bool CommitmentProofOfKnowledge::Verify(const Bignum& A, const Bignum& B) const { // TODO: First verify that the values // S1, S2 and S3 and "challenge" are in the correct ranges if((this->challenge < Bignum(0)) || (this->challenge > (Bignum(2).pow(256) - Bignum(1)))){ return false; } // Compute T1 = g1^S1 * h1^S2 * inverse(A^{challenge}) mod p1 Bignum T1 = A.pow_mod(this->challenge, ap->modulus).inverse(ap->modulus).mul_mod( (ap->g.pow_mod(S1, ap->modulus).mul_mod(ap->h.pow_mod(S2, ap->modulus), ap->modulus)), ap->modulus); // Compute T2 = g2^S1 * h2^S3 * inverse(B^{challenge}) mod p2 Bignum T2 = B.pow_mod(this->challenge, bp->modulus).inverse(bp->modulus).mul_mod( (bp->g.pow_mod(S1, bp->modulus).mul_mod(bp->h.pow_mod(S3, bp->modulus), bp->modulus)), bp->modulus); // Hash T1 and T2 along with all of the public parameters Bignum computedChallenge = calculateChallenge(A, B, T1, T2); // Return success if the computed challenge matches the incoming challenge if(computedChallenge == this->challenge){ return true; } // Otherwise return failure return false; }
IntegerGroupParams deriveIntegerGroupFromOrder(Bignum &groupOrder) { IntegerGroupParams result; // Set the order to "groupOrder" result.groupOrder = groupOrder; // Try possible values for "modulus" of the form "groupOrder * 2 * i" where // "p" is prime and i is a counter starting at 1. for (uint32_t i = 1; i < NUM_SCHNORRGEN_ATTEMPTS; i++) { // Set modulus equal to "groupOrder * 2 * i" result.modulus = (result.groupOrder * Bignum(i*2)) + Bignum(1); // Test the result for primality // TODO: This is a probabilistic routine and thus not the right choice if (result.modulus.isPrime(256)) { // Success. // // Calculate the generators "g", "h" using the process described in // NIST FIPS 186-3, Appendix A.2.3. This algorithm takes ("p", "q", // "domain_parameter_seed", "index"). We use "index" value 1 // to generate "g" and "index" value 2 to generate "h". uint256 seed = calculateSeed(groupOrder, "", 128, ""); uint256 pSeed = calculateHash(seed); uint256 qSeed = calculateHash(pSeed); result.g = calculateGroupGenerator(seed, pSeed, qSeed, result.modulus, result.groupOrder, 1); result.h = calculateGroupGenerator(seed, pSeed, qSeed, result.modulus, result.groupOrder, 2); // Perform some basic tests to make sure we have good parameters if (!(result.modulus.isPrime()) || // modulus is prime !(result.groupOrder.isPrime()) || // order is prime !((result.g.pow_mod(result.groupOrder, result.modulus)).isOne()) || // g^order mod modulus = 1 !((result.h.pow_mod(result.groupOrder, result.modulus)).isOne()) || // h^order mod modulus = 1 ((result.g.pow_mod(Bignum(100), result.modulus)).isOne()) || // g^100 mod modulus != 1 ((result.h.pow_mod(Bignum(100), result.modulus)).isOne()) || // h^100 mod modulus != 1 result.g == result.h || // g != h result.g.isOne()) { // g != 1 // If any of the above tests fail, throw an exception throw ZerocoinException("Group parameters are not valid"); } return result; } } // If we reached this point group generation has failed. Throw an exception. throw ZerocoinException("Too many attempts to generate Schnorr group."); }
Bignum calculateGroupGenerator(Bignum serialNumber, uint256 seed, uint256 pSeed, uint256 qSeed, Bignum modulus, Bignum groupOrder, uint32_t index) { Bignum result; // Verify that 0 <= index < 256 if (index > 255) { throw ZerocoinException("Invalid index for group generation"); } // Compute e = (modulus - 1) / groupOrder Bignum e = (modulus - Bignum(1)) / groupOrder; // Loop until we find a generator for (uint32_t count = 1; count < MAX_GENERATOR_ATTEMPTS; count++) { // hash = Hash(seed || pSeed || qSeed || “ggen” || index || count uint256 hash = (serialNumber > 0) ? calculateGeneratorSeed(serialNumber, "ggen", index, count) : calculateGeneratorSeed(seed, pSeed, qSeed, "ggen", index, count); Bignum W(hash); // Compute result = W^e mod p result = W.pow_mod(e, modulus); // If result > 1, we have a generator if (result > 1) { return result; } } // We only get here if we failed to find a generator throw ZerocoinException("Unable to find a generator, too many attempts"); }
void modulus(Bignum const & rhs, Bignum & D) const { D = Bignum(rhs.a.get(), rhs.n, rhs.n_max); Bignum N(a.get(), n, n_max); for (int i = int(N.n) - 1; i >= 0; --i) { a[n-1] = N.a[i]; std::rotate(a.get(), a.get() + n - 1, a.get() + n); //this->remove_leading_zeros(); //*this -= D * d_in_r(*this, D); } //this->remove_leading_zeros(); }
/** Verifies that a commitment c is accumulated in accumulator a */ bool AccumulatorProofOfKnowledge:: Verify(const Accumulator& a, const Bignum& valueOfCommitmentToCoin) const { Bignum sg = params->accumulatorPoKCommitmentGroup.g; Bignum sh = params->accumulatorPoKCommitmentGroup.h; Bignum g_n = params->accumulatorQRNCommitmentGroup.g; Bignum h_n = params->accumulatorQRNCommitmentGroup.h; //According to the proof, this hash should be of length k_prime bits. It is currently greater than that, which should not be a problem, but we should check this. CHashWriter hasher(0,0); hasher << *params << sg << sh << g_n << h_n << valueOfCommitmentToCoin << C_e << C_u << C_r << st_1 << st_2 << st_3 << t_1 << t_2 << t_3 << t_4; Bignum c = Bignum(hasher.GetHash()); //this hash should be of length k_prime bits Bignum st_1_prime = (valueOfCommitmentToCoin.pow_mod(c, params->accumulatorPoKCommitmentGroup.modulus) * sg.pow_mod(s_alpha, params->accumulatorPoKCommitmentGroup.modulus) * sh.pow_mod(s_phi, params->accumulatorPoKCommitmentGroup.modulus)) % params->accumulatorPoKCommitmentGroup.modulus; Bignum st_2_prime = (sg.pow_mod(c, params->accumulatorPoKCommitmentGroup.modulus) * ((valueOfCommitmentToCoin * sg.inverse(params->accumulatorPoKCommitmentGroup.modulus)).pow_mod(s_gamma, params->accumulatorPoKCommitmentGroup.modulus)) * sh.pow_mod(s_psi, params->accumulatorPoKCommitmentGroup.modulus)) % params->accumulatorPoKCommitmentGroup.modulus; Bignum st_3_prime = (sg.pow_mod(c, params->accumulatorPoKCommitmentGroup.modulus) * (sg * valueOfCommitmentToCoin).pow_mod(s_sigma, params->accumulatorPoKCommitmentGroup.modulus) * sh.pow_mod(s_xi, params->accumulatorPoKCommitmentGroup.modulus)) % params->accumulatorPoKCommitmentGroup.modulus; Bignum t_1_prime = (C_r.pow_mod(c, params->accumulatorModulus) * h_n.pow_mod(s_zeta, params->accumulatorModulus) * g_n.pow_mod(s_epsilon, params->accumulatorModulus)) % params->accumulatorModulus; Bignum t_2_prime = (C_e.pow_mod(c, params->accumulatorModulus) * h_n.pow_mod(s_eta, params->accumulatorModulus) * g_n.pow_mod(s_alpha, params->accumulatorModulus)) % params->accumulatorModulus; Bignum t_3_prime = ((a.getValue()).pow_mod(c, params->accumulatorModulus) * C_u.pow_mod(s_alpha, params->accumulatorModulus) * ((h_n.inverse(params->accumulatorModulus)).pow_mod(s_beta, params->accumulatorModulus))) % params->accumulatorModulus; Bignum t_4_prime = (C_r.pow_mod(s_alpha, params->accumulatorModulus) * ((h_n.inverse(params->accumulatorModulus)).pow_mod(s_delta, params->accumulatorModulus)) * ((g_n.inverse(params->accumulatorModulus)).pow_mod(s_beta, params->accumulatorModulus))) % params->accumulatorModulus; bool result = false; bool result_st1 = (st_1 == st_1_prime); bool result_st2 = (st_2 == st_2_prime); bool result_st3 = (st_3 == st_3_prime); bool result_t1 = (t_1 == t_1_prime); bool result_t2 = (t_2 == t_2_prime); bool result_t3 = (t_3 == t_3_prime); bool result_t4 = (t_4 == t_4_prime); bool result_range = ((s_alpha >= -(params->maxCoinValue * Bignum(2).pow(params->k_prime + params->k_dprime + 1))) && (s_alpha <= (params->maxCoinValue * Bignum(2).pow(params->k_prime + params->k_dprime + 1)))); result = result_st1 && result_st2 && result_st3 && result_t1 && result_t2 && result_t3 && result_t4 && result_range; return result; }
IntegerGroupParams deriveIntegerGroupParams(uint256 seed, uint32_t pLen, uint32_t qLen) { IntegerGroupParams result; Bignum p; Bignum q; uint256 pSeed, qSeed; // Calculate "p" and "q" and "domain_parameter_seed" from the // "seed" buffer above, using the procedure described in NIST // FIPS 186-3, Appendix A.1.2. calculateGroupModulusAndOrder(seed, pLen, qLen, &(result.modulus), &(result.groupOrder), &pSeed, &qSeed); // Calculate the generators "g", "h" using the process described in // NIST FIPS 186-3, Appendix A.2.3. This algorithm takes ("p", "q", // "domain_parameter_seed", "index"). We use "index" value 1 // to generate "g" and "index" value 2 to generate "h". result.g(calculateGroupGenerator(Bignum(0), seed, pSeed, qSeed, result.modulus, result.groupOrder, 1)); result.h(calculateGroupGenerator(Bignum(0), seed, pSeed, qSeed, result.modulus, result.groupOrder, 2)); // Perform some basic tests to make sure we have good parameters if ((uint32_t)(result.modulus.bitSize()) < pLen || // modulus is pLen bits long (uint32_t)(result.groupOrder.bitSize()) < qLen || // order is qLen bits long !(result.modulus.isPrime()) || // modulus is prime !(result.groupOrder.isPrime()) || // order is prime !((result.g().pow_mod(result.groupOrder, result.modulus)).isOne()) || // g^order mod modulus = 1 !((result.h().pow_mod(result.groupOrder, result.modulus)).isOne()) || // h^order mod modulus = 1 ((result.g().pow_mod(Bignum(100), result.modulus)).isOne()) || // g^100 mod modulus != 1 ((result.h().pow_mod(Bignum(100), result.modulus)).isOne()) || // h^100 mod modulus != 1 result.g() == result.h() || // g != h result.g().isOne()) { // g != 1 // If any of the above tests fail, throw an exception throw ZerocoinException("Group parameters are not valid"); } return result; }
Bignum generateIntegerFromSeed(uint32_t numBits, uint256 seed, uint32_t *numIterations) { Bignum result(0); uint32_t iterations = ceil((double)numBits / (double)HASH_OUTPUT_BITS); #ifdef ZEROCOIN_DEBUG cout << "numBits = " << numBits << endl; cout << "iterations = " << iterations << endl; #endif // Loop "iterations" times filling up the value "result" with random bits for (uint32_t count = 0; count < iterations; count++) { // result += ( H(pseed + count) * 2^{count * p0len} ) result += Bignum(calculateHash(seed + count)) * Bignum(2).pow(count * HASH_OUTPUT_BITS); } result = Bignum(2).pow(numBits - 1) + (result % (Bignum(2).pow(numBits - 1))); // Return the number of iterations and the result *numIterations = iterations; return result; }
const Bignum CommitmentProofOfKnowledge::calculateChallenge(const Bignum& a, const Bignum& b, const Bignum &commitOne, const Bignum &commitTwo) const { CHashWriter hasher(0,0); hasher << std::string(ZEROCOIN_COMMITMENT_EQUALITY_PROOF); hasher << commitOne; hasher << std::string("||"); hasher << commitTwo; hasher << std::string("||"); hasher << a; hasher << std::string("||"); hasher << b; hasher << std::string("||"); hasher << *(this->ap); hasher << std::string("||"); hasher << *(this->bp); return Bignum(hasher.GetHash()); }
Bignum calculateRawUFO(uint32_t ufoIndex, uint32_t numBits) { Bignum result(0); uint32_t hashes = numBits / HASH_OUTPUT_BITS; if (numBits != HASH_OUTPUT_BITS * hashes) { throw ZerocoinException("numBits must be divisible by HASH_OUTPUT_BITS"); // not implemented } for (uint32_t i = 0; i < hashes; i++) { CHashWriter hasher(0,0); hasher << ufoIndex; hasher << string("||"); hasher << numBits; hasher << string("||"); hasher << i; uint256 hash = hasher.GetHash(); result <<= HASH_OUTPUT_BITS; result += Bignum(hash); } return result; }
AccumulatorProofOfKnowledge::AccumulatorProofOfKnowledge(const AccumulatorAndProofParams* p, const Commitment& commitmentToCoin, const AccumulatorWitness& witness, Accumulator& a): params(p) { Bignum sg = params->accumulatorPoKCommitmentGroup.g; Bignum sh = params->accumulatorPoKCommitmentGroup.h; Bignum g_n = params->accumulatorQRNCommitmentGroup.g; Bignum h_n = params->accumulatorQRNCommitmentGroup.h; Bignum e = commitmentToCoin.getContents(); Bignum r = commitmentToCoin.getRandomness(); Bignum r_1 = Bignum::randBignum(params->accumulatorModulus/4); Bignum r_2 = Bignum::randBignum(params->accumulatorModulus/4); Bignum r_3 = Bignum::randBignum(params->accumulatorModulus/4); this->C_e = g_n.pow_mod(e, params->accumulatorModulus) * h_n.pow_mod(r_1, params->accumulatorModulus); this->C_u = witness.getValue() * h_n.pow_mod(r_2, params->accumulatorModulus); this->C_r = g_n.pow_mod(r_2, params->accumulatorModulus) * h_n.pow_mod(r_3, params->accumulatorModulus); Bignum r_alpha = Bignum::randBignum(params->maxCoinValue * Bignum(2).pow(params->k_prime + params->k_dprime)); if(!(Bignum::randBignum(Bignum(3)) % 2)) { r_alpha = 0-r_alpha; } Bignum r_gamma = Bignum::randBignum(params->accumulatorPoKCommitmentGroup.modulus); Bignum r_phi = Bignum::randBignum(params->accumulatorPoKCommitmentGroup.modulus); Bignum r_psi = Bignum::randBignum(params->accumulatorPoKCommitmentGroup.modulus); Bignum r_sigma = Bignum::randBignum(params->accumulatorPoKCommitmentGroup.modulus); Bignum r_xi = Bignum::randBignum(params->accumulatorPoKCommitmentGroup.modulus); Bignum r_epsilon = Bignum::randBignum((params->accumulatorModulus/4) * Bignum(2).pow(params->k_prime + params->k_dprime)); if(!(Bignum::randBignum(Bignum(3)) % 2)) { r_epsilon = 0-r_epsilon; } Bignum r_eta = Bignum::randBignum((params->accumulatorModulus/4) * Bignum(2).pow(params->k_prime + params->k_dprime)); if(!(Bignum::randBignum(Bignum(3)) % 2)) { r_eta = 0-r_eta; } Bignum r_zeta = Bignum::randBignum((params->accumulatorModulus/4) * Bignum(2).pow(params->k_prime + params->k_dprime)); if(!(Bignum::randBignum(Bignum(3)) % 2)) { r_zeta = 0-r_zeta; } Bignum r_beta = Bignum::randBignum((params->accumulatorModulus/4) * params->accumulatorPoKCommitmentGroup.modulus * Bignum(2).pow(params->k_prime + params->k_dprime)); if(!(Bignum::randBignum(Bignum(3)) % 2)) { r_beta = 0-r_beta; } Bignum r_delta = Bignum::randBignum((params->accumulatorModulus/4) * params->accumulatorPoKCommitmentGroup.modulus * Bignum(2).pow(params->k_prime + params->k_dprime)); if(!(Bignum::randBignum(Bignum(3)) % 2)) { r_delta = 0-r_delta; } this->st_1 = (sg.pow_mod(r_alpha, params->accumulatorPoKCommitmentGroup.modulus) * sh.pow_mod(r_phi, params->accumulatorPoKCommitmentGroup.modulus)) % params->accumulatorPoKCommitmentGroup.modulus; this->st_2 = (((commitmentToCoin.getCommitmentValue() * sg.inverse(params->accumulatorPoKCommitmentGroup.modulus)).pow_mod(r_gamma, params->accumulatorPoKCommitmentGroup.modulus)) * sh.pow_mod(r_psi, params->accumulatorPoKCommitmentGroup.modulus)) % params->accumulatorPoKCommitmentGroup.modulus; this->st_3 = ((sg * commitmentToCoin.getCommitmentValue()).pow_mod(r_sigma, params->accumulatorPoKCommitmentGroup.modulus) * sh.pow_mod(r_xi, params->accumulatorPoKCommitmentGroup.modulus)) % params->accumulatorPoKCommitmentGroup.modulus; this->t_1 = (h_n.pow_mod(r_zeta, params->accumulatorModulus) * g_n.pow_mod(r_epsilon, params->accumulatorModulus)) % params->accumulatorModulus; this->t_2 = (h_n.pow_mod(r_eta, params->accumulatorModulus) * g_n.pow_mod(r_alpha, params->accumulatorModulus)) % params->accumulatorModulus; this->t_3 = (C_u.pow_mod(r_alpha, params->accumulatorModulus) * ((h_n.inverse(params->accumulatorModulus)).pow_mod(r_beta, params->accumulatorModulus))) % params->accumulatorModulus; this->t_4 = (C_r.pow_mod(r_alpha, params->accumulatorModulus) * ((h_n.inverse(params->accumulatorModulus)).pow_mod(r_delta, params->accumulatorModulus)) * ((g_n.inverse(params->accumulatorModulus)).pow_mod(r_beta, params->accumulatorModulus))) % params->accumulatorModulus; CHashWriter hasher(0,0); hasher << *params << sg << sh << g_n << h_n << commitmentToCoin.getCommitmentValue() << C_e << C_u << C_r << st_1 << st_2 << st_3 << t_1 << t_2 << t_3 << t_4; //According to the proof, this hash should be of length k_prime bits. It is currently greater than that, which should not be a problem, but we should check this. Bignum c = Bignum(hasher.GetHash()); this->s_alpha = r_alpha - c*e; this->s_beta = r_beta - c*r_2*e; this->s_zeta = r_zeta - c*r_3; this->s_sigma = r_sigma - c*((e+1).inverse(params->accumulatorPoKCommitmentGroup.groupOrder)); this->s_eta = r_eta - c*r_1; this->s_epsilon = r_epsilon - c*r_2; this->s_delta = r_delta - c*r_3*e; this->s_xi = r_xi + c*r*((e+1).inverse(params->accumulatorPoKCommitmentGroup.groupOrder)); this->s_phi = (r_phi - c*r) % params->accumulatorPoKCommitmentGroup.groupOrder; this->s_gamma = r_gamma - c*((e-1).inverse(params->accumulatorPoKCommitmentGroup.groupOrder)); this->s_psi = r_psi + c*r*((e-1).inverse(params->accumulatorPoKCommitmentGroup.groupOrder)); }
Bignum generateRandomPrime(uint32_t primeBitLen, uint256 in_seed, uint256 *out_seed, uint32_t *prime_gen_counter) { // Verify that primeBitLen is not too small if (primeBitLen < 2) { throw ZerocoinException("Prime length is too short"); } // If primeBitLen < 33 bits, perform the base case. if (primeBitLen < 33) { Bignum result(0); // Set prime_seed = in_seed, prime_gen_counter = 0. uint256 prime_seed = in_seed; (*prime_gen_counter) = 0; // Loop up to "4 * primeBitLen" iterations. while ((*prime_gen_counter) < (4 * primeBitLen)) { // Generate a pseudorandom integer "c" of length primeBitLength bits uint32_t iteration_count; Bignum c = generateIntegerFromSeed(primeBitLen, prime_seed, &iteration_count); #ifdef ZEROCOIN_DEBUG cout << "generateRandomPrime: primeBitLen = " << primeBitLen << endl; cout << "Generated c = " << c << endl; #endif prime_seed += (iteration_count + 1); (*prime_gen_counter)++; // Set "intc" to be the least odd integer >= "c" we just generated uint32_t intc = c.getulong(); intc = (2 * floor(intc / 2.0)) + 1; #ifdef ZEROCOIN_DEBUG cout << "Should be odd. c = " << intc << endl; cout << "The big num is: c = " << c << endl; #endif // Perform trial division on this (relatively small) integer to determine if "intc" // is prime. If so, return success. if (primalityTestByTrialDivision(intc)) { // Return "intc" converted back into a Bignum and "prime_seed". We also updated // the variable "prime_gen_counter" in previous statements. result = intc; *out_seed = prime_seed; // Success return result; } } // while() // If we reached this point there was an error finding a candidate prime // so throw an exception. throw ZerocoinException("Unable to find prime in Shawe-Taylor algorithm"); // END OF BASE CASE } // If primeBitLen >= 33 bits, perform the recursive case. else { // Recurse to find a new random prime of roughly half the size uint32_t newLength = ceil((double)primeBitLen / 2.0) + 1; Bignum c0 = generateRandomPrime(newLength, in_seed, out_seed, prime_gen_counter); // Generate a random integer "x" of primeBitLen bits using the output // of the previous call. uint32_t numIterations; Bignum x = generateIntegerFromSeed(primeBitLen, *out_seed, &numIterations); (*out_seed) += numIterations + 1; // Compute "t" = ⎡x / (2 * c0⎤ // TODO no Ceiling call Bignum t = x / (Bignum(2) * c0); // Repeat the following procedure until we find a prime (or time out) for (uint32_t testNum = 0; testNum < MAX_PRIMEGEN_ATTEMPTS; testNum++) { // If ((2 * t * c0) + 1 > 2^{primeBitLen}), // then t = ⎡2^{primeBitLen} – 1 / (2 * c0)⎤. if ((Bignum(2) * t * c0) > (Bignum(2).pow(Bignum(primeBitLen)))) { t = ((Bignum(2).pow(Bignum(primeBitLen))) - Bignum(1)) / (Bignum(2) * c0); } // Set c = (2 * t * c0) + 1 Bignum c = (Bignum(2) * t * c0) + Bignum(1); // Increment prime_gen_counter (*prime_gen_counter)++; // Test "c" for primality as follows: // 1. First pick an integer "a" in between 2 and (c - 2) Bignum a = generateIntegerFromSeed(c.bitSize(), (*out_seed), &numIterations); a = Bignum(2) + (a % (c - Bignum(3))); (*out_seed) += (numIterations + 1); // 2. Compute "z" = a^{2*t} mod c Bignum z = a.pow_mod(Bignum(2) * t, c); // 3. Check if "c" is prime. // Specifically, verify that gcd((z-1), c) == 1 AND (z^c0 mod c) == 1 // If so we return "c" as our result. if (c.gcd(z - Bignum(1)).isOne() && z.pow_mod(c0, c).isOne()) { // Return "c", out_seed and prime_gen_counter // (the latter two of which were already updated) return c; } // 4. If the test did not succeed, increment "t" and loop t = t + Bignum(1); } // end of test loop } // We only reach this point if the test loop has iterated MAX_PRIMEGEN_ATTEMPTS // and failed to identify a valid prime. Throw an exception. throw ZerocoinException("Unable to generate random prime (too many tests)"); }
void CalculateParams(Params ¶ms, Bignum N, string aux, uint32_t securityLevel) { cout << "GNOSIS DEBUG: CalculateParams in ParamGeneration.cpp" << endl; params.initialized = false; params.accumulatorParams.initialized = false; cout << "GNOSIS DEBUG: aux is " << aux << endl; // Verify that |N| is > 1023 bits. uint32_t NLen = N.bitSize(); cout << "GNOSIS DEBUG: NLen is " << NLen << endl; if (NLen < 1023) { throw ZerocoinException("Modulus must be at least 1023 bits"); } // Verify that "securityLevel" is at least 80 bits (minimum). if (securityLevel < 80) { throw ZerocoinException("Security level must be at least 80 bits."); } cout << "GNOSIS DEBUG: securityLevel is " << securityLevel << endl; // Set the accumulator modulus to "N". params.accumulatorParams.accumulatorModulus = N; // Calculate the required size of the field "F_p" into which // we're embedding the coin commitment group. This may throw an // exception if the securityLevel is too large to be supported // by the current modulus. uint32_t pLen = 0; uint32_t qLen = 0; calculateGroupParamLengths(NLen - 2, securityLevel, &pLen, &qLen); // Calculate candidate parameters ("p", "q") for the coin commitment group // using a deterministic process based on "N", the "aux" string, and // the dedicated string "COMMITMENTGROUP". params.coinCommitmentGroup = deriveIntegerGroupParams(calculateSeed(N, aux, securityLevel, STRING_COMMIT_GROUP), pLen, qLen); // g and h are invalid, since they are now different for each coin; see // "Rational Zero" by Garman et al., section 4.4. params.coinCommitmentGroup.invalidateGenerators(); PRINT_BIGNUM("params.coinCommitmentGroup.groupOrder", params.coinCommitmentGroup.groupOrder); PRINT_BIGNUM("params.coinCommitmentGroup.modulus", params.coinCommitmentGroup.modulus); // Next, we derive parameters for a second Accumulated Value commitment group. // This is a Schnorr group with the specific property that the order of the group // must be exactly equal to "q" from the commitment group. We set // the modulus of the new group equal to "2q+1" and test to see if this is prime. params.serialNumberSoKCommitmentGroup = deriveIntegerGroupFromOrder(params.coinCommitmentGroup.modulus); PRINT_GROUP_PARAMS(params.serialNumberSoKCommitmentGroup); // Calculate the parameters for the internal commitment // using the same process. params.accumulatorParams.accumulatorPoKCommitmentGroup = deriveIntegerGroupParams(calculateSeed(N, aux, securityLevel, STRING_AIC_GROUP), qLen + 300, qLen + 1); PRINT_GROUP_PARAMS(params.accumulatorParams.accumulatorPoKCommitmentGroup); // Calculate the parameters for the accumulator QRN commitment generators. This isn't really // a whole group, just a pair of random generators in QR_N. uint32_t resultCtr; params.accumulatorParams.accumulatorQRNCommitmentGroup.g(generateIntegerFromSeed(NLen - 1, calculateSeed(N, aux, securityLevel, STRING_QRNCOMMIT_GROUPG), &resultCtr).pow_mod(Bignum(2), N)); params.accumulatorParams.accumulatorQRNCommitmentGroup.h(generateIntegerFromSeed(NLen - 1, calculateSeed(N, aux, securityLevel, STRING_QRNCOMMIT_GROUPH), &resultCtr).pow_mod(Bignum(2), N)); PRINT_BIGNUM("params.accumulatorParams.accumulatorQRNCommitmentGroup.g", params.accumulatorParams.accumulatorQRNCommitmentGroup.g()); PRINT_BIGNUM("params.accumulatorParams.accumulatorQRNCommitmentGroup.h", params.accumulatorParams.accumulatorQRNCommitmentGroup.h()); // Calculate the accumulator base, which we calculate as "u = C**2 mod N" // where C is an arbitrary value. In the unlikely case that "u = 1" we increment // "C" and repeat. Bignum constant(ACCUMULATOR_BASE_CONSTANT); params.accumulatorParams.accumulatorBase = Bignum(1); for (uint32_t count = 0; count < MAX_ACCUMGEN_ATTEMPTS && params.accumulatorParams.accumulatorBase.isOne(); count++) { params.accumulatorParams.accumulatorBase = constant.pow_mod(Bignum(2), params.accumulatorParams.accumulatorModulus); } // Compute the accumulator range. The upper range is the largest possible coin commitment value. // The lower range is sqrt(upper range) + 1. Since OpenSSL doesn't have // a square root function we use a slightly higher approximation. params.accumulatorParams.maxCoinValue = params.coinCommitmentGroup.modulus; params.accumulatorParams.minCoinValue = Bignum(2).pow((params.coinCommitmentGroup.modulus.bitSize() / 2) + 3); // If all went well, mark params as successfully initialized. params.accumulatorParams.initialized = true; // If all went well, mark params as successfully initialized. params.initialized = true; }
void calculateGroupModulusAndOrder(uint256 seed, uint32_t pLen, uint32_t qLen, Bignum *resultModulus, Bignum *resultGroupOrder, uint256 *resultPseed, uint256 *resultQseed) { // Verify that the seed length is >= qLen if (qLen > (sizeof(seed)) * 8) { // TODO: The use of 256-bit seeds limits us to 256-bit group orders. We should probably change this. // throw ZerocoinException("Seed is too short to support the required security level."); } #ifdef ZEROCOIN_DEBUG cout << "calculateGroupModulusAndOrder: pLen = " << pLen << endl; #endif // Generate a random prime for the group order. // This may throw an exception, which we'll pass upwards. // Result is the value "resultGroupOrder", "qseed" and "qgen_counter". uint256 qseed; uint32_t qgen_counter; *resultGroupOrder = generateRandomPrime(qLen, seed, &qseed, &qgen_counter); // Using ⎡pLen / 2 + 1⎤ as the length and qseed as the input_seed, use the random prime // routine to obtain p0 , pseed, and pgen_counter. We pass exceptions upward. uint32_t p0len = ceil((pLen / 2.0) + 1); uint256 pseed; uint32_t pgen_counter; Bignum p0 = generateRandomPrime(p0len, qseed, &pseed, &pgen_counter); // Set x = 0, old_counter = pgen_counter uint32_t old_counter = pgen_counter; // Generate a random integer "x" of pLen bits uint32_t iterations; Bignum x = generateIntegerFromSeed(pLen, pseed, &iterations); pseed += (iterations + 1); // Set x = 2^{pLen−1} + (x mod 2^{pLen–1}). Bignum powerOfTwo = Bignum(2).pow(pLen-1); x = powerOfTwo + (x % powerOfTwo); // t = ⎡x / (2 * resultGroupOrder * p0)⎤. // TODO: we don't have a ceiling function Bignum t = x / (Bignum(2) * (*resultGroupOrder) * p0); // Now loop until we find a valid prime "p" or we fail due to // pgen_counter exceeding ((4*pLen) + old_counter). for ( ; pgen_counter <= ((4*pLen) + old_counter) ; pgen_counter++) { // If (2 * t * resultGroupOrder * p0 + 1) > 2^{pLen}, then // t = ⎡2^{pLen−1} / (2 * resultGroupOrder * p0)⎤. powerOfTwo = Bignum(2).pow(pLen); Bignum prod = (Bignum(2) * t * (*resultGroupOrder) * p0) + Bignum(1); if (prod > powerOfTwo) { // TODO: implement a ceil function t = Bignum(2).pow(pLen-1) / (Bignum(2) * (*resultGroupOrder) * p0); } // Compute a candidate prime resultModulus = 2tqp0 + 1. *resultModulus = (Bignum(2) * t * (*resultGroupOrder) * p0) + Bignum(1); // Verify that resultModulus is prime. First generate a pseudorandom integer "a". Bignum a = generateIntegerFromSeed(pLen, pseed, &iterations); pseed += iterations + 1; // Set a = 2 + (a mod (resultModulus–3)). a = Bignum(2) + (a % ((*resultModulus) - Bignum(3))); // Set z = a^{2 * t * resultGroupOrder} mod resultModulus Bignum z = a.pow_mod(Bignum(2) * t * (*resultGroupOrder), (*resultModulus)); // If GCD(z–1, resultModulus) == 1 AND (z^{p0} mod resultModulus == 1) // then we have found our result. Return. if ((resultModulus->gcd(z - Bignum(1))).isOne() && (z.pow_mod(p0, (*resultModulus))).isOne()) { // Success! Return the seeds and primes. *resultPseed = pseed; *resultQseed = qseed; return; } // This prime did not work out. Increment "t" and try again. t = t + Bignum(1); } // loop continues until pgen_counter exceeds a limit // We reach this point only if we exceeded our maximum iteration count. // Throw an exception. throw ZerocoinException("Unable to generate a prime modulus for the group"); }