cv::Mat NFringeStructuredLight::WrapPhase( vector<cv::Mat> fringeImages, cv::Ptr<cv::FilterEngine> filter )
{
  Utils::AssertOrThrowIfFalse(fringeImages.size() == m_numberOfFringes, 
	"Invalid number of fringes passed into phase wrapper");

  // Should be the same size as our fringe images 
  // and floating point precision for decimal phase values
  cv::Mat sine(fringeImages[0].size(), CV_32F, 0.0f);
  cv::Mat cosine(fringeImages[0].size(), CV_32F, 0.0f);
  cv::Mat phase(fringeImages[0].size(), CV_32F, 0.0f);

  for(int row = 0; row < phase.rows; ++row)
  {
	for(int col = 0; col < phase.cols; ++col)
	{
	  for(int fringe = 0; fringe < m_numberOfFringes; ++fringe)
	  {
		sine.at<float>(row, col) += ( float( fringeImages[fringe].at<uchar>(row, col) ) / 255.0 ) * sin(2.0 * M_PI * float(fringe) / float(m_numberOfFringes));
		cosine.at<float>(row, col) += ( float( fringeImages[fringe].at<uchar>(row, col) ) / 255.0 ) * cos(2.0 * M_PI * float(fringe) / float(m_numberOfFringes));
	  }
	}
  }

  // Filter out noise in the sine and cosine components
  if( !filter.empty( ) )
  {
	filter->apply( sine, sine );
	filter->apply( cosine, cosine );
  }

  // Now perform phase wrapping
  for(int row = 0; row < phase.rows; ++row)
  {
	for(int col = 0; col < phase.cols; ++col)
	{
	  // This is negative so that are phase gradient increases from 0 -> rows or 0 -> cols
	  phase.at<float>(row, col) = -atan2( sine.at<float>( row, col ), cosine.at<float>( row, col ) );
	}
  }
  return phase;
}
Ejemplo n.º 2
0
void BackgroundSubtraction::imageCallback(const sensor_msgs::ImageConstPtr& msg)
{
  cv_bridge::CvImageConstPtr cv_ptr;
  try
  {
    // TBD why converting to BGR8
    cv_ptr = cv_bridge::toCvShare(msg, sensor_msgs::image_encodings::RGB8);
    //, "mono8"); // sensor_msgs::image_encodings::MONO8);
  }
  catch (cv_bridge::Exception& e)
  {
    ROS_ERROR("cv_bridge exception: %s", e.what());
    return;
  }

  cv::Mat live_frame = cv_ptr->image.clone();

  mog2_->apply(live_frame, fg_mask_mog2_);
  if (config_.capture_background)
  {
    bg_image_ = live_frame;
  }
  // else
  // if (config_.subtract_background)
  // if (!bg_image_.isEmpty())
  {
    cv::Mat image;
    #if 0
    cv::cvtColor(fg_mask_mog2_, fg_mask_mog2_rgb_, CV_GRAY2RGB);
    if (fg_mask_mog2_rgb_.size() == live_frame.size())
      image = live_frame & fg_mask_mog2_rgb_;
    else
      image = live_frame;
    #endif
    cv::Mat diff;
    cv::absdiff(bg_image_, live_frame, diff);
    cv::Mat diff_gray;
    cv::cvtColor(diff, diff_gray, CV_RGB2GRAY);
    cv::Mat mask = diff_gray > 20;  // TODO(lucasw) make this a config_ dr param
    cv::Mat mask_rgb;
    cv::cvtColor(mask, mask_rgb, CV_GRAY2RGB);
    image = mask_rgb & live_frame;

    cv_bridge::CvImage cv_image;
    cv_image.image = image;
    cv_image.encoding = "rgb8";
    cv_image.header.stamp = msg->header.stamp;
    cv_image.header.frame_id = msg->header.frame_id;
    image_pub_.publish(cv_image.toImageMsg());
  }
}
  void convertIr(const cv::Mat &ir, cv::Mat &grey)
  {
    const float factor = 255.0f / (maxIr - minIr);
    grey.create(ir.rows, ir.cols, CV_8U);

    #pragma omp parallel for
    for(size_t r = 0; r < (size_t)ir.rows; ++r)
    {
      const uint16_t *itI = ir.ptr<uint16_t>(r);
      uint8_t *itO = grey.ptr<uint8_t>(r);

      for(size_t c = 0; c < (size_t)ir.cols; ++c, ++itI, ++itO)
      {
        *itO = std::min(std::max(*itI - minIr, 0) * factor, 255.0f);
      }
    }
    clahe->apply(grey, grey);
  }
Ejemplo n.º 4
0
void processImage(cv::Mat& image) {
    if (image.empty())
        return;

#ifdef _OPENCV3
    pMOG->apply(image, fgMaskMOG, 0.05);
#else
    pMOG->operator()(image, fgMaskMOG, 0.05);
#endif
    cv::dilate(fgMaskMOG,fgMaskMOG,cv::getStructuringElement(cv::MORPH_ELLIPSE,cv::Size(15,15)));

    bin = new IplImage(fgMaskMOG);
    frame = new IplImage(image);
    labelImg = cvCreateImage(cvSize(image.cols,image.rows),IPL_DEPTH_LABEL,1);

    unsigned int result = cvLabel(bin, labelImg, blobs);
    cvRenderBlobs(labelImg, blobs, frame, frame, CV_BLOB_RENDER_BOUNDING_BOX|CV_BLOB_RENDER_CENTROID|CV_BLOB_RENDER_ANGLE);
    cvFilterByArea(blobs, 1500, 40000);
    cvUpdateTracks(blobs, tracks, 200., 5);
    cvRenderTracks(tracks, frame, frame, CV_TRACK_RENDER_ID);

    for (std::map<CvID, CvTrack*>::iterator track_it = tracks.begin(); track_it!=tracks.end(); track_it++) {
        CvID id = (*track_it).first;
        CvTrack* track = (*track_it).second;
        cur_pos = track->centroid;

        if (track->inactive == 0) {
            if (last_poses.count(id)) {
                std::map<CvID, CvPoint2D64f>::iterator pose_it = last_poses.find(id);
                last_pos = pose_it -> second;
                last_poses.erase(pose_it);
            }
            last_poses.insert(std::pair<CvID, CvPoint2D64f>(id, cur_pos));
            if (line_pos+25>cur_pos.y && cur_pos.y>line_pos && line_pos-25<last_pos.y && last_pos.y<line_pos) {
                count++;
                countUD++;
            }
            if (line_pos-25<cur_pos.y && cur_pos.y<line_pos && line_pos+25>last_pos.y && last_pos.y>line_pos) {
                count++;
                countDU++;
            }

            if ( cur_pos.y<line_pos+50 && cur_pos.y>line_pos-50) {
                avg_vel += abs(cur_pos.y-last_pos.y);
                count_active++;
            }

            //update heatmapfg
            heat_mapfg = cv::Mat::zeros(FR_H, FR_W, CV_8UC3);
            count_arr[lmindex] = count;
            avg_vel_arr[lmindex] = avg_vel/count_active ;
            for (int i=0; i<landmarks.size(); i++) {
                cv::circle(heat_mapfg, cv::Point((landmarks[i].y + 50)*2.4, (landmarks[i].x + 50)*2.4), count_arr[i]*3, cv::Scalar(0, 16*avg_vel_arr[i], 255 - 16*avg_vel_arr[i]), -1);
            }
            cv::GaussianBlur(heat_mapfg, heat_mapfg, cv::Size(15, 15), 5);
        } else {
            if (last_poses.count(id)) {
                last_poses.erase(last_poses.find(id));
            }
        }
    }

    cv::line(image, cv::Point(0, line_pos), cv::Point(FR_W, line_pos), cv::Scalar(0,255,0),2);
    cv::putText(image, "COUNT: "+to_string(count), cv::Point(10, 15), cv::FONT_HERSHEY_PLAIN, 1, cv::Scalar(255,255,255));
    cv::putText(image, "UP->DOWN: "+to_string(countUD), cv::Point(10, 30), cv::FONT_HERSHEY_PLAIN, 1, cv::Scalar(255,255,255));
    cv::putText(image, "DOWN->UP: "+to_string(countDU), cv::Point(10, 45), cv::FONT_HERSHEY_PLAIN, 1, cv::Scalar(255,255,255));
    cv::imshow("BLOBS", image);
    cv::imshow("HEATMAP", heat_map + heat_mapfg);
    cv::waitKey(33);
}
Ejemplo n.º 5
0
void backgroundSubstractionDetection(cv::Mat sequence, std::vector<cv::Rect> &detectedPedestrianFiltered, cv::Ptr<cv::BackgroundSubtractor> &pMOG2, trackingOption &tracking)
{
    int threshold = 150;
    cv::Mat mask;
    cv::Mat sequenceGrayDiff;
    std::vector<std::vector<cv::Point> > contours;
    std::vector<cv::Vec4i> hierarchy;
    std::vector<std::vector<cv::Point> > contours_poly;
    std::vector<cv::Rect> detectedPedestrian;

    pMOG2->apply(sequence,sequenceGrayDiff);


    cv::threshold(sequenceGrayDiff, mask, threshold, 255, cv::THRESH_BINARY);

    cv::erode(mask, mask, cv::getStructuringElement(cv::MORPH_ELLIPSE, cv::Size(6,6)));
    cv::dilate(mask, mask, cv::getStructuringElement(cv::MORPH_ELLIPSE, cv::Size(25,55)));
    cv::erode(mask, mask, cv::getStructuringElement(cv::MORPH_ELLIPSE, cv::Size(3,6)));


    /*
    cv::Mat dist;
    cv::distanceTransform(mask, dist, CV_DIST_L2, 3);
    cv::normalize(dist, dist, 0, 1., cv::NORM_MINMAX);
    cv::threshold(dist, dist, .4, 1., CV_THRESH_BINARY);
    cv::imshow("temp", dist);
    */

    cv::findContours(mask, contours, hierarchy, cv::RETR_EXTERNAL, cv::CHAIN_APPROX_SIMPLE, cv::Point(0,0));

    contours_poly.resize(contours.size());
    detectedPedestrian.resize(contours.size());

    for(size_t j=0;j<contours.size();j++)
    {
        cv::approxPolyDP(cv::Mat(contours[j]), contours_poly[j], 3, true);
        detectedPedestrian[j] = cv::boundingRect(cv::Mat(contours_poly[j]));


        //test
        /*
        double pix = 30;
        if(detectedPedestrian[j].x >= pix)
            detectedPedestrian[j].x -= pix;
        else
            detectedPedestrian[j].x = 0;
        if((detectedPedestrian[j].x+detectedPedestrian[j].width) <= (sequence.cols-pix))
            detectedPedestrian[j].width += pix;
        else
            detectedPedestrian[j].width = sequence.cols - detectedPedestrian[j].x;
        if(detectedPedestrian[j].y >= pix)
            detectedPedestrian[j].y -= pix;
        else
            detectedPedestrian[j].y = 0;
        if((detectedPedestrian[j].y+detectedPedestrian[j].height) <= (sequence.rows-pix))
            detectedPedestrian[j].height += pix;
        else
            detectedPedestrian[j].height = sequence.rows - detectedPedestrian[j].y;
        */
    }

    if(detectedPedestrian.size() != 0)
    {
        tracking = GOOD_FEATURES_TO_TRACK;
        detectedPedestrianFiltered.clear();
        detectedPedestrianFiltered.resize(detectedPedestrian.size());
        detectedPedestrianFiltered = detectedPedestrian;
    }
    else
        tracking = NOTHING_TO_TRACK;

}