Ejemplo n.º 1
0
template<typename VectorType> void vectorSum(const VectorType& w)
{
  typedef typename VectorType::Scalar Scalar;
  int size = w.size();

  VectorType v = VectorType::Random(size);
  for(int i = 1; i < size; i++)
  {
    Scalar s = Scalar(0);
    for(int j = 0; j < i; j++) s += v[j];
    VERIFY_IS_APPROX(s, v.start(i).sum());
  }

  for(int i = 0; i < size-1; i++)
  {
    Scalar s = Scalar(0);
    for(int j = i; j < size; j++) s += v[j];
    VERIFY_IS_APPROX(s, v.end(size-i).sum());
  }

  for(int i = 0; i < size/2; i++)
  {
    Scalar s = Scalar(0);
    for(int j = i; j < size-i; j++) s += v[j];
    VERIFY_IS_APPROX(s, v.segment(i, size-2*i).sum());
  }
}
Ejemplo n.º 2
0
template<typename VectorType> void vectorRedux(const VectorType& w)
{
  using std::abs;
  typedef typename VectorType::Index Index;
  typedef typename VectorType::Scalar Scalar;
  typedef typename NumTraits<Scalar>::Real RealScalar;
  Index size = w.size();

  VectorType v = VectorType::Random(size);
  VectorType v_for_prod = VectorType::Ones(size) + Scalar(0.2) * v; // see comment above declaration of m1_for_prod

  for(int i = 1; i < size; i++)
  {
    Scalar s(0), p(1);
    RealScalar minc(numext::real(v.coeff(0))), maxc(numext::real(v.coeff(0)));
    for(int j = 0; j < i; j++)
    {
      s += v[j];
      p *= v_for_prod[j];
      minc = (std::min)(minc, numext::real(v[j]));
      maxc = (std::max)(maxc, numext::real(v[j]));
    }
    VERIFY_IS_MUCH_SMALLER_THAN(abs(s - v.head(i).sum()), Scalar(1));
    VERIFY_IS_APPROX(p, v_for_prod.head(i).prod());
    VERIFY_IS_APPROX(minc, v.real().head(i).minCoeff());
    VERIFY_IS_APPROX(maxc, v.real().head(i).maxCoeff());
  }

  for(int i = 0; i < size-1; i++)
  {
    Scalar s(0), p(1);
    RealScalar minc(numext::real(v.coeff(i))), maxc(numext::real(v.coeff(i)));
    for(int j = i; j < size; j++)
    {
      s += v[j];
      p *= v_for_prod[j];
      minc = (std::min)(minc, numext::real(v[j]));
      maxc = (std::max)(maxc, numext::real(v[j]));
    }
    VERIFY_IS_MUCH_SMALLER_THAN(abs(s - v.tail(size-i).sum()), Scalar(1));
    VERIFY_IS_APPROX(p, v_for_prod.tail(size-i).prod());
    VERIFY_IS_APPROX(minc, v.real().tail(size-i).minCoeff());
    VERIFY_IS_APPROX(maxc, v.real().tail(size-i).maxCoeff());
  }

  for(int i = 0; i < size/2; i++)
  {
    Scalar s(0), p(1);
    RealScalar minc(numext::real(v.coeff(i))), maxc(numext::real(v.coeff(i)));
    for(int j = i; j < size-i; j++)
    {
      s += v[j];
      p *= v_for_prod[j];
      minc = (std::min)(minc, numext::real(v[j]));
      maxc = (std::max)(maxc, numext::real(v[j]));
    }
    VERIFY_IS_MUCH_SMALLER_THAN(abs(s - v.segment(i, size-2*i).sum()), Scalar(1));
    VERIFY_IS_APPROX(p, v_for_prod.segment(i, size-2*i).prod());
    VERIFY_IS_APPROX(minc, v.real().segment(i, size-2*i).minCoeff());
    VERIFY_IS_APPROX(maxc, v.real().segment(i, size-2*i).maxCoeff());
  }
  
  // test empty objects
  VERIFY_IS_APPROX(v.head(0).sum(),   Scalar(0));
  VERIFY_IS_APPROX(v.tail(0).prod(),  Scalar(1));
  VERIFY_RAISES_ASSERT(v.head(0).mean());
  VERIFY_RAISES_ASSERT(v.head(0).minCoeff());
  VERIFY_RAISES_ASSERT(v.head(0).maxCoeff());
}