Ejemplo n.º 1
0
void
AutoCorrelation::myProcess(realvec& in, realvec& out)
{





  mrs_natural t,o;
  k_ = ctrl_magcompress_->to<mrs_real>();

  // Copy to output to perform inplace fft and zeropad to double size

  scratch_.create(fftSize_); //scratch_ needs to be reset every time
  for (o=0; o < inObservations_; o++)
  {
    for (t=lowSamples_; t < (lowSamples_+numSamples_); t++)
    {
      scratch_(t-(lowSamples_)) = in(o,t);
    }





    //zeropad
    for(t=(lowSamples_+numSamples_); t < fftSize_; t++)
      scratch_(t) = 0.0;


    //get pointer to data (THIS BREAKS ENCAPSULATION! FIXME [!])
    mrs_real *tmp = scratch_.getData();

    //compute forward FFT (of size fftSize_)
    myfft_->rfft(tmp, fftSize_/2, FFT_FORWARD); //rfft() takes as second argument half of the desired FFT size (see fft.cpp)

    // Special case for zero and Nyquist/2,
    // which only have real part
    if (k_ == 2.0)
    {
      re_ = tmp[0];
      tmp[0] = re_ * re_;
      re_ = tmp[1];
      tmp[1] = re_ * re_;
    }
    else
    {
      re_ = tmp[0];
      re_ = sqrt(re_ * re_);
      tmp[0] = pow(re_, k_);
      re_ = tmp[1];
      re_ = sqrt(re_ * re_);
      tmp[1] = pow(re_, k_);
    }

    // Compress the magnitude spectrum and zero
    // the imaginary part.
    for (t=1; t < fftSize_/2; t++)
    {
      re_ = tmp[2*t];
      im_ = tmp[2*t+1];
      if (k_ == 2.0)
        am_ = re_ * re_ + im_ * im_;
      else
      {
        am_ = sqrt(re_ * re_ + im_ * im_);
        am_ = pow(am_, k_);
      }
      tmp[2*t] = am_;
      tmp[2*t+1] = 0;
    }

    // Take the inverse Fourier Transform (of size fftSize_)
    myfft_->rfft(tmp, fftSize_/2, FFT_INVERSE);

    // Copy result to output
    if(normalize_)
    {
      for (t=0; t < onSamples_; t++)
      {
        out(o,t) = scratch_(t)*norm_(t);
      }
    }
    else
      for (t=0; t < onSamples_; t++)
      {
        // out(o,t) = 0.1 * scratch_(t) + 0.99 * out(o,t);
        out(o,t) = 1.0 * scratch_(t) + 0.0 * out(o,t);
        // out(o,t) = 0.5 * scratch_(t) + 0.5 * out(o,t);
        // out(o,t) +=  scratch_(t);

      }

  }


  if (ctrl_makePositive_->to<mrs_bool>())
  {
    out -= out.minval();
  }

  if(octaveCost_) //is there a reference for this octaveCost computation [?]
  {
    for (o=0; o < inObservations_; o++)
    {
      mrs_real maxOut = 0;
      for (t=1 ; t<onSamples_/2 ; t++)
        if (out(o, t)> out(o, t+1) && out(o, t) > out(o, t-1) && out(o, t)>maxOut)
          maxOut = out(o, t) ;
      cout << maxOut/out(o, 0)<< " " << 1+voicing_ << endl;

      if(maxOut && maxOut/out(o, 0) > 1-voicing_)
        for (t=1; t < onSamples_; t++)
          out(o, t) += octaveMax_-octaveCost_*log(36.0*t);
      else
        out.setval(0);
    }
  }

  if (ctrl_setr0to1_->to<mrs_bool>())
  {
    // out -= out.minval();

    /* for (o=0; o < onObservations_; o++)
      for (t=0; t< onSamples_-1; t++)
    {
    out(o,t) = out(o,t) / (onSamples_ - 1 - t);
    if (t > onSamples_-1-100)
      out(o,t) = 0.0;
    }
    */
    // mrs_real myNorm = out(0,0);
    // if (myNorm > 0)
    // out	/= myNorm;
  }

  if (ctrl_setr0to0_->to<mrs_bool>())
  {
    for (o=0; o < onObservations_; o++)
      for (t=0; t < onSamples_; t++)
      {
        out(o,t) = out(o,t);
      }
  }
}