N-1)); Vi.resize(C.size(),1); B.resize(N,N); Bm.resize(N,N); Bgi.resize(N,N); keys_p.resize(N); keys_n.resize(N); u.resize(N,N); //eigenvectors betai.resize(N);//eigenvalues SI.resize(N,2); si.resize(N); visited.resize(N); setupMatrices(); cout << "> Running " << title.c_str() << endl; cstart = clock(); if( a_type == 3 ) { //--- Calculate betweenness using the Spectral algorithm calculateSpectralModularity(); } else { while( loop !=0 && !stopping ) { int old_max_com = com_max; //--- Calculate betweenness using Geodesic or RandomWalk algorithms if( a_type == 1 ) calculateEdgeBetweennessGeodesic(); else calculateEdgeBetweennessRandom(); //--- Calculate the Modularity Q_old = Q; Q_SD_old = Q_SD; Q = 0.0; Q_SD = 0.0; Modularity(Q, Q_SD); //--- Store networks state if Modularity has increased during this iteraction if(com_max > old_max_com) { vec_mod.push_back(Q); vec_mod_err.push_back(Q_SD); vec_com_max.push_back(com_max); vec_nodes.push_back(storeNodes()); } //--- Record the maximum Modularity value if( Q > Q_max ) { Q_max = Q; } else { if( Q_max > 0.0 && (Q_max - Q)/Q_max > Q_limit ) stopping = true; } //--- Find edge with maximum edge betweenness score and remove edge _max; _max = totallist[1].Clone(); for(int i=1; i<totallist.size(); i++) { if( totallist[i].removed == false ) { if(totallist[i].we >= _max.we) { if(totallist[i].we > _max.we) _max = totallist[i]; else { int rdm = rand()%2; if(rdm == 1) _max = totallist[i]; } } } totallist[i].we = 0; } //--- Record the removed edges. _max.print( removededges ); n[elist[_max.key-1].so].removeEdge(_max.key); n[elist[_max.key-1].si].removeEdge(_max.key); n[elist[_max.key-1].so].setDegree( (n[elist[_max.key-1].so].getDegree() - 1) ); n[elist[_max.key-1].si].setDegree( (n[elist[_max.key-1].si].getDegree() - 1) ); totallist[_max.key].removed = true; elist[_max.key-1].removed = true; --loop; //--- Calculate the remaining processor time DrawProgressBar( 20, ((double)E - (double)loop)/(double)E ); } } //--- Recored the CPU-time taken cend = clock(); double cpu_time_used = ((double) (cend - cstart)) / CLOCKS_PER_SEC; cout << "" << endl; cout << "> cputime: " << cpu_time_used << " seconds " << endl; cout << "> Network (nodes): " << N << " (edges): " << E << endl; if( a_type != 3 ) { //--- Print all stored Modularity values modularityscore = new fstream("OUT/modularityscore.txt",ios_base::out); (*modularityscore) << title.c_str() << endl; for(int i=0; i<vec_mod.size(); i++) { (*modularityscore) << vec_mod[i] << " " << vec_mod_err[i] << " " << vec_com_max[i] << endl; } modularityscore->close(); int ind = findMax(vec_mod); int com = 1; int _size = 0; int c_max = com_max; //--- Print node communities for maximum Modularity value, for Geodesic or RandomWalk runs communityout = new fstream("OUT/communityout.txt",ios_base::out); (*communityout) << "Max Q: " << vec_mod[ind] << " +- " << vec_mod_err[ind] << endl; (*communityout) << "cputime: " << cpu_time_used << " seconds " << endl; (*communityout) << "Network (nodes): " << N << " (edges): " << E << endl; while(com<(c_max+1)) { _size = 0; for(int i=0; i<vec_nodes[ind].size(); i++) { if(vec_nodes[ind][i].c == com ) { (*communityout) << vec_nodes[ind][i].ID << "\t" << vec_nodes[ind][i].c << endl; //vec_nodes[ind][i].print( communityout ); _size++; } } if(_size != 0) (*communityout) << "community: " << com << " size: " << _size << endl; com++; } for(int i=0; i<vec_nodes[ind].size(); i++) { for(int j=0; j<key_listi.size(); j++) { if(vec_nodes[ind][i].ID == key_listi[j]) { key_listk[j] = vec_nodes[ind][i].c; break; } } } //--- Print node communities for maximum Modularity for the consensus matrix consensusout = new fstream("OUT/consensusout.txt",ios_base::out); (*consensusout) << "key list" << endl; for(int i=0; i<key_listi.size(); i++) { if(key_listk[i] == -1 && key_listj[i] != -1) key_listj[i] = -1; (*consensusout) << key_listi[i] << " " << key_listj[i] << " " << key_listk[i] << endl; //(*consensusout) << key_listi[i] << " = " << key_listk[i] << endl; (*forcytoscape) << key_listi[i] << " = " << key_listk[i] << endl; cout << key_listi[i] << " " << key_listj[i] << " " << key_listk[i] << endl; } } else { int com = 1; int _size = 0; int c_max = maxCommunity(); //--- Store node communities for maximum Modularity for the Spectral Modularity run communityout = new fstream("OUT/communityout.txt",ios_base::out); (*communityout) << "communityout" << endl; (*communityout) << "Max Q: " << specQ << endl; (*communityout) << "cputime: " << cpu_time_used << " seconds " << endl; (*communityout) << "Network (nodes): " << N << " (edges): " << E << endl; while(com<(c_max+1)) { _size = 0; for(int i=0; i<n.size(); i++) { if(n[i].c == com ) { n[i].print( communityout ); _size++; } } if(_size != 0) (*communityout) << "community: " << com << " size: " << _size << endl; com++; } for(int i=1; i<n.size(); i++) { for(int j=0; j<key_listi.size(); j++) { if(n[i].ID == key_listi[j]) { key_listk[j] = n[i].c; break; } } } //--- Print node communities for maximum Modularity the consensus matrix consensusout = new fstream("OUT/consensusout.txt",ios_base::out); (*consensusout) << "key list" << endl; for(int i=0; i<key_listi.size(); i++) { if(key_listk[i] == -1 && key_listj[i] != -1) key_listj[i] = -1; (*consensusout) << key_listi[i] << " " << key_listj[i] << " " << key_listk[i] << endl; //(*consensusout) << key_listi[i] << " = " << key_listk[i] << endl; (*forcytoscape) << key_listi[i] << " = " << key_listk[i] << endl; cout << key_listi[i] << " " << key_listj[i] << " " << key_listk[i] << endl; } } //--- Remove data structures communityout->close(); forcytoscape->close(); vec_mod.clear(); vec_mod_err.clear(); vec_nodes.clear(); exit(1); }
solver_wave(VecDoub ppara1,Doub ssavedt,VecDoub dDI,VecDoub eexcitimes,VecDoub iinf, VecDoub ssup):para1(ppara1),savedt(ssavedt),DI(dDI),excitimes(eexcitimes),inf(iinf),sup(ssup),para(NDIM,0.0),u(NX,0.0),v(NX,0.0),w(NX,0.0),d(NX,0.0),xfi(NX,0.0),xso(NX,0.0),xsi(NX,0.0),nexcs(NEXCITE,0),v70(100),v30(100) { //tvmm=10; uo=0.0; um=1.0; una=0.23; //t=0.0; savepoints=int(TOTALTIME/savedt); for (int j=0; j<NX; j++) { u[j]=0; v[j]=1; w[j]=1; d[j]=0; } for (int i=0; i<NDIM; i++) { para[i]=exp(para1[i])/(exp(para1[i])+1); para[i]=inf[i]+para[i]*(sup[i]-inf[i]); //printf("para[%i] is %f\n",i,para[i]); } numt=int(TOTALTIME/DT); uc=para[0]; //threshold uv=para[1]; //fast gate threshold, determines whethere tvm or tvmm is active (chaos 8) uw=para[2]; //slow gate threshold ud=para[3]; //threshold tvm=para[4]; //controls minimum diastolic interval where CV occurs (chaos 8) tvp=para[5]; //fast gate closing time twm=para[6]; //slow gate opening time (changes APD shape?) twp=para[7]; //slow gate closing time (shifts APD up/down?) tsp=para[8]; //d-gate variables tsm=para[9]; ucsi=para[10]; xk=para[11]; //typically around 10 td=para[12]; //fast current time variable, determines max CV to=para[13]; //ungated time constant tsoa=para[14]; //curve shape/APD, ungated time, adjusts DI tsob=para[15]; //ungated time. Easily adjusts DI, changes APD uso=para[16]; xtso=para[17]; tsi=para[18]; //slow current time variable, max APD D=para[19]; //related to density, mostly changes CV, but can effect everything tvmm=para[20]; //controls the steepness of the CV curve (chaos 8) //um=para[21]; //related to maximum AP, set to 1 //una=para[21]; //threshold. Um,una have little effect on APD for (int i=0; i<NEXCITE; i++) { nexcs[i]=int(excitimes[i]/DT); //printf("%f, %f \n",nexcs[i]*DT,excitimes[i]); } //voltage.resize(savepoints, NX); v70.resize(savepoints); v30.resize(savepoints); //for (int i=0; i<savepoints; i++) //for (int j=0; j<NX; j++) //{ // voltage[i][j]=0.0; //} success=true; }