Ejemplo n.º 1
0
double
HMM::forwardProcedureCached() {

  //initialisation
  alpha_.col(0) = arma::trans(pi_ % B_.row(0));

  c_(0) = arma::accu(alpha_.col(0));
  alpha_.col(0) /= arma::as_scalar(c_(0));

  //alpha_.print("alpha");
  //c_.print("scale");
  //iteration
  for(unsigned int t = 1; t < T_; ++t) {
    alpha_.col(t) = (A_.t() * alpha_.col(t-1)) % arma::trans(B_.row(t));
    c_(t) = arma::accu(alpha_.col(t));
    alpha_.col(t) /= arma::as_scalar(c_(t)); 
  }

  pprob_ = arma::accu(arma::log(c_));
  return pprob_;
}
Ejemplo n.º 2
0
arma::vec dmvn_arma(arma::mat x,  
                          arma::mat mean,  
                          arma::mat sigma, 
                          bool logd = false) { 
      int n = x.n_rows;
      int xdim = x.n_cols;
      arma::vec out(n);
      arma::mat rooti = arma::trans(arma::inv(trimatu(arma::chol(sigma))));
      double rootisum = arma::sum(log(rooti.diag()));
      double constants = -(static_cast<double>(xdim)/2.0) * log2pi;
      
      for (int i=0; i < n; i++) {
        arma::vec z = rooti * arma::trans( x.row(i) - mean.row(i)) ;    
        out(i)      = constants - 0.5 * arma::sum(z%z) + rootisum;     
      }  
      
      if (logd == false) {
        out = exp(out);
      }
      return(out);
    }
Ejemplo n.º 3
0
// [[Rcpp::export]]
arma::vec MCMCloglikelihoodNegBinomCpp_t(const arma::vec& beta, const arma::mat& sigma, double alpha, const arma::vec& sigmaType, const arma::mat& u, 
const arma::vec& df, const arma::vec& kKi, const arma::vec& kLh, const arma::vec& kLhi, const arma::vec& kY, const arma::mat& kX, const arma::mat& kZ) {
  int kM = u.n_rows;  /** Number of MCMC samples */
  arma::vec loglike(kM);
  loglike.fill(0);
  
  for (int i = 0; i < kM; i++) {
    loglike(i) = loglikelihoodNegBinomCpp_t(beta, sigma, alpha, sigmaType, u.row(i).t(), df, kKi, kLh, kLhi, kY, kX, kZ);
  }
  
  return loglike;
}
Ejemplo n.º 4
0
// [[Rcpp::export]]
arma::vec MCMCloglikelihoodGammaCpp_n(const arma::vec& beta, const arma::mat& sigma, double alpha, 
const arma::mat& u, const arma::vec& kY, const arma::mat& kX, const arma::mat& kZ) {
  int kM = u.n_rows;
  arma::vec loglike(kM);
  loglike.fill(0);
  
  for (int i = 0; i < kM; i++) {
    loglike(i) = loglikelihoodGammaCpp_n(beta, sigma, alpha, u.row(i).t(), kY, kX, kZ);
  }
  
  return loglike;
}
Ejemplo n.º 5
0
// [[Rcpp::export]]
Rcpp::List CTCRWNLL(const arma::mat& y, const  arma::mat& Hmat, 
                    const arma::vec& beta, const arma::vec& sig2, const arma::vec& delta,
                    const arma::vec& noObs,const arma::vec& active, const arma::colvec& a,
                    const arma::mat& P)
{
  // Define fixed matrices
  int N = y.n_rows;
  double detF;
  arma::mat Z(2,4, fill::zeros);
  Z(0,0) = 1; Z(1,2) = 1;
  arma::mat T(4,4);
  arma::mat Q(4,4);
  arma::mat F(2,2, fill::zeros);
  arma::mat H(2,2, fill::zeros);
  arma::mat K(4,2, fill::zeros);
  arma::mat L(4,4, fill::zeros);
  arma::colvec v(2, fill::zeros);
  arma::colvec aest(4);
  aest=a;
  arma::mat Pest(4,4);
  Pest=P;
  double ll=0;
  //Begin Kalman filter
  for(int i=0; i<N; i++){
    T = makeT(beta(i), delta(i), active(i));
    Q = makeQ(beta(i), sig2(i), delta(i), active(i));
    // prediction
    if(noObs(i)==1){
      aest = T*aest;
      Pest = T*Pest*T.t() + Q;
    } else {
      H(0,0) = Hmat(i,0); 
      H(1,1) = Hmat(i,1); 
      H(0,1) = Hmat(i,2); 
      H(1,0) = Hmat(i,2);
      v = y.row(i).t()-Z*aest;
      F = Z*Pest*Z.t() + H; 
      detF = F(0,0)*F(1,1) - F(1,0)*F(0,1);
      if(detF<=0){
        aest = T*aest;
        Pest = T*Pest*T.t() + Q;
      } else{
        ll += - (log(detF) + dot(v,solve(F,v)))/2; 
        // K = T*Pest*Z.t()*inv_sympd(F);  
        K = T*Pest*Z.t()*F.i();
        L = T - K*Z;
        aest = T*aest + K*v;
        Pest = T*Pest*L.t() + Q;
      }
    }
  }
  return Rcpp::List::create(Rcpp::Named("ll") = ll);
}
Ejemplo n.º 6
0
void GMM::sample(arma::mat& X){
    std::size_t k;
    arma::vec tmp;
    dist = boost::random::discrete_distribution<>(pi);
    for(std::size_t i = 0; i < X.n_rows;i++){

        k  =  dist(generator);
        A[k]*arma::randn<arma::vec>(D);
        tmp = Means[k] + A[k]*arma::randn<arma::vec>(D);
        X.row(i) = tmp.st();
    }
}
Ejemplo n.º 7
0
List FFBS(const arma::mat& allprobs, const arma::vec& delta,
          const arma::mat& mGamma, const int& K, const int& T) {
  arma::mat lalpha = zeros(K, T);
  arma::mat lbeta = zeros(K, T);

  arma::vec foo(K);
  double sumfoo, lscale;
  int i;

  foo = delta % allprobs.row(0).t();
  sumfoo = sum(foo);
  lscale = log(sumfoo);
  foo = foo / sumfoo;

  lalpha.col(0) = log(foo) + lscale;
  for (i = 1; i < T; i++) {
    foo = (foo.t() * mGamma).t() % allprobs.row(i).t();
    sumfoo = sum(foo);
    lscale = lscale + log(sumfoo);
    foo = foo / sumfoo;
    lalpha.col(i) = log(foo) + lscale;
  }
  for (i = 0; i < K; i++) {
    foo(i) = 1.0 / K;
  }
  lscale = log((double)K);
  for (i = T - 2; i >= 0; i--) {
    foo = mGamma * (allprobs.row(i + 1).t() % foo);
    lbeta.col(i) = log(foo) + lscale;
    sumfoo = sum(foo);
    foo = foo / sumfoo;
    lscale = lscale + log(sumfoo);
  }

  List FS;
  FS["lalpha"] = lalpha;
  FS["lbeta"] = lbeta;

  return FS;
}
Ejemplo n.º 8
0
// [[Rcpp::export]]
arma::mat gillespie_next(arma::vec theta, arma::vec init_state, arma::mat trans, LogicalMatrix depend, int t_end, bool info = false){
  
  int n_event = trans.n_rows;
  int j_event;
  
  Progress p(0, false); //progress to check for user interrupt
  
  //initialize trace of Monte Carlo simulation
  arma::mat trace = arma::zeros(1,init_state.n_elem);
  trace.row(0) = init_state.t();
  arma::vec current_state;
  arma::vec current_rates;
  
  //main simulation loop
  double time = 0.0;
  int i = 1;
  
  while(time <= t_end){
    
    //check for user abort
    if(Progress::check_abort()){
      Rcout << "User abort detected at time: " << time << ", i: " << i << std::endl;
      return(arma::zeros(2,2));
    }
    
    if(info){ //print simulation details
      Rcout << "time: " << time << ", i: " << i << std::endl;  
    }
    
    current_state = trace.row(i-1).t(); //extract state at beginning of time jump
    
    if(i == 1){
      current_rates = rate_wrapper(theta,current_state,seirs_demography_rate); //calculate initial rates   
    } else {
      current_rates = update_rates_seirs_demography(theta,current_rates,current_state,depend,j_event); //update rates based on dependency graph
    }
    
    arma::vec tau(n_event); //calculate vector of times to next event
    for(int j=0; j<n_event; j++){
      tau(j) = (-1 / current_rates(j)) * log(R::runif(0,1));
    }

    j_event = tau.index_min(); //fire j_event
    current_state = current_state + trans.row(j_event).t(); //update the current state
    trace.insert_rows(i,current_state.t());
    
    time = time + tau(j_event); //update time
    i++; //update iterator
  }
  
  return(trace);
}
inline void SVDIncompleteIncrementalLearning::
                              HUpdate<arma::sp_mat>(const arma::sp_mat& V,
                                                    const arma::mat& W,
                                                    arma::mat& H)
{
  arma::mat deltaH(H.n_rows, 1);
  deltaH.zeros();

  for(arma::sp_mat::const_iterator it = V.begin_col(currentUserIndex);
                                        it != V.end_col(currentUserIndex);it++)
  {
    double val = *it;
    size_t i = it.row();
    if((val = V(i, currentUserIndex)) != 0)
      deltaH += (val - arma::dot(W.row(i), H.col(currentUserIndex))) *
                                                    arma::trans(W.row(i));
  }
  if(kh != 0) deltaH -= kh * H.col(currentUserIndex);

  H.col(currentUserIndex++) += u * deltaH;
  currentUserIndex = currentUserIndex % m;
}
Ejemplo n.º 10
0
arma::mat hCoef(const arma::mat& weights, const arma::mat& X) {

  int p = X.n_cols;
  arma::mat hess(p * (weights.n_rows - 1), p * (weights.n_rows - 1), arma::fill::zeros);
  for (unsigned int i = 0; i < X.n_rows; i++) {
    arma::mat XX = X.row(i).t() * X.row(i);
    for (unsigned int j = 0; j < (weights.n_rows - 1); j++) {
      for (unsigned int k = 0; k < (weights.n_rows - 1); k++) {
        if (j != k) {
          hess.submat(j * p, k * p, (j + 1) * p - 1, (k + 1) * p - 1) += XX * weights(j + 1, i)
              * weights(k + 1, i);
        } else {
          hess.submat(j * p, j * p, (j + 1) * p - 1, (j + 1) * p - 1) -= XX * weights(j + 1, i)
              * (1.0 - weights(j + 1, i));

        }

      }
    }
  }
  return hess;
}
Ejemplo n.º 11
0
//--------------------------------------------------------------------------------------------------
List variogram( const arma::mat& Z,
                const arma::mat& X, 
                Function d ) {
  int i, j, k;
  int n = X.n_rows;
  int N = n * ( n + 1 ) / 2;
  
  std::vector< int > I( N );
  arma::rowvec x, y;
  arma::colvec V( N );
  arma::colvec D( N );
  arma::colvec S( N );
  
  List Varg;
  
  for ( i = 0; i < N; i++ ) { 
    I[i] = i;
  }
  
  k = 0;
  for ( i = 0; i < n; i++ ) { 
    for ( j = i; j < n; j++ ) {
      x = X.row( i );
      y = X.row( j );
      
      D(k) = as<double>( d( x, y ) );
      S(k) = ( Z(i,0) - Z(j,0) ) * ( Z(i,0) - Z(j,0) );
    
      k++;
    }
  }
  
  sort( I.begin(), I.end(),
       [&]( const int& k, const int& l ) {
         return ( D(k) < D(l) );
       }
  );
  
  V( 0 ) = S( I[0] );
  for ( k = 1; k < N; k++ ) {
    V( k ) = ( V( k - 1 ) * k + S( I[ k ] ) ) / ( k + 1.0 );
  }
  V = 0.5 * V;
  
  Varg[ "variogram" ] = V;
  Varg[ "distance" ] = D;
  Varg[ "sort" ] = I;
  
  return Varg;
}
RegularizedSVDFunction::RegularizedSVDFunction(const arma::mat& data,
                                               const size_t rank,
                                               const double lambda) :
    data(data),
    rank(rank),
    lambda(lambda)
{
  // Number of users and items in the data.
  numUsers = max(data.row(0)) + 1;
  numItems = max(data.row(1)) + 1;

  // Initialize the parameters.
  initialPoint.randu(rank, numUsers + numItems);
}
Ejemplo n.º 13
0
// [[Rcpp::export]]
arma::mat gillespie_direct(arma::vec theta, arma::vec init_state, arma::mat trans, int t_end, bool info = false){
  
  Progress p(0, false); //progress to check for user interrupt
  
  //initialize trace of Monte Carlo simulation
  arma::mat trace = arma::zeros(1,init_state.n_elem);
  trace.row(0) = init_state.t();
  arma::vec current_state;
  
  //main simulation loop
  double time = 0.0;
  int i = 1;
  
  while(time <= t_end){
    
    //check for user abort
    if(Progress::check_abort()){
      Rcout << "User abort detected at time: " << time << ", i: " << i << std::endl;
      return(arma::zeros(2,2));
    }
    
    if(info){ //print simulation details
      Rcout << "time: " << time << ", i: " << i << std::endl;  
    }
    
    current_state = trace.row(i-1).t(); //extract state at beginning of time jump
    arma::vec current_rates = rate_wrapper(theta,current_state,sir_rate); //calculate current rates
    
    double w0 = sum(current_rates); //sum of rate (propensity) functions
    double tau = 1/w0 * log(1/R::runif(0,1)); //calculate time to next reaction
    
    double r_num = R::runif(0,1);
    double w0_rxn = r_num * w0; //instantaneous event probabilities
    
    //decide which event j occured
    int j = 0;
    while(sum(current_rates.subvec(0,j)) < w0_rxn){
      j++;
    }
    
    current_state = current_state + trans.row(j).t(); //update the current state
    trace.insert_rows(i,current_state.t());
    
    time = time + tau; //update time
    i++; //update iterator
  }
  
  return(trace);
}
Ejemplo n.º 14
0
arma::uvec generate_categoricals(arma::uvec zlabels, arma::mat probs) {
    int ndata = zlabels.n_elem;
    int nclusters = probs.n_rows;
    
    std::vector<boost::random::discrete_distribution<> > cat_dists;
    for (int k=0; k<nclusters; k++) {
        std::vector<double> probs_k = arma::conv_to<std::vector<double> >::from(probs.row(k));
        cat_dists.push_back(boost::random::discrete_distribution<> (probs_k.begin(), probs_k.end()));
    }
    arma::uvec categories(ndata);
    for (int i=0; i<ndata; i++) {
        categories(i) = cat_dists[zlabels(i)](rng);
    }
    return categories;
}
Ejemplo n.º 15
0
// [[Rcpp::export]]
arma::mat gillespie_first(arma::vec theta, arma::vec init_state, arma::mat trans, int t_end, bool info = false){

  int n_event = trans.n_rows;
  
  Progress p(0, false); //progress to check for user interrupt
  
  //initialize trace of Monte Carlo simulation
  arma::mat trace = arma::zeros(1,init_state.n_elem);
  trace.row(0) = init_state.t();
  arma::vec current_state;
  
  //main simulation loop
  double time = 0.0;
  int i = 1;
  
  while(time <= t_end){
    
    //check for user abort
    if(Progress::check_abort()){
      Rcout << "User abort detected at time: " << time << ", i: " << i << std::endl;
      return(arma::zeros(2,2));
    }
    
    if(info){ //print simulation details
      Rcout << "time: " << time << ", i: " << i << std::endl;  
    }
    
    current_state = trace.row(i-1).t(); //extract state at beginning of time jump
    arma::vec current_rates = rate_wrapper(theta,current_state,sir_rate); //calculate current rates
    
    arma::vec rand; //create vector of U[0,1]
    rand = as<arma::vec>(runif(n_event));
    
    arma::vec tau(n_event); //calculate vector of times to next event
    for(int j=0; j<n_event; j++){
      tau(j) = (-1 / current_rates(j)) * log(rand(j));
    }
    
    int first_rxn = tau.index_min(); //which even occurs first
    current_state = current_state + trans.row(first_rxn).t(); //update the current state
    trace.insert_rows(i,current_state.t());
    
    time = time + tau(first_rxn); //update time
    i++; //update iterator
  }
  
  return(trace);
}
Ejemplo n.º 16
0
void
HMM::backwardProcedureCached() {


  beta_.col(T_-1).fill(1./c_(T_-1));

  //temporary probabilities
  arma::vec b(N_);

  //iteration
  for(unsigned int t = T_-1; t > 0; --t) {
    beta_.col(t-1) = A_ * (arma::trans(B_.row(t)) % beta_.col(t));
    beta_.col(t-1) /= arma::as_scalar(c_(t-1)); 

  }
}
Ejemplo n.º 17
0
void sampleSparseLoadingsJ(arma::mat& Z, arma::mat& A, arma::mat& F, Rcpp::NumericVector& tauinv, 
							 Rcpp::NumericVector& sigma2inv, Rcpp::NumericVector& error_var_i,
						   Rcpp::NumericVector& rho, arma::mat& A_restrict, Rcpp::NumericMatrix& pnz, 
						   int n, int p, int k, int px, double A_prior_var ){
    
  arma::mat t, uvector, Ap_var, Ap_means, FFt;
  arma::vec sumf2 = arma::sum(arma::pow(F, 2), 1);
  double r = 1.0, samp = 0.0;

  if (px>0) {
	  FFt = F*arma::trans(F);
	  /*Ap_var = arma::inv(FFt + (1/A_prior_var)*arma::eye(k,k));
	  Ap_means = Ap_var*F*trans(Z);*/
  }
  
  
  double u=0.0, uu=0.0, v=0.0, loglog=0.0, logc=0.0;
  for (int i=0; i<p; i++) {
    
    //PX step
    if (px>0 && error_var_i(i)<1.0) {
      Ap_var = inv(FFt*sigma2inv(i) + (1/A_prior_var)*eye(k,k));
      Ap_means = Ap_var*F*trans(Z.row(i))*sigma2inv(i);
      double ssq = accu(square(trans(Z.row(i)) - trans(F)*Ap_means));
      double prior_ssq = as_scalar(trans(Ap_means) * Ap_means)/A_prior_var;
      double scale = 2.0/(ssq + prior_ssq);
      r = Rf_rgamma(0.5*n, scale);
    } else {
      r = 1.0;
    }
    
		for (int j=0; j<k; j++){
			if (A_restrict(i,j) > 0) { //nonzero
				t = Z.row(i) - A.row(i)*F + A(i,j)*F.row(j);
				u = arma::accu(F.row(j)%t)*sqrt(r)*sigma2inv(j);
				v = sumf2(j)*sigma2inv(j) + tauinv[i];
				if (A_restrict(i,j) > 1) { //strictly positive
					double lo = Rcpp::stats::pnorm_1( -u/sqrt(v), 0.0, true, false);
					double un = std::min(Rf_runif(lo, 1.0), 1.0-6.7e-16);
					double samp = u/v + Rcpp::stats::qnorm_1(un, 0.0, true, false)/sqrt(v);
					A(i,j) = samp;
				} else {
					loglog = log(u*u) - log(2.0*v);
					logc = log(rho[j]) - log(1-rho[j]) - 0.5*log(v) + 0.5*log(tauinv[i]) + exp(loglog);
					pnz(i,j) = 1/(1+exp(logc));
					uu = Rf_runif(0.0, 1.0);
					log(1/uu-1) > logc ? A(i,j) = 0.0 : A(i,j) = Rf_rnorm(u/v, 1/sqrt(v));
				}
			} else {
				A(i,j) = 0.0;
				pnz(i,j) = 1.0;
			}
		}
	}
}
Ejemplo n.º 18
0
void Clustering::multiple_components(GMM& gmm, const arma::mat& data){

   /* data.print("data");
    std::cout<< "K: " << K << std::endl;
    std::cout<< "centroids: " << centroids.n_rows << " x " << centroids.n_cols << std::endl;
*/
    covariances.resize(K);
    means.resize(K);
    pi.resize(K);

    arma::vec x;
    std::size_t k;
    // set to zero
    for(k = 0; k < K;k++){
        means[k]  = centroids.col(k);
        covariances[k].zeros(3,3);
        pi(k)   = 0;//std::numeric_limits<double>::min();
    }

    for(std::size_t r = 0; r < data.n_rows;r++){
        k               = assignments(r);
        x               = data.row(r).st();
        covariances[k]  = covariances[k] + (x - means[k]) * (x - means[k]).st() ;
        pi(k)           = pi(k) + 1;
    }


    for(k = 0; k < K;k++){
        covariances[k] = (covariances[k])/pi(k);
        covariances[k] = covariances[k] + I;
        covariances[k] = 0.5*(covariances[k] + covariances[k].st());
        pi(k)          = pi(k) + std::numeric_limits<double>::min();
    }



    pi = pi / arma::sum(pi);
   /* pi.print("pi");
    for(std::size_t i = 0; i < covariances.size();i++){
        covariances[i].print("cov(" + boost::lexical_cast<std::string>(i) + ")");
    }
*/

    //gmm.setParam(pi,means,covariances);


}
Ejemplo n.º 19
0
void Box_sensor_likelihood::update(double* L, const arma::colvec& Y,const arma::colvec3& F, const arma::mat& points,const arma::mat33& Rot)
{


    tf::Matrix3x3   R_tmp;
    tf::Vector3     T_tmp;
    opti_rviz::type_conv::mat2tf(Rot,R_tmp);

    for(std::size_t p = 0; p < points.n_rows;p++){

        opti_rviz::type_conv::vec2tf(points.row(p).st(),T_tmp);
        peg_sensor_model.update_model(T_tmp,R_tmp);

        const std::vector<tf::Vector3>&  model = peg_sensor_model.get_model();



        std::size_t i = 0;
        // iterate over the three pegs (in frame of reference of peg_link)
        for(; i < model.size();i++)
        {

            tmp_vec3f(0) = model[i][0];
            tmp_vec3f(1) = model[i][1];
            tmp_vec3f(2) = model[i][2];



            // check if is in a box



        }





    }



}
Ejemplo n.º 20
0
void Clustering::compute_mixture_model(GMM& gmm, const arma::mat& data, const arma::vec& w){
    covariances.resize(K);
    means.resize(K);
    pi.resize(K);

    std::size_t k;
    // set to zero
    for(k = 0; k < K;k++){
        means[k].zeros(3);
        covariances[k].zeros(3,3);
    }

    for(std::size_t r = 0; r < data.n_rows;r++){
        k           = assignments(r);
        means[k]    = means[k] + data.row(r).st();
        N(k)        = N(k) + 1;
        pi[k]       = pi[k] + w(r);
    }

}
Ejemplo n.º 21
0
void RegularizedSVD<OptimizerType>::Apply(const arma::mat& data,
                                          const size_t rank,
                                          arma::mat& u,
                                          arma::mat& v)
{
  // Make the optimizer object using a RegularizedSVDFunction object.
  RegularizedSVDFunction<arma::mat> rSVDFunc(data, rank, lambda);
  mlpack::optimization::StandardSGD optimizer(alpha, iterations * data.n_cols);

  // Get optimized parameters.
  arma::mat parameters = rSVDFunc.GetInitialPoint();
  optimizer.Optimize(rSVDFunc, parameters);

  // Constants for extracting user and item matrices.
  const size_t numUsers = max(data.row(0)) + 1;
  const size_t numItems = max(data.row(1)) + 1;

  // Extract user and item matrices from the optimized parameters.
  u = parameters.submat(0, numUsers, rank - 1, numUsers + numItems - 1).t();
  v = parameters.submat(0, 0, rank - 1, numUsers - 1);
}
Ejemplo n.º 22
0
void
HMM::backwardProcedure(const arma::mat & data) {


  beta_.col(T_-1).fill(1./c_(T_-1));

  //temporary probabilities
  arma::vec b(N_);

  //iteration
  for(unsigned int t = T_-1; t > 0; --t) {
    for (unsigned int j = 0; j < N_; ++j) {
      b(j) = BModels_[j].getProb(data.col(t));
    }
    for (unsigned int i = 0; i < N_; ++i) {
      beta_(i,t-1) = arma::as_scalar(A_.row(i) * (b % beta_.col(t)));
    }
    beta_.col(t-1) /= arma::as_scalar(c_(t-1)); 

  }
}
Ejemplo n.º 23
0
// // [[Rcpp::export()]]
arma::mat getEystar(const arma::mat &alpha,
                    const arma::mat &beta,
                    const arma::mat &x,
                    const arma::mat &y,
                    const int D,
                    const int N,
                    const int J
                    ) {
    arma::mat ystars(N, J, arma::fill::zeros) ;


    // Main Calculation
#pragma omp parallel for
    for (int n = 0; n < N; n++) {
        arma::mat thisx = x.row(n) ;
        arma::mat theseystars = arma::mat(1, J, arma::fill::zeros) ;

        for (int j = 0; j < J; j++) {
            double q1 = 0.0 ;
            q1 += alpha(j, 0) ;
            for (int d = 0; d < D; d++) {
                q1 += thisx(0, d) * beta(j, d) ;
            }
            // defaults to untruncated

            double low = y(n,j) == 1 ? 0.0 : R_NegInf ;
            double high = y(n,j) == -1 ? 0.0 : R_PosInf ;

            // Rcout << n << ':' << j << std::endl ;
            // Rcout << q1 << " " << low << " " << high << std::endl ;
//            theseystars(0, j) = RcppTN::etn1(q1, 1.0, low, high) ;
            theseystars(0, j) = etn1(q1, 1.0, low, high) ;

        }
        ystars.row(n) = theseystars ;
    }

    return(ystars) ;
}
Ejemplo n.º 24
0
// [[Rcpp::export]]
arma::rowvec HnCpp(arma::mat Qs){
  //Compute the Hn tests statistics
  
  int n = Qs.n_rows, i=0;
  arma::mat T = Qs.t()*Qs;
  arma::mat eigvec, eigvecJ;
  arma::vec eigval, eigvalJ;
  arma::eig_sym(eigval,eigvec,T);
  arma::rowvec Hn(n);
  arma::rowvec Qj;
  arma::mat Tj;

  for(i = 0;i<n; i++){
    Qj = Qs.row(i);
    
    Tj = T-Qj.t()*Qj;
    arma::eig_sym(eigvalJ,eigvecJ,Tj);
    Hn(i)=(n-2)*(1+eigvalJ(3)-eigval(3))/(n-1-eigvalJ(3));
    
  }
  return Hn;
}
Ejemplo n.º 25
0
arma::mat MinimizerBase::runTracks(const arma::mat& params, const arma::mat& expPos, const arma::vec& expHits) const
{
    arma::mat chis (params.n_rows, 3);

    #pragma omp parallel for schedule(static) shared(chis)
    for (unsigned j = 0; j < params.n_rows; j++) {
        arma::vec p = arma::conv_to<arma::colvec>::from(params.row(j));
        try {
            auto chiset = runTrack(p, expPos, expHits);
            chis(j, 0) = chiset.posChi2;
            chis(j, 1) = chiset.enChi2;
            chis(j, 2) = chiset.vertChi2;
        }
        catch (...) {
            chis(j, 0) = arma::datum::nan;
            chis(j, 1) = arma::datum::nan;
            chis(j, 2) = arma::datum::nan;
        }
    }

    return chis;
}
Ejemplo n.º 26
0
// [[Rcpp::export]]
arma::mat GENEapply(const arma::mat& geno, List Y, const arma::vec Eps, const arma::vec Tau, const arma::vec k, const arma::mat& R, bool display_progress=true){
	
	int ngenes = Y.size();
	int nsnps = geno.n_rows;
	
	arma::mat GENEout_pval(ngenes,nsnps);
	arma::vec SNPout_pval(nsnps);
	arma::rowvec snp(R.n_rows);
  Progress p(ngenes, display_progress);
	for(int i =0; i<ngenes; i++){
		Rcpp::checkUserInterrupt();
    p.increment();
		arma::mat Ymat = Y(i);
		double est_eps = Eps(i);
		double est_tau = Tau(i);
		for(int j=0; j<nsnps; j++){
			Rcpp::checkUserInterrupt();
			SNPout_pval(j) = jag_fun(est_eps,est_tau,k,Ymat,vectorise(geno.row(j)),R);
		}
		GENEout_pval.row(i) = vectorise(SNPout_pval,1);
	}
	return GENEout_pval;
}
Ejemplo n.º 27
0
// [[Rcpp::export]]
List real_cont( 
            arma::mat coeffs_cont, arma::mat X, int n_exog, int n_endog, 
            int n_cont, arma::rowvec rho, arma::rowvec sig_eps, int N, 
            arma::rowvec upper, arma::rowvec lower, bool cheby, int seed=222 ){
// Computes a matrix of realized next-period controls from a simulation

  int n_pts = X.n_rows ;
      // The number of points at which the error is assessed
  mat exog = zeros<rowvec>( n_exog ) ;
  mat endog = zeros<rowvec>( n_endog ) ;
  mat cont_sim = zeros( n_pts, n_cont ) ;
      // Temporary containers used in the loop.  Make cont bigger than size 0
      // here - just passing a useless empty container
  arma_rng::set_seed(seed) ;
      // Set the seed
  mat exog_sim = ( ones( n_pts ) * rho ) % X.cols( 0, n_exog - 1 ) + 
                    ( ones( n_pts ) * sig_eps ) % randn<mat>( n_pts, n_exog ) ;
      // The random draws
  
  /** Now compute the model errors **/
  for( int i = 0 ; i < n_pts ; i++ ){
  // Loop over the evaluation points
    exog = exog_sim.row(i) ;
        // The updated exogenous variable in the next period
    endog = X.row(i).subvec( n_exog, n_exog + n_endog - 1 ) ;
        // Select the current-period endogenous states
    cont_sim.row(i) = endog_update( exog, endog, coeffs_cont, n_exog, n_endog, N, 
                                        upper, lower, cheby ) ;
        // The integral over realizations of the shock
  }
  
  List out ;
  out["r.exog"] = exog_sim ;
  out["r.cont"] = cont_sim ;
      // Create the output list
  return out ;
}
Ejemplo n.º 28
0
arma::mat rcd(arma::mat design, int v, int model) {
  if (model==8) { // "Second-order carry-over effects"
    mat rcDesign = design;
    for (unsigned i=1; i<rcDesign.n_rows; i++) {
      if (i!=1) {
        rcDesign.row(i) = design.row(i)+design.row(i-1)*v+design.row(i-2)*v*v;
      } else {
        rcDesign.row(i) = design.row(i)+design.row(i-1)*v;
      }
    }
    return rcDesign;
  } else if (model>0 && model<8) {
    mat rcDesign = design;
    for (unsigned i=1; i<rcDesign.n_rows; i++) {
      rcDesign.row(i) = design.row(i)+design.row(i-1)*v;
    }
    return rcDesign;
  } else if (model==9) {
    return design;
  }
  throw std::range_error("Model not found. Has to be between 1 and 9.");
  return NULL;
}
Ejemplo n.º 29
0
// Dictionary step for optimization.
double SparseCoding::OptimizeDictionary(const arma::mat& data,
                                        const arma::mat& codes,
                                        const arma::uvec& adjacencies)
{
    // Count the number of atomic neighbors for each point x^i.
    arma::uvec neighborCounts = arma::zeros<arma::uvec>(data.n_cols, 1);

    if (adjacencies.n_elem > 0)
    {
        // This gets the column index.  Intentional integer division.
        size_t curPointInd = (size_t) (adjacencies(0) / atoms);

        size_t nextColIndex = (curPointInd + 1) * atoms;
        for (size_t l = 1; l < adjacencies.n_elem; ++l)
        {
            // If l no longer refers to an element in this column, advance the column
            // number accordingly.
            if (adjacencies(l) >= nextColIndex)
            {
                curPointInd = (size_t) (adjacencies(l) / atoms);
                nextColIndex = (curPointInd + 1) * atoms;
            }

            ++neighborCounts(curPointInd);
        }
    }

    // Handle the case of inactive atoms (atoms not used in the given coding).
    std::vector<size_t> inactiveAtoms;

    for (size_t j = 0; j < atoms; ++j)
    {
        if (arma::accu(codes.row(j) != 0) == 0)
            inactiveAtoms.push_back(j);
    }

    const size_t nInactiveAtoms = inactiveAtoms.size();
    const size_t nActiveAtoms = atoms - nInactiveAtoms;

    // Efficient construction of Z restricted to active atoms.
    arma::mat matActiveZ;
    if (nInactiveAtoms > 0)
    {
        math::RemoveRows(codes, inactiveAtoms, matActiveZ);
    }

    if (nInactiveAtoms > 0)
    {
        Log::Warn << "There are " << nInactiveAtoms
                  << " inactive atoms. They will be re-initialized randomly.\n";
    }

    Log::Debug << "Solving Dual via Newton's Method.\n";

    // Solve using Newton's method in the dual - note that the final dot
    // multiplication with inv(A) seems to be unavoidable. Although more
    // expensive, the code written this way (we use solve()) should be more
    // numerically stable than just using inv(A) for everything.
    arma::vec dualVars = arma::zeros<arma::vec>(nActiveAtoms);

    //vec dualVars = 1e-14 * ones<vec>(nActiveAtoms);

    // Method used by feature sign code - fails miserably here.  Perhaps the
    // MATLAB optimizer fmincon does something clever?
    //vec dualVars = 10.0 * randu(nActiveAtoms, 1);

    //vec dualVars = diagvec(solve(dictionary, data * trans(codes))
    //    - codes * trans(codes));
    //for (size_t i = 0; i < dualVars.n_elem; i++)
    //  if (dualVars(i) < 0)
    //    dualVars(i) = 0;

    bool converged = false;

    // If we have any inactive atoms, we must construct these differently.
    arma::mat codesXT;
    arma::mat codesZT;

    if (inactiveAtoms.empty())
    {
        codesXT = codes * trans(data);
        codesZT = codes * trans(codes);
    }
    else
    {
        codesXT = matActiveZ * trans(data);
        codesZT = matActiveZ * trans(matActiveZ);
    }

    double normGradient = 0;
    double improvement = 0;
    for (size_t t = 1; (t != maxIterations) && !converged; ++t)
    {
        arma::mat A = codesZT + diagmat(dualVars);

        arma::mat matAInvZXT = solve(A, codesXT);

        arma::vec gradient = -arma::sum(arma::square(matAInvZXT), 1);
        gradient += 1;

        arma::mat hessian = -(-2 * (matAInvZXT * trans(matAInvZXT)) % inv(A));

        arma::vec searchDirection = -solve(hessian, gradient);
        //printf("%e\n", norm(searchDirection, 2));

        // Armijo line search.
        const double c = 1e-4;
        double alpha = 1.0;
        const double rho = 0.9;
        double sufficientDecrease = c * dot(gradient, searchDirection);

        // A maxIterations parameter for the Armijo line search may be a good idea,
        // but it doesn't seem to be causing any problems for now.
        while (true)
        {
            // Calculate objective.
            double sumDualVars = arma::sum(dualVars);
            double fOld = -(-trace(trans(codesXT) * matAInvZXT) - sumDualVars);
            double fNew = -(-trace(trans(codesXT) * solve(codesZT +
                                   diagmat(dualVars + alpha * searchDirection), codesXT)) -
                            (sumDualVars + alpha * arma::sum(searchDirection)));

            if (fNew <= fOld + alpha * sufficientDecrease)
            {
                searchDirection = alpha * searchDirection;
                improvement = fOld - fNew;
                break;
            }

            alpha *= rho;
        }

        // Take step and print useful information.
        dualVars += searchDirection;
        normGradient = arma::norm(gradient, 2);
        Log::Debug << "Newton Method iteration " << t << ":" << std::endl;
        Log::Debug << "  Gradient norm: " << std::scientific << normGradient
                   << "." << std::endl;
        Log::Debug << "  Improvement: " << std::scientific << improvement << ".\n";

        if (normGradient < newtonTolerance)
            converged = true;
    }

    if (inactiveAtoms.empty())
    {
        // Directly update dictionary.
        dictionary = trans(solve(codesZT + diagmat(dualVars), codesXT));
    }
    else
    {
        arma::mat activeDictionary = trans(solve(codesZT +
                                           diagmat(dualVars), codesXT));

        // Update all atoms.
        size_t currentInactiveIndex = 0;
        for (size_t i = 0; i < atoms; ++i)
        {
            if (inactiveAtoms[currentInactiveIndex] == i)
            {
                // This atom is inactive.  Reinitialize it randomly.
                dictionary.col(i) = (data.col(math::RandInt(data.n_cols)) +
                                     data.col(math::RandInt(data.n_cols)) +
                                     data.col(math::RandInt(data.n_cols)));

                dictionary.col(i) /= arma::norm(dictionary.col(i), 2);

                // Increment inactive index counter.
                ++currentInactiveIndex;
            }
            else
            {
                // Update estimate.
                dictionary.col(i) = activeDictionary.col(i - currentInactiveIndex);
            }
        }
    }

    return normGradient;
}
//' @title Approximation of the tpd of the MWN-OU process in 2D
//'
//' @description Computation of the transition probability density (tpd) for a MWN-OU diffusion (with diagonal diffusion matrix)
//'
//' @param x a matrix of dimension \code{c(n, 2)} containing angles. They all must be in \eqn{[\pi,\pi)} so that the truncated wrapping by \code{maxK} windings is able to capture periodicity.
//' @param x0 a matrix of of dimension \code{c(n, 2)} containing the starting angles. They all must be in \eqn{[\pi,\pi)}.
//' @param t either a scalar or a vector of length \code{n} containing the times separating \code{x} and \code{x0}. If \code{t} is a scalar, a common time is assumed.
//' @param alpha vector of length \code{3} parametrizing the \code{A} matrix of the drift of the MWN-OU process in the following codification:
//'
//' \code{A = rbind(c(alpha[1], alpha[3] * sqrt(sigma[1] / sigma[2])),
//'                 c(alpha[3] * sqrt(sigma[2] / sigma[1]), alpha[2]))}.
//'
//' This enforces that \code{solve(A) \%*\% diag(sigma)} is symmetric. Positive definiteness is guaranteed if \code{alpha[1] * alpha[2] > alpha[3]^2}.
//' The function checks for it and, if violated, resets \code{A} such that \code{solve(A) \%*\% diag(sigma)} is positive definite.
//' @param mu a vector of length \code{2} with the mean parameter of the MWN-OU process.
//' @param sigma vector of length \code{2} containing the \strong{square root} of the diagonal of \eqn{\Sigma}, the diffusion matrix.
//' @param maxK maximum number of winding number considered in the computation of the approximated transition probability density.
//' @inheritParams safeSoftMax
//' @return A vector of size \code{n} containing the tpd evaluated at \code{x}.
//' @author Eduardo Garcia-Portugues (\email{egarcia@@math.ku.dk})
//' @examples
//' set.seed(345567)
//' alpha <- c(2, 1, -1)
//' sigma <- c(1.5, 2)
//' Sigma <- diag(sigma^2)
//' A <- alphaToA(alpha = alpha, sigma = sigma)
//' mu <- c(pi, pi)
//' x <- t(eulerWn2D(x0 = matrix(c(0, 0), nrow = 1), A = A, mu = mu,
//'                  sigma = sigma, N = 500, delta = 0.1)[1, , ])
//' sum(sapply(1:49, function(i) log(dTpdMwou(x = matrix(x[i + 1, ], ncol = 2),
//'                                           x0 = x[i, ], t = 1.5, A = A,
//'                                           Sigma = Sigma, mu = mu, K = 2,
//'                                           N.int = 2000))))
//' sum(log(dTpdWnOu2D(x = matrix(x[2:50, ], ncol = 2),
//'                    x0 = matrix(x[1:49, ], ncol = 2), t = 1.5, alpha = alpha,
//'                    mu = mu, sigma = sigma)))
//' \dontrun{
//' lgrid <- 56
//' grid <- seq(-pi, pi, l = lgrid + 1)[-(lgrid + 1)]
//' image(grid, grid, matrix(dTpdMwou(x = as.matrix(expand.grid(grid, grid)),
//'                                   x0 = c(0, 0), t = 0.5, A = A, Sigma = Sigma,
//'                                   mu = mu, K = 2, N.int = 2000),
//'                          nrow = 56, ncol = 56), zlim = c(0, 0.25),
//'       main = "dTpdMwou")
//' image(grid, grid, matrix(dTpdWnOu2D(x = as.matrix(expand.grid(grid, grid)),
//'                                     x0 = matrix(0, nrow = 56^2, ncol = 2),
//'                                     t = 0.5, alpha = alpha, sigma = sigma,
//'                                     mu = mu),
//'                          nrow = 56, ncol = 56), zlim = c(0, 0.25),
//'       main = "dTpdWnOu2D")
//'
//' dr <- driftWn2D(x = as.matrix(expand.grid(grid, grid)), A = A, mu = mu,
//'                 sigma = sigma, maxK = 2, etrunc = 30)
//' b1 <- matrix(dr[, 1], nrow = lgrid, ncol = lgrid)
//' b2 <- matrix(dr[, 2], nrow = lgrid, ncol = lgrid)
//' parms <- list(b1 = b1, b2 = b2, sigma2.1 = Sigma[1, 1], sigma2.2 = Sigma[2, 2],
//'               len.grid = lgrid, delx = grid[2] - grid[1])
//' image(grid, grid, matrix(tpd.2D(x0i = which.min(2 - 2 * cos(grid - 0)),
//'                                  y0i = which.min(2 - 2 * cos(grid - 0)),
//'                                  times = seq(0, .5, l = 100), parms = parms,
//'                                  method = "lsodes", atol = 1e-10,
//'                                  lrw = 7e+07)[100, ], nrow = lgrid,
//'                                  ncol = lgrid),
//'       zlim = c(0, 0.25), main = "tpd.2D")
//'
//' x <- seq(-pi, pi, l = 100)
//' t <- 1
//' image(x, x, matrix(dTpdWnOu2D(x = as.matrix(expand.grid(x, x)),
//'                               x0 = matrix(rep(0, 100 * 2), nrow = 100 * 100,
//'                                           ncol = 2),
//'                               t = t, alpha = alpha, mu = mu, sigma = sigma,
//'                               maxK = 2, etrunc = 30), 100, 100),
//'       zlim = c(0, 0.25))
//' points(stepAheadWn2D(x0 = c(0, 0), delta = t / 500,
//'                      A = alphaToA(alpha = alpha, sigma = sigma), mu = mu,
//'                      sigma = sigma, N = 500, M = 1000, maxK = 2,
//'                      etrunc = 30))
//' }
//' @export
// [[Rcpp::export]]
arma::vec dTpdWnOu2D(arma::mat x, arma::mat x0, arma::vec t, arma::vec alpha, arma::vec mu, arma::vec sigma, int maxK = 2, double etrunc = 30) {
  
  /*
  * Create basic objects
  */
  
  // Number of pairs
  int N = x.n_rows;
  
  // Create and initialize A
  double quo = sigma(0) / sigma(1);
  arma::mat A(2, 2);
  A(0, 0) = alpha(0);
  A(1, 1) = alpha(1);
  A(0, 1) = alpha(2) * quo;
  A(1, 0) = alpha(2) / quo;
  
  // Create and initialize Sigma
  arma::mat Sigma = diagmat(square(sigma));
  
  // Sequence of winding numbers
  const int lk = 2 * maxK + 1;
  arma::vec twokpi = arma::linspace<arma::vec>(-maxK * 2 * M_PI, maxK * 2 * M_PI, lk);
  
  // Bivariate vector (2 * K1 * M_PI, 2 * K2 * M_PI) for weighting
  arma::vec twokepivec(2);
  
  // Bivariate vector (2 * K1 * M_PI, 2 * K2 * M_PI) for wrapping
  arma::vec twokapivec(2);
  
  /*
  * Check if the t is common
  */
  
  int commonTime;
  if(t.n_elem == 1){
    
    commonTime = 0;
    
  }else if(t.n_elem == N) {
    
    commonTime = 1;
    
  } else {
    
    //stop("Length of t is neither 1 nor N");
    std::exit(EXIT_FAILURE);
    
  }
  
  /*
  * Check for symmetry and positive definiteness of A^(-1) * Sigma
  */
  
  // Only positive definiteness can be violated with the parametrization of A
  double testalpha = alpha(0) * alpha(1) - alpha(2) * alpha(2);
  
  // Check positive definiteness
  if(testalpha <= 0) {
    
    // Update alpha(2) such that testalpha > 0
    alpha(2) = std::signbit(alpha(2)) * sqrt(alpha(0) * alpha(1)) * 0.9999;
    
    // Reset A to a matrix with positive determinant and continue
    A(0, 1) = alpha(2) * quo;
    A(1, 0) = alpha(2) / quo;
    
  }
  
  // A^(-1) * Sigma
  arma::mat AInvSigma(2, 2);
  AInvSigma(0, 0) = alpha(1) * Sigma(0, 0);
  AInvSigma(0, 1) = -alpha(2) * sigma(0) * sigma(1);
  AInvSigma(1, 0) = AInvSigma(0, 1);
  AInvSigma(1, 1) = alpha(0) * Sigma(1, 1);
  AInvSigma = AInvSigma / (alpha(0) * alpha(1) - alpha(2) * alpha(2));
  
  // Inverse of (1/2 * A^(-1) * Sigma): 2 * Sigma^(-1) * A
  arma::mat invSigmaA(2, 2);
  invSigmaA(0, 0) = 2 * alpha(0) / Sigma(0, 0);
  invSigmaA(0, 1) = 2 * alpha(2) / (sigma(0) * sigma(1));
  invSigmaA(1, 0) = invSigmaA(0, 1);
  invSigmaA(1, 1) = 2 * alpha(1) / Sigma(1, 1);
  
  // For normalizing constants
  double l2pi = log(2 * M_PI);
  
  // Log-determinant of invSigmaA (assumed to be positive)
  double logDetInvSigmaA, sign;
  arma::log_det(logDetInvSigmaA, sign, invSigmaA);
  
  // Log-normalizing constant for the Gaussian with covariance SigmaA
  double lognormconstSigmaA = -l2pi + logDetInvSigmaA / 2;
  
  /*
  * Computation of Gammat and exp(-t * A) analytically
  */
  
  // Quantities for computing exp(-t * A)
  double s = sum(alpha.head(2)) / 2;
  double q = sqrt(fabs((alpha(0) - s) * (alpha(1) - s) - alpha(2) * alpha(2)));
  
  // Avoid indetermination in sinh(q * t) / q when q == 0
  if(q == 0){
    
    q = 1e-6;
    
  }
  
  // s1(-t) and s2(-t)
  arma::vec est = exp(-s * t);
  arma::vec eqt = exp(q * t);
  arma::vec eqtinv = 1 / eqt;
  arma::vec cqt = (eqt + eqtinv) / 2;
  arma::vec sqt = (eqt - eqtinv) / (2 * q);
  arma::vec s1t = est % (cqt + s * sqt);
  arma::vec s2t = -est % sqt;
  
  // s1(-2t) and s2(-2t)
  est = est % est;
  eqt = eqt % eqt;
  eqtinv = eqtinv % eqtinv;
  cqt = (eqt + eqtinv) / 2;
  sqt = (eqt - eqtinv) / (2 * q);
  arma::vec s12t = est % (cqt + s * sqt);
  arma::vec s22t = -est % sqt;
  
  /*
  * Weights of the winding numbers for each data point
  */
  
  // We store the weights in a matrix to skip the null later in the computation of the tpd
  arma::mat weightswindsinitial(N, lk * lk);
  weightswindsinitial.fill(lognormconstSigmaA);
  
  // Loop in the data
  for(int i = 0; i < N; i++){
    
    // Compute the factors in the exponent that do not depend on the windings
    arma::vec xmu = x0.row(i).t() - mu;
    arma::vec xmuinvSigmaA = invSigmaA * xmu;
    double xmuinvSigmaAxmudivtwo = -dot(xmuinvSigmaA, xmu) / 2;
    
    // Loop in the winding weight K1
    for(int wek1 = 0; wek1 < lk; wek1++){
      
      // 2 * K1 * M_PI
      twokepivec(0) = twokpi(wek1);
      
      // Compute once the index
      int wekl1 = wek1 * lk;
      
      // Loop in the winding weight K2
      for(int wek2 = 0; wek2 < lk; wek2++){
        
        // 2 * K2 * M_PI
        twokepivec(1) = twokpi(wek2);
        
        // Negative exponent
        weightswindsinitial(i, wekl1 + wek2) += xmuinvSigmaAxmudivtwo - dot(xmuinvSigmaA, twokepivec) - dot(invSigmaA * twokepivec, twokepivec) / 2;
        
      }
      
    }
    
  }
  
  // Standardize weights for the tpd
  weightswindsinitial = safeSoftMax(weightswindsinitial, etrunc);
  
  /*
  * Computation of the tpd: wrapping + weighting
  */
  
  // The evaluations of the tpd are stored in a vector, no need to keep track of wrappings
  arma::vec tpdfinal(N); tpdfinal.zeros();
  
  // Variables inside the commonTime if-block
  arma::mat ExptiA(2, 2), invGammati(2, 2);  
  double logDetInvGammati, lognormconstGammati;
  
  // If t is common, compute once
  if(commonTime == 0){
    
    // Exp(-ti * A)
    ExptiA = s2t(0) * A;
    ExptiA.diag() += s1t(0);
    
    // Inverse and log-normalizing constant for the Gammat
    invGammati = 2 * inv_sympd((1 - s12t(0)) * AInvSigma - s22t(0) * Sigma);
    
    // Log-determinant of invGammati (assumed to be positive)
    arma::log_det(logDetInvGammati, sign, invGammati);
    
    // Log-normalizing constant for the Gaussian with covariance Gammati
    lognormconstGammati = -l2pi + logDetInvGammati / 2;
    
  }
  
  // Loop in the data
  for(int i = 0; i < N; i++){
    
    // Initial point x0 varying with i
    arma::vec x00 = x0.row(i).t();
    
    // Evaluation point x varying with i
    arma::vec xx = x.row(i).t();
    
    // If t is not common
    if(commonTime != 0){
      
      // Exp(-ti * A)
      ExptiA = s2t(i) * A;
      ExptiA.diag() += s1t(i);
      
      // Inverse and log-normalizing constant for the Gammati
      invGammati = 2 * inv_sympd((1 - s12t(i)) * AInvSigma - s22t(i) * Sigma);
      
      // Log-determinant of invGammati (assumed to be positive)
      arma::log_det(logDetInvGammati, sign, invGammati);
      
      // Log-normalizing constant for the Gaussian with covariance Gammati
      lognormconstGammati = -l2pi + logDetInvGammati / 2;
      
    }
    
    // Common muti
    arma::vec muti = mu + ExptiA * (x00 - mu);
    
    // Loop on the winding weight K1
    for(int wek1 = 0; wek1 < lk; wek1++){
      
      // 2 * K1 * M_PI
      twokepivec(0) = twokpi(wek1);
      
      // Compute once the index
      int wekl1 = wek1 * lk;
      
      // Loop on the winding weight K2
      for(int wek2 = 0; wek2 < lk; wek2++){
        
        // Skip zero weights
        if(weightswindsinitial(i, wekl1 + wek2) > 0){
          
          // 2 * K1 * M_PI
          twokepivec(1) = twokpi(wek2);
          
          // Compute the factors in the exponent that do not depend on the windings
          arma::vec xmuti = xx - muti - ExptiA * twokepivec;
          arma::vec xmutiInvGammati = invGammati * xmuti;
          double xmutiInvGammatixmutidiv2 = -dot(xmutiInvGammati, xmuti) / 2;
          
          // Loop in the winding wrapping K1
          for(int wak1 = 0; wak1 < lk; wak1++){
            
            // 2 * K1 * M_PI
            twokapivec(0) = twokpi(wak1);
            
            // Loop in the winding wrapping K2
            for(int wak2 = 0; wak2 < lk; wak2++){
              
              // 2 * K2 * M_PI
              twokapivec(1) = twokpi(wak2);
              
              // Decomposition of the negative exponent
              double exponent = xmutiInvGammatixmutidiv2 - dot(xmutiInvGammati, twokapivec) - dot(invGammati * twokapivec, twokapivec) / 2 + lognormconstGammati;
              
              // Tpd
              tpdfinal(i) += exp(exponent) * weightswindsinitial(i, wekl1 + wek2);
              
            }
            
          }
          
        }
        
      }
      
    }
    
  }
  
  return tpdfinal;
  
}