Example #1
0
static int tegra_otg_probe(struct platform_device *pdev)
{
	struct tegra_otg_data *tegra;
	struct resource *res;
	int err;

	tegra = kzalloc(sizeof(struct tegra_otg_data), GFP_KERNEL);
	if (!tegra)
		return -ENOMEM;

	tegra->otg.dev = &pdev->dev;
	tegra->otg.label = "tegra-otg";
	tegra->otg.state = OTG_STATE_UNDEFINED;
	tegra->otg.set_host = tegra_otg_set_host;
	tegra->otg.set_peripheral = tegra_otg_set_peripheral;
	tegra->otg.set_suspend = tegra_otg_set_suspend;
	tegra->otg.set_power = tegra_otg_set_power;
	spin_lock_init(&tegra->lock);
        wake_lock_init(&usb_wake_lock, WAKE_LOCK_SUSPEND, "tegra_otg");

	platform_set_drvdata(pdev, tegra);

	tegra->clk = clk_get(&pdev->dev, NULL);
	if (IS_ERR(tegra->clk)) {
		dev_err(&pdev->dev, "Can't get otg clock\n");
		err = PTR_ERR(tegra->clk);
		goto err_clk;
	}

	err = clk_enable(tegra->clk);
	if (err)
		goto err_clken;

	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
	if (!res) {
		dev_err(&pdev->dev, "Failed to get I/O memory\n");
		err = -ENXIO;
		goto err_io;
	}
	tegra->regs = ioremap(res->start, resource_size(res));
	if (!tegra->regs) {
		err = -ENOMEM;
		goto err_io;
	}

	tegra->otg.state = OTG_STATE_A_SUSPEND;

	err = otg_set_transceiver(&tegra->otg);
	if (err) {
		dev_err(&pdev->dev, "can't register transceiver (%d)\n", err);
		goto err_otg;
	}

	res = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
	if (!res) {
		dev_err(&pdev->dev, "Failed to get IRQ\n");
		err = -ENXIO;
		goto err_irq;
	}
	tegra->irq = res->start;
	err = request_threaded_irq(tegra->irq, tegra_otg_irq,
				   NULL,
				   IRQF_SHARED, "tegra-otg", tegra);
	if (err) {
		dev_err(&pdev->dev, "Failed to register IRQ\n");
		goto err_irq;
	}
	INIT_WORK (&tegra->work, irq_work);

	dev_info(&pdev->dev, "otg transceiver registered\n");
	return 0;

err_irq:
	otg_set_transceiver(NULL);
err_otg:
	iounmap(tegra->regs);
err_io:
	clk_disable(tegra->clk);
err_clken:
	clk_put(tegra->clk);
err_clk:
	platform_set_drvdata(pdev, NULL);
	kfree(tegra);
	return err;
}
Example #2
0
static int __init msm_serial_hsl_probe(struct platform_device *pdev)
{
	struct msm_hsl_port *msm_hsl_port;
	struct resource *uart_resource;
	struct resource *gsbi_resource;
	struct uart_port *port;
	int ret;

	if (unlikely(pdev->id < 0 || pdev->id >= UART_NR))
		return -ENXIO;

	printk(KERN_INFO "msm_serial_hsl: detected port #%d\n", pdev->id);

	port = get_port_from_line(pdev->id);
	port->dev = &pdev->dev;
	msm_hsl_port = UART_TO_MSM(port);

	if (msm_serial_hsl_has_gsbi()) {
		gsbi_resource =
			platform_get_resource_byname(pdev,
						     IORESOURCE_MEM,
						     "gsbi_resource");
		if (unlikely(!gsbi_resource))
			return -ENXIO;
		msm_hsl_port->clk = clk_get(&pdev->dev, "gsbi_uart_clk");
		msm_hsl_port->pclk = clk_get(&pdev->dev, "gsbi_pclk");
	} else {
		msm_hsl_port->clk = clk_get(&pdev->dev, "uartdm_clk");
		msm_hsl_port->pclk = NULL;
	}

	if (unlikely(IS_ERR(msm_hsl_port->clk))) {
		printk(KERN_ERR "%s: Error getting clk\n", __func__);
		return PTR_ERR(msm_hsl_port->clk);
	}
	if (unlikely(IS_ERR(msm_hsl_port->pclk))) {
		printk(KERN_ERR "%s: Error getting pclk\n", __func__);
		return PTR_ERR(msm_hsl_port->pclk);
	}


	uart_resource = platform_get_resource_byname(pdev,
						     IORESOURCE_MEM,
						     "uartdm_resource");
	if (unlikely(!uart_resource)) {
		printk(KERN_ERR "getting uartdm_resource failed\n");
		return -ENXIO;
	}
	port->mapbase = uart_resource->start;

	port->irq = platform_get_irq(pdev, 0);
	if (unlikely(port->irq < 0)) {
		printk(KERN_ERR "%s: getting irq failed\n", __func__);
		return -ENXIO;
	}

	device_set_wakeup_capable(&pdev->dev, 1);
	platform_set_drvdata(pdev, port);
	pm_runtime_enable(port->dev);
	ret = uart_add_one_port(&msm_hsl_uart_driver, port);

	return ret;
}
Example #3
0
void ext4_inline_data_truncate(struct inode *inode, int *has_inline)
{
	handle_t *handle;
	int inline_size, value_len, needed_blocks;
	size_t i_size;
	void *value = NULL;
	struct ext4_xattr_ibody_find is = {
		.s = { .not_found = -ENODATA, },
	};
	struct ext4_xattr_info i = {
		.name_index = EXT4_XATTR_INDEX_SYSTEM,
		.name = EXT4_XATTR_SYSTEM_DATA,
	};


	needed_blocks = ext4_writepage_trans_blocks(inode);
	handle = ext4_journal_start(inode, EXT4_HT_INODE, needed_blocks);
	if (IS_ERR(handle))
		return;

	down_write(&EXT4_I(inode)->xattr_sem);
	if (!ext4_has_inline_data(inode)) {
		*has_inline = 0;
		ext4_journal_stop(handle);
		return;
	}

	if (ext4_orphan_add(handle, inode))
		goto out;

	if (ext4_get_inode_loc(inode, &is.iloc))
		goto out;

	down_write(&EXT4_I(inode)->i_data_sem);
	i_size = inode->i_size;
	inline_size = ext4_get_inline_size(inode);
	EXT4_I(inode)->i_disksize = i_size;

	if (i_size < inline_size) {
		/* Clear the content in the xattr space. */
		if (inline_size > EXT4_MIN_INLINE_DATA_SIZE) {
			if (ext4_xattr_ibody_find(inode, &i, &is))
				goto out_error;

			BUG_ON(is.s.not_found);

			value_len = le32_to_cpu(is.s.here->e_value_size);
			value = kmalloc(value_len, GFP_NOFS);
			if (!value)
				goto out_error;

			if (ext4_xattr_ibody_get(inode, i.name_index, i.name,
						value, value_len))
				goto out_error;

			i.value = value;
			i.value_len = i_size > EXT4_MIN_INLINE_DATA_SIZE ?
					i_size - EXT4_MIN_INLINE_DATA_SIZE : 0;
			if (ext4_xattr_ibody_inline_set(handle, inode, &i, &is))
				goto out_error;
		}

		/* Clear the content within i_blocks. */
		if (i_size < EXT4_MIN_INLINE_DATA_SIZE) {
			void *p = (void *) ext4_raw_inode(&is.iloc)->i_block;
			memset(p + i_size, 0,
			       EXT4_MIN_INLINE_DATA_SIZE - i_size);
		}

		EXT4_I(inode)->i_inline_size = i_size <
					EXT4_MIN_INLINE_DATA_SIZE ?
					EXT4_MIN_INLINE_DATA_SIZE : i_size;
	}

out_error:
	up_write(&EXT4_I(inode)->i_data_sem);
out:
	brelse(is.iloc.bh);
	up_write(&EXT4_I(inode)->xattr_sem);
	kfree(value);
	if (inode->i_nlink)
		ext4_orphan_del(handle, inode);

	inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
	ext4_mark_inode_dirty(handle, inode);
	if (IS_SYNC(inode))
		ext4_handle_sync(handle);

	ext4_journal_stop(handle);
	return;
}
static int __init rtlx_module_init(void)
{
	struct device *dev;
	int i, err;

	if (!cpu_has_mipsmt) {
		printk("VPE loader: not a MIPS MT capable processor\n");
		return -ENODEV;
	}

	if (tclimit == 0) {
		printk(KERN_WARNING "No TCs reserved for AP/SP, not "
		       "initializing RTLX.\nPass maxtcs=<n> argument as kernel "
		       "argument\n");

		return -ENODEV;
	}

	major = register_chrdev(0, module_name, &rtlx_fops);
	if (major < 0) {
		printk(register_chrdev_failed);
		return major;
	}

	/* initialise the wait queues */
	for (i = 0; i < RTLX_CHANNELS; i++) {
		init_waitqueue_head(&channel_wqs[i].rt_queue);
		init_waitqueue_head(&channel_wqs[i].lx_queue);
		atomic_set(&channel_wqs[i].in_open, 0);
		mutex_init(&channel_wqs[i].mutex);

		dev = device_create(mt_class, NULL, MKDEV(major, i), NULL,
				    "%s%d", module_name, i);
		if (IS_ERR(dev)) {
			err = PTR_ERR(dev);
			goto out_chrdev;
		}
	}

	/* set up notifiers */
	notify.start = starting;
	notify.stop = stopping;
	vpe_notify(tclimit, &notify);

	if (cpu_has_vint)
		set_vi_handler(MIPS_CPU_RTLX_IRQ, rtlx_dispatch);
	else {
		pr_err("APRP RTLX init on non-vectored-interrupt processor\n");
		err = -ENODEV;
		goto out_chrdev;
	}

	rtlx_irq.dev_id = rtlx;
	setup_irq(rtlx_irq_num, &rtlx_irq);

	return 0;

out_chrdev:
	for (i = 0; i < RTLX_CHANNELS; i++)
		device_destroy(mt_class, MKDEV(major, i));

	return err;
}
Example #5
0
int hfs_brec_insert(struct hfs_find_data *fd, void *entry, int entry_len)
{
	struct hfs_btree *tree;
	struct hfs_bnode *node, *new_node;
	int size, key_len, rec;
	int data_off, end_off;
	int idx_rec_off, data_rec_off, end_rec_off;
	__be32 cnid;

	tree = fd->tree;
	if (!fd->bnode) {
		if (!tree->root)
			hfs_btree_inc_height(tree);
		fd->bnode = hfs_bnode_find(tree, tree->leaf_head);
		if (IS_ERR(fd->bnode))
			return PTR_ERR(fd->bnode);
		fd->record = -1;
	}
	new_node = NULL;
	key_len = be16_to_cpu(fd->search_key->key_len) + 2;
again:
	/* new record idx and complete record size */
	rec = fd->record + 1;
	size = key_len + entry_len;

	node = fd->bnode;
	hfs_bnode_dump(node);
	/* get last offset */
	end_rec_off = tree->node_size - (node->num_recs + 1) * 2;
	end_off = hfs_bnode_read_u16(node, end_rec_off);
	end_rec_off -= 2;
	hfs_dbg(BNODE_MOD, "insert_rec: %d, %d, %d, %d\n",
		rec, size, end_off, end_rec_off);
	if (size > end_rec_off - end_off) {
		if (new_node)
			panic("not enough room!\n");
		new_node = hfs_bnode_split(fd);
		if (IS_ERR(new_node))
			return PTR_ERR(new_node);
		goto again;
	}
	if (node->type == HFS_NODE_LEAF) {
		tree->leaf_count++;
		mark_inode_dirty(tree->inode);
	}
	node->num_recs++;
	/* write new last offset */
	hfs_bnode_write_u16(node,
		offsetof(struct hfs_bnode_desc, num_recs),
		node->num_recs);
	hfs_bnode_write_u16(node, end_rec_off, end_off + size);
	data_off = end_off;
	data_rec_off = end_rec_off + 2;
	idx_rec_off = tree->node_size - (rec + 1) * 2;
	if (idx_rec_off == data_rec_off)
		goto skip;
	/* move all following entries */
	do {
		data_off = hfs_bnode_read_u16(node, data_rec_off + 2);
		hfs_bnode_write_u16(node, data_rec_off, data_off + size);
		data_rec_off += 2;
	} while (data_rec_off < idx_rec_off);

	/* move data away */
	hfs_bnode_move(node, data_off + size, data_off,
		       end_off - data_off);

skip:
	hfs_bnode_write(node, fd->search_key, data_off, key_len);
	hfs_bnode_write(node, entry, data_off + key_len, entry_len);
	hfs_bnode_dump(node);

	if (new_node) {
		/* update parent key if we inserted a key
		 * at the start of the first node
		 */
		if (!rec && new_node != node)
			hfs_brec_update_parent(fd);

		hfs_bnode_put(fd->bnode);
		if (!new_node->parent) {
			hfs_btree_inc_height(tree);
			new_node->parent = tree->root;
		}
		fd->bnode = hfs_bnode_find(tree, new_node->parent);

		/* create index data entry */
		cnid = cpu_to_be32(new_node->this);
		entry = &cnid;
		entry_len = sizeof(cnid);

		/* get index key */
		hfs_bnode_read_key(new_node, fd->search_key, 14);
		__hfs_brec_find(fd->bnode, fd, hfs_find_rec_by_key);

		hfs_bnode_put(new_node);
		new_node = NULL;

		if ((tree->attributes & HFS_TREE_VARIDXKEYS) ||
				(tree->cnid == HFSPLUS_ATTR_CNID))
			key_len = be16_to_cpu(fd->search_key->key_len) + 2;
		else {
			fd->search_key->key_len =
				cpu_to_be16(tree->max_key_len);
			key_len = tree->max_key_len + 2;
		}
		goto again;
	}

	if (!rec)
		hfs_brec_update_parent(fd);

	return 0;
}
Example #6
0
static int db8131m_power_on(void)
{
	struct regulator *regulator;
	int ret = 0;

	pr_debug("%s: in", __func__);

	db8131m_gpio_request();

	/* 5M_CAM_nSTBY(5M STBY) LOW */
	ret = gpio_request(GPIO_5M_CAM_nSTBY, "GPM0");
	if (ret) {
		pr_err("faile to request gpio(GPIO_5M_CAM_nSTBY)");
		return ret;
	}
	ret = gpio_direction_output(GPIO_5M_CAM_nSTBY, 0);
	CAM_CHECK_ERR_RET(ret, "low 5M_CAM_nSTBY");

	/* 5M_CAM_RESET(5M RESET) LOW */
	ret = gpio_request(GPIO_5M_CAM_RESET, "GPF1");
	if (ret) {
		pr_err("faile to request gpio(GPIO_5M_CAM_RESET)");
		return ret;
	}
	ret = gpio_direction_output(GPIO_5M_CAM_RESET, 0);
	CAM_CHECK_ERR_RET(ret, "low 5M_CAM_RESET");

	/* VT_CAM_1.8V(VDDIO) */
	regulator = regulator_get(NULL, "vt_cam_1.8v");
	if (IS_ERR(regulator))
		return -ENODEV;
	ret = regulator_enable(regulator);
	regulator_put(regulator);
	CAM_CHECK_ERR_RET(ret, "enable vt_cam_1.8v");

	/* CAM_SENSOR_A2.8V */
	regulator = regulator_get(NULL, "cam_sensor_a2.8v");
	if (IS_ERR(regulator))
		return -ENODEV;
	ret = regulator_enable(regulator);
	regulator_put(regulator);
	CAM_CHECK_ERR_RET(ret, "enable cam_sensor_a2.8v");

	/* CAM_DVDD_1.5V(1.3M Core 1.8V) */
	regulator = regulator_get(NULL, "cam_dvdd_1.5v");
	if (IS_ERR(regulator))
		return -ENODEV;
	ret = regulator_enable(regulator);
	regulator_put(regulator);
	CAM_CHECK_ERR_RET(ret, "enable cam_dvdd_1.5v");

	/* CAM_ISP_CORE_1.2V ENABLE */
	regulator = regulator_get(NULL, "cam_isp_core_1.2v");
	if (IS_ERR(regulator))
		return -ENODEV;
	ret = regulator_enable(regulator);
	CAM_CHECK_ERR_RET(ret, "enable cam_isp_core_1.2v");

	mdelay(2);		/* 1ms */

	/* CAM_ISP_CORE_1.2V DISABLE */
	ret = regulator_force_disable(regulator);
	regulator_put(regulator);
	CAM_CHECK_ERR_RET(ret, "disable cam_isp_core_1.2v");

	/* VT_CAM_nSTBY(1.3M EN) EN */
	ret = gpio_direction_output(GPIO_VT_CAM_nSTBY, 1);
	CAM_CHECK_ERR_RET(ret, "high VT_CAM_nSTBY");

	/* MCLK */
	ret = s3c_gpio_cfgpin(GPIO_CAM_MCLK, S3C_GPIO_SFN(2));
	CAM_CHECK_ERR_RET(ret, "cfg mclk");
	s3c_gpio_setpull(GPIO_CAM_MCLK, S3C_GPIO_PULL_NONE);

	mdelay(1);		/* 20us */

	/* CAM_VT_nRST(1.3M RESET) EN */
	ret = gpio_direction_output(GPIO_CAM_VT_nRST, 1);
	CAM_CHECK_ERR_RET(ret, "high CAM_VT_nRST");

	mdelay(5);		/* 70000 cycle */

	gpio_free(GPIO_5M_CAM_nSTBY);
	gpio_free(GPIO_5M_CAM_RESET);
	gpio_free(GPIO_VT_CAM_nSTBY);
	gpio_free(GPIO_CAM_VT_nRST);
	gpio_free(GPIO_VT_CAM_ID);

	return ret;
}
Example #7
0
int arch_setup_additional_pages(struct linux_binprm *bprm, int uses_interp)
{
	struct mips_vdso_image *image = current->thread.abi->vdso;
	struct mm_struct *mm = current->mm;
	unsigned long gic_size, vvar_size, size, base, data_addr, vdso_addr;
	struct vm_area_struct *vma;
	struct resource gic_res;
	int ret;

	down_write(&mm->mmap_sem);

	/*
	 * Determine total area size. This includes the VDSO data itself, the
	 * data page, and the GIC user page if present. Always create a mapping
	 * for the GIC user area if the GIC is present regardless of whether it
	 * is the current clocksource, in case it comes into use later on. We
	 * only map a page even though the total area is 64K, as we only need
	 * the counter registers at the start.
	 */
	gic_size = gic_present ? PAGE_SIZE : 0;
	vvar_size = gic_size + PAGE_SIZE;
	size = vvar_size + image->size;

	base = get_unmapped_area(NULL, 0, size, 0, 0);
	if (IS_ERR_VALUE(base)) {
		ret = base;
		goto out;
	}

	data_addr = base + gic_size;
	vdso_addr = data_addr + PAGE_SIZE;

	vma = _install_special_mapping(mm, base, vvar_size,
				       VM_READ | VM_MAYREAD,
				       &vdso_vvar_mapping);
	if (IS_ERR(vma)) {
		ret = PTR_ERR(vma);
		goto out;
	}

	/* Map GIC user page. */
	if (gic_size) {
		ret = gic_get_usm_range(&gic_res);
		if (ret)
			goto out;

		ret = io_remap_pfn_range(vma, base,
					 gic_res.start >> PAGE_SHIFT,
					 gic_size,
					 pgprot_noncached(PAGE_READONLY));
		if (ret)
			goto out;
	}

	/* Map data page. */
	ret = remap_pfn_range(vma, data_addr,
			      virt_to_phys(&vdso_data) >> PAGE_SHIFT,
			      PAGE_SIZE, PAGE_READONLY);
	if (ret)
		goto out;

	/* Map VDSO image. */
	vma = _install_special_mapping(mm, vdso_addr, image->size,
				       VM_READ | VM_EXEC |
				       VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC,
				       &image->mapping);
	if (IS_ERR(vma)) {
		ret = PTR_ERR(vma);
		goto out;
	}

	mm->context.vdso = (void *)vdso_addr;
	ret = 0;

out:
	up_write(&mm->mmap_sem);
	return ret;
}
static __devinit int wm831x_buckv_probe(struct platform_device *pdev)
{
	struct wm831x *wm831x = dev_get_drvdata(pdev->dev.parent);
	struct wm831x_pdata *pdata = wm831x->dev->platform_data;
	int id = pdev->id % ARRAY_SIZE(pdata->dcdc);
	struct wm831x_dcdc *dcdc;
	struct resource *res;
	int ret, irq;

	dev_dbg(&pdev->dev, "Probing DCDC%d\n", id + 1);

	if (pdata == NULL || pdata->dcdc[id] == NULL)
		return -ENODEV;

	dcdc = kzalloc(sizeof(struct wm831x_dcdc), GFP_KERNEL);
	if (dcdc == NULL) {
		dev_err(&pdev->dev, "Unable to allocate private data\n");
		return -ENOMEM;
	}

	dcdc->wm831x = wm831x;

	res = platform_get_resource(pdev, IORESOURCE_IO, 0);
	if (res == NULL) {
		dev_err(&pdev->dev, "No I/O resource\n");
		ret = -EINVAL;
		goto err;
	}
	dcdc->base = res->start;

	snprintf(dcdc->name, sizeof(dcdc->name), "DCDC%d", id + 1);
	dcdc->desc.name = dcdc->name;
	dcdc->desc.id = id;
	dcdc->desc.type = REGULATOR_VOLTAGE;
	dcdc->desc.n_voltages = WM831X_BUCKV_MAX_SELECTOR + 1;
	dcdc->desc.ops = &wm831x_buckv_ops;
	dcdc->desc.owner = THIS_MODULE;

	ret = wm831x_reg_read(wm831x, dcdc->base + WM831X_DCDC_ON_CONFIG);
	if (ret < 0) {
		dev_err(wm831x->dev, "Failed to read ON VSEL: %d\n", ret);
		goto err;
	}
	dcdc->on_vsel = ret & WM831X_DC1_ON_VSEL_MASK;

	ret = wm831x_reg_read(wm831x, dcdc->base + WM831X_DCDC_ON_CONFIG);
	if (ret < 0) {
		dev_err(wm831x->dev, "Failed to read DVS VSEL: %d\n", ret);
		goto err;
	}
	dcdc->dvs_vsel = ret & WM831X_DC1_DVS_VSEL_MASK;

	if (pdata->dcdc[id])
		wm831x_buckv_dvs_init(dcdc, pdata->dcdc[id]->driver_data);

	dcdc->regulator = regulator_register(&dcdc->desc, &pdev->dev,
					     pdata->dcdc[id], dcdc);
	if (IS_ERR(dcdc->regulator)) {
		ret = PTR_ERR(dcdc->regulator);
		dev_err(wm831x->dev, "Failed to register DCDC%d: %d\n",
			id + 1, ret);
		goto err;
	}

	irq = platform_get_irq_byname(pdev, "UV");
	ret = wm831x_request_irq(wm831x, irq, wm831x_dcdc_uv_irq,
				 IRQF_TRIGGER_RISING, dcdc->name,
				 dcdc);
	if (ret != 0) {
		dev_err(&pdev->dev, "Failed to request UV IRQ %d: %d\n",
			irq, ret);
		goto err_regulator;
	}

	irq = platform_get_irq_byname(pdev, "HC");
	ret = wm831x_request_irq(wm831x, irq, wm831x_dcdc_oc_irq,
				 IRQF_TRIGGER_RISING, dcdc->name,
				 dcdc);
	if (ret != 0) {
		dev_err(&pdev->dev, "Failed to request HC IRQ %d: %d\n",
			irq, ret);
		goto err_uv;
	}

	platform_set_drvdata(pdev, dcdc);

	return 0;

err_uv:
	wm831x_free_irq(wm831x, platform_get_irq_byname(pdev, "UV"), dcdc);
err_regulator:
	regulator_unregister(dcdc->regulator);
err:
	if (dcdc->dvs_gpio)
		gpio_free(dcdc->dvs_gpio);
	kfree(dcdc);
	return ret;
}
static __devinit int wm831x_boostp_probe(struct platform_device *pdev)
{
	struct wm831x *wm831x = dev_get_drvdata(pdev->dev.parent);
	struct wm831x_pdata *pdata = wm831x->dev->platform_data;
	int id = pdev->id % ARRAY_SIZE(pdata->dcdc);
	struct wm831x_dcdc *dcdc;
	struct resource *res;
	int ret, irq;

	dev_dbg(&pdev->dev, "Probing DCDC%d\n", id + 1);

	if (pdata == NULL || pdata->dcdc[id] == NULL)
		return -ENODEV;

	dcdc = kzalloc(sizeof(struct wm831x_dcdc), GFP_KERNEL);
	if (dcdc == NULL) {
		dev_err(&pdev->dev, "Unable to allocate private data\n");
		return -ENOMEM;
	}

	dcdc->wm831x = wm831x;

	res = platform_get_resource(pdev, IORESOURCE_IO, 0);
	if (res == NULL) {
		dev_err(&pdev->dev, "No I/O resource\n");
		ret = -EINVAL;
		goto err;
	}
	dcdc->base = res->start;

	snprintf(dcdc->name, sizeof(dcdc->name), "DCDC%d", id + 1);
	dcdc->desc.name = dcdc->name;
	dcdc->desc.id = id;
	dcdc->desc.type = REGULATOR_VOLTAGE;
	dcdc->desc.ops = &wm831x_boostp_ops;
	dcdc->desc.owner = THIS_MODULE;

	dcdc->regulator = regulator_register(&dcdc->desc, &pdev->dev,
					     pdata->dcdc[id], dcdc);
	if (IS_ERR(dcdc->regulator)) {
		ret = PTR_ERR(dcdc->regulator);
		dev_err(wm831x->dev, "Failed to register DCDC%d: %d\n",
			id + 1, ret);
		goto err;
	}

	irq = platform_get_irq_byname(pdev, "UV");
	ret = wm831x_request_irq(wm831x, irq, wm831x_dcdc_uv_irq,
				 IRQF_TRIGGER_RISING, dcdc->name,
				 dcdc);
	if (ret != 0) {
		dev_err(&pdev->dev, "Failed to request UV IRQ %d: %d\n",
			irq, ret);
		goto err_regulator;
	}

	platform_set_drvdata(pdev, dcdc);

	return 0;

err_regulator:
	regulator_unregister(dcdc->regulator);
err:
	kfree(dcdc);
	return ret;
}
Example #10
0
int ip6_route_me_harder(struct sk_buff *skb)
{
	struct net *net = dev_net(skb_dst(skb)->dev);
	struct ipv6hdr *iph = ipv6_hdr(skb);
	struct dst_entry *dst;
	struct flowi6 fl6 = {
		.flowi6_oif = skb->sk ? skb->sk->sk_bound_dev_if : 0,
		.flowi6_mark = skb->mark,
		.daddr = iph->daddr,
		.saddr = iph->saddr,
	};

	dst = ip6_route_output(net, skb->sk, &fl6);
	if (dst->error) {
		IP6_INC_STATS(net, ip6_dst_idev(dst), IPSTATS_MIB_OUTNOROUTES);
		LIMIT_NETDEBUG(KERN_DEBUG "ip6_route_me_harder: No more route.\n");
		dst_release(dst);
		return -EINVAL;
	}

	/* Drop old route. */
	skb_dst_drop(skb);

	skb_dst_set(skb, dst);

#ifdef CONFIG_XFRM
	if (!(IP6CB(skb)->flags & IP6SKB_XFRM_TRANSFORMED) &&
	    xfrm_decode_session(skb, flowi6_to_flowi(&fl6), AF_INET6) == 0) {
		skb_dst_set(skb, NULL);
		dst = xfrm_lookup(net, dst, flowi6_to_flowi(&fl6), skb->sk, 0);
		if (IS_ERR(dst))
			return -1;
		skb_dst_set(skb, dst);
	}
#endif

	return 0;
}
EXPORT_SYMBOL(ip6_route_me_harder);

/*
 * Extra routing may needed on local out, as the QUEUE target never
 * returns control to the table.
 */

struct ip6_rt_info {
	struct in6_addr daddr;
	struct in6_addr saddr;
	u_int32_t mark;
};

static void nf_ip6_saveroute(const struct sk_buff *skb,
			     struct nf_queue_entry *entry)
{
	struct ip6_rt_info *rt_info = nf_queue_entry_reroute(entry);

	if (entry->hook == NF_INET_LOCAL_OUT) {
		struct ipv6hdr *iph = ipv6_hdr(skb);

		rt_info->daddr = iph->daddr;
		rt_info->saddr = iph->saddr;
		rt_info->mark = skb->mark;
	}
}

static int nf_ip6_reroute(struct sk_buff *skb,
			  const struct nf_queue_entry *entry)
{
	struct ip6_rt_info *rt_info = nf_queue_entry_reroute(entry);

	if (entry->hook == NF_INET_LOCAL_OUT) {
		struct ipv6hdr *iph = ipv6_hdr(skb);
		if (!ipv6_addr_equal(&iph->daddr, &rt_info->daddr) ||
		    !ipv6_addr_equal(&iph->saddr, &rt_info->saddr) ||
		    skb->mark != rt_info->mark)
			return ip6_route_me_harder(skb);
	}
	return 0;
}

static int nf_ip6_route(struct net *net, struct dst_entry **dst,
			struct flowi *fl, bool strict)
{
	static const struct ipv6_pinfo fake_pinfo;
	static const struct inet_sock fake_sk = {
		/* makes ip6_route_output set RT6_LOOKUP_F_IFACE: */
		.sk.sk_bound_dev_if = 1,
		.pinet6 = (struct ipv6_pinfo *) &fake_pinfo,
	};
	const void *sk = strict ? &fake_sk : NULL;

	*dst = ip6_route_output(net, sk, &fl->u.ip6);
	return (*dst)->error;
}

__sum16 nf_ip6_checksum(struct sk_buff *skb, unsigned int hook,
			     unsigned int dataoff, u_int8_t protocol)
{
	struct ipv6hdr *ip6h = ipv6_hdr(skb);
	__sum16 csum = 0;

	switch (skb->ip_summed) {
	case CHECKSUM_COMPLETE:
		if (hook != NF_INET_PRE_ROUTING && hook != NF_INET_LOCAL_IN)
			break;
		if (!csum_ipv6_magic(&ip6h->saddr, &ip6h->daddr,
				     skb->len - dataoff, protocol,
				     csum_sub(skb->csum,
					      skb_checksum(skb, 0,
							   dataoff, 0)))) {
			skb->ip_summed = CHECKSUM_UNNECESSARY;
			break;
		}
		/* fall through */
	case CHECKSUM_NONE:
		skb->csum = ~csum_unfold(
				csum_ipv6_magic(&ip6h->saddr, &ip6h->daddr,
					     skb->len - dataoff,
					     protocol,
					     csum_sub(0,
						      skb_checksum(skb, 0,
								   dataoff, 0))));
		csum = __skb_checksum_complete(skb);
	}
	return csum;
}
EXPORT_SYMBOL(nf_ip6_checksum);

static __sum16 nf_ip6_checksum_partial(struct sk_buff *skb, unsigned int hook,
				       unsigned int dataoff, unsigned int len,
				       u_int8_t protocol)
{
	struct ipv6hdr *ip6h = ipv6_hdr(skb);
	__wsum hsum;
	__sum16 csum = 0;

	switch (skb->ip_summed) {
	case CHECKSUM_COMPLETE:
		if (len == skb->len - dataoff)
			return nf_ip6_checksum(skb, hook, dataoff, protocol);
		/* fall through */
	case CHECKSUM_NONE:
		hsum = skb_checksum(skb, 0, dataoff, 0);
		skb->csum = ~csum_unfold(csum_ipv6_magic(&ip6h->saddr,
							 &ip6h->daddr,
							 skb->len - dataoff,
							 protocol,
							 csum_sub(0, hsum)));
		skb->ip_summed = CHECKSUM_NONE;
		return __skb_checksum_complete_head(skb, dataoff + len);
	}
	return csum;
};

static const struct nf_afinfo nf_ip6_afinfo = {
	.family			= AF_INET6,
	.checksum		= nf_ip6_checksum,
	.checksum_partial	= nf_ip6_checksum_partial,
	.route			= nf_ip6_route,
	.saveroute		= nf_ip6_saveroute,
	.reroute		= nf_ip6_reroute,
	.route_key_size		= sizeof(struct ip6_rt_info),
};

int __init ipv6_netfilter_init(void)
{
	return nf_register_afinfo(&nf_ip6_afinfo);
}

/* This can be called from inet6_init() on errors, so it cannot
 * be marked __exit. -DaveM
 */
void ipv6_netfilter_fini(void)
{
	nf_unregister_afinfo(&nf_ip6_afinfo);
}
Example #11
0
void mdp_config_vsync(struct msm_fb_data_type *mfd)
{
	/* vsync on primary lcd only for now */
	if ((mfd->dest != DISPLAY_LCD) || (mfd->panel_info.pdest != DISPLAY_1)
	    || (!vsync_mode)) {
		goto err_handle;
	}

	vsync_clk_status = 0;
	if (mfd->panel_info.lcd.vsync_enable) {
		mfd->total_porch_lines = mfd->panel_info.lcd.v_back_porch +
		    mfd->panel_info.lcd.v_front_porch +
		    mfd->panel_info.lcd.v_pulse_width;
		mfd->total_lcd_lines =
		    mfd->panel_info.yres + mfd->total_porch_lines;
		mfd->lcd_ref_usec_time =
		    100000000 / mfd->panel_info.lcd.refx100;
		mfd->vsync_handler_pending = FALSE;

		mfd->last_vsync_timetick.tv64 = 0;

#ifdef MDP_HW_VSYNC
		if (mdp_vsync_clk == NULL)
			mdp_vsync_clk = clk_get(NULL, "mdp_vsync_clk");

		if (IS_ERR(mdp_vsync_clk)) {
			printk(KERN_ERR "error: can't get mdp_vsync_clk!\n");
			mfd->use_mdp_vsync = 0;
		} else
			mfd->use_mdp_vsync = 1;

		if (mfd->use_mdp_vsync) {
			uint32 vsync_cnt_cfg_dem;
			uint32 mdp_vsync_clk_speed_hz;

			mdp_vsync_clk_speed_hz = clk_get_rate(mdp_vsync_clk);

			if (mdp_vsync_clk_speed_hz == 0) {
				mfd->use_mdp_vsync = 0;
			} else {
				/*
				 * Do this calculation in 2 steps for
				 * rounding uint32 properly.
				 */
				vsync_cnt_cfg_dem =
				    (mfd->panel_info.lcd.refx100 *
				     mfd->total_lcd_lines) / 100;
				vsync_cnt_cfg =
				    (mdp_vsync_clk_speed_hz) /
				    vsync_cnt_cfg_dem;
				mdp_vsync_cfg_regs(mfd, TRUE);
			}
		}
#else
		mfd->use_mdp_vsync = 0;
		hrtimer_init(&mfd->dma_hrtimer, CLOCK_MONOTONIC,
			     HRTIMER_MODE_REL);
		mfd->dma_hrtimer.function = mdp_dma2_vsync_hrtimer_handler;
		mfd->vsync_width_boundary = vmalloc(mfd->panel_info.xres * 4);
#endif

#ifdef CONFIG_FB_MSM_MDDI
		mfd->channel_irq = 0;
		if (mfd->panel_info.lcd.hw_vsync_mode) {
			u32 vsync_gpio = mfd->vsync_gpio;
			u32 ret;

			if (vsync_gpio == -1) {
				MSM_FB_INFO("vsync_gpio not defined!\n");
				goto err_handle;
			}

			ret = gpio_tlmm_config(GPIO_CFG
					(vsync_gpio,
					(mfd->use_mdp_vsync) ? 1 : 0,
					GPIO_CFG_INPUT,
					GPIO_CFG_PULL_DOWN,
					GPIO_CFG_2MA),
					GPIO_CFG_ENABLE);
			if (ret)
				goto err_handle;

			/*
			 * if use_mdp_vsync, then no interrupt need since
			 * mdp_vsync is feed directly to mdp to reset the
			 * write pointer counter. therefore no irq_handler
			 * need to reset write pointer counter.
			 */
			if (!mfd->use_mdp_vsync) {
				mfd->channel_irq = MSM_GPIO_TO_INT(vsync_gpio);
				if (request_irq
				    (mfd->channel_irq,
				     &mdp_hw_vsync_handler_proxy,
				     IRQF_TRIGGER_FALLING, "VSYNC_GPIO",
				     (void *)mfd)) {
					MSM_FB_INFO
					("irq=%d failed! vsync_gpio=%d\n",
						mfd->channel_irq,
						vsync_gpio);
					goto err_handle;
				}
			}
		}
#endif
		mdp_hw_vsync_clk_enable(mfd);
		mdp_set_vsync((unsigned long)mfd);
	}

	return;

err_handle:
	if (mfd->vsync_width_boundary)
		vfree(mfd->vsync_width_boundary);
	mfd->panel_info.lcd.vsync_enable = FALSE;
	printk(KERN_ERR "%s: failed!\n", __func__);
}
static int s3c_rtc_probe(struct platform_device *pdev)
{
	struct rtc_device *rtc;
	struct rtc_time rtc_tm;
	struct resource *res;
	int ret;
	int tmp;

	dev_dbg(&pdev->dev, "%s: probe=%p\n", __func__, pdev);

	/* find the IRQs */

	s3c_rtc_tickno = platform_get_irq(pdev, 1);
	if (s3c_rtc_tickno < 0) {
		dev_err(&pdev->dev, "no irq for rtc tick\n");
		return s3c_rtc_tickno;
	}

	s3c_rtc_alarmno = platform_get_irq(pdev, 0);
	if (s3c_rtc_alarmno < 0) {
		dev_err(&pdev->dev, "no irq for alarm\n");
		return s3c_rtc_alarmno;
	}

	dev_dbg(&pdev->dev, "s3c2410_rtc: tick irq %d, alarm irq %d\n",
		 s3c_rtc_tickno, s3c_rtc_alarmno);

	/* get the memory region */

	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
	s3c_rtc_base = devm_ioremap_resource(&pdev->dev, res);
	if (IS_ERR(s3c_rtc_base))
		return PTR_ERR(s3c_rtc_base);

	rtc_clk = devm_clk_get(&pdev->dev, "gate_rtc");
	if (IS_ERR(rtc_clk)) {
		dev_err(&pdev->dev, "failed to find rtc clock source\n");
		ret = PTR_ERR(rtc_clk);
		rtc_clk = NULL;
		return ret;
	}

	clk_prepare_enable(rtc_clk);

	/* check to see if everything is setup correctly */

	s3c_rtc_enable(pdev, 1);

	dev_dbg(&pdev->dev, "s3c2410_rtc: RTCCON=%02x\n",
		 readw(s3c_rtc_base + S3C2410_RTCCON));

	device_init_wakeup(&pdev->dev, 1);

	/* register RTC and exit */

	rtc = devm_rtc_device_register(&pdev->dev, "s3c", &s3c_rtcops,
				  THIS_MODULE);

	if (IS_ERR(rtc)) {
		dev_err(&pdev->dev, "cannot attach rtc\n");
		ret = PTR_ERR(rtc);
		goto err_nortc;
	}

	s3c_rtc_cpu_type = s3c_rtc_get_driver_data(pdev);

	/* Check RTC Time */

	s3c_rtc_gettime(NULL, &rtc_tm);

	if (rtc_valid_tm(&rtc_tm)) {
		rtc_tm.tm_year	= 100;
		rtc_tm.tm_mon	= 0;
		rtc_tm.tm_mday	= 1;
		rtc_tm.tm_hour	= 0;
		rtc_tm.tm_min	= 0;
		rtc_tm.tm_sec	= 0;

		s3c_rtc_settime(NULL, &rtc_tm);

		dev_warn(&pdev->dev, "warning: invalid RTC value so initializing it\n");
	}

	if (s3c_rtc_cpu_type != TYPE_S3C2410)
		rtc->max_user_freq = 32768;
	else
		rtc->max_user_freq = 128;

	if (s3c_rtc_cpu_type == TYPE_S3C2416 || s3c_rtc_cpu_type == TYPE_S3C2443) {
		tmp = readw(s3c_rtc_base + S3C2410_RTCCON);
		tmp |= S3C2443_RTCCON_TICSEL;
		writew(tmp, s3c_rtc_base + S3C2410_RTCCON);
	}

	platform_set_drvdata(pdev, rtc);

	s3c_rtc_setfreq(&pdev->dev, 1);

	ret = devm_request_irq(&pdev->dev, s3c_rtc_alarmno, s3c_rtc_alarmirq,
			  0,  "s3c2410-rtc alarm", rtc);
	if (ret) {
		dev_err(&pdev->dev, "IRQ%d error %d\n", s3c_rtc_alarmno, ret);
		goto err_alarm_irq;
	}

	ret = devm_request_irq(&pdev->dev, s3c_rtc_tickno, s3c_rtc_tickirq,
			  0,  "s3c2410-rtc tick", rtc);
	if (ret) {
		dev_err(&pdev->dev, "IRQ%d error %d\n", s3c_rtc_tickno, ret);
		goto err_alarm_irq;
	}

	clk_disable(rtc_clk);

	return 0;

 err_alarm_irq:
	platform_set_drvdata(pdev, NULL);

 err_nortc:
	s3c_rtc_enable(pdev, 0);
	clk_disable_unprepare(rtc_clk);

	return ret;
}
Example #13
0
/**
 * gserial_setup - initialize TTY driver for one or more ports
 * @g: gadget to associate with these ports
 * @count: how many ports to support
 * Context: may sleep
 *
 * The TTY stack needs to know in advance how many devices it should
 * plan to manage.  Use this call to set up the ports you will be
 * exporting through USB.  Later, connect them to functions based
 * on what configuration is activated by the USB host; and disconnect
 * them as appropriate.
 *
 * An example would be a two-configuration device in which both
 * configurations expose port 0, but through different functions.
 * One configuration could even expose port 1 while the other
 * one doesn't.
 *
 * Returns negative errno or zero.
 */
int gserial_setup(struct usb_gadget *g, unsigned count)
{
    unsigned			i;
    struct usb_cdc_line_coding	coding;
    int				status;

    if (count == 0 || count > N_PORTS)
        return -EINVAL;

    gs_tty_driver = alloc_tty_driver(count);
    if (!gs_tty_driver)
        return -ENOMEM;

    gs_tty_driver->owner = THIS_MODULE;
    gs_tty_driver->driver_name = "g_serial";
    gs_tty_driver->name = PREFIX;
    /* uses dynamically assigned dev_t values */

    gs_tty_driver->type = TTY_DRIVER_TYPE_SERIAL;
    gs_tty_driver->subtype = SERIAL_TYPE_NORMAL;
    gs_tty_driver->flags = TTY_DRIVER_REAL_RAW | TTY_DRIVER_DYNAMIC_DEV
                           | TTY_DRIVER_RESET_TERMIOS;
    gs_tty_driver->init_termios = tty_std_termios;

    /* 9600-8-N-1 ... matches defaults expected by "usbser.sys" on
     * MS-Windows.  Otherwise, most of these flags shouldn't affect
     * anything unless we were to actually hook up to a serial line.
     */
    gs_tty_driver->init_termios.c_cflag =
        B9600 | CS8 | CREAD | HUPCL | CLOCAL;
    gs_tty_driver->init_termios.c_ispeed = 9600;
    gs_tty_driver->init_termios.c_ospeed = 9600;

    coding.dwDTERate = cpu_to_le32(9600);
    coding.bCharFormat = 8;
    coding.bParityType = USB_CDC_NO_PARITY;
    coding.bDataBits = USB_CDC_1_STOP_BITS;

    tty_set_operations(gs_tty_driver, &gs_tty_ops);

    gserial_wq = create_singlethread_workqueue("k_gserial");
    if (!gserial_wq) {
        status = -ENOMEM;
        goto fail;
    }

    /* make devices be openable */
    for (i = 0; i < count; i++) {
        mutex_init(&ports[i].lock);
        status = gs_port_alloc(i, &coding);
        if (status) {
            count = i;
            goto fail;
        }
    }
    n_ports = count;

    /* export the driver ... */
    status = tty_register_driver(gs_tty_driver);
    if (status) {
        put_tty_driver(gs_tty_driver);
        pr_err("%s: cannot register, err %d\n",
               __func__, status);
        goto fail;
    }

    /* ... and sysfs class devices, so mdev/udev make /dev/ttyGS* */
    for (i = 0; i < count; i++) {
        struct device	*tty_dev;

        tty_dev = tty_register_device(gs_tty_driver, i, &g->dev);
        if (IS_ERR(tty_dev))
            pr_warning("%s: no classdev for port %d, err %ld\n",
                       __func__, i, PTR_ERR(tty_dev));
    }

    for (i = 0; i < count; i++)
        usb_debugfs_init(ports[i].port, i);

    pr_debug("%s: registered %d ttyGS* device%s\n", __func__,
             count, (count == 1) ? "" : "s");

    return status;
fail:
    while (count--)
        kfree(ports[count].port);
    if (gserial_wq)
        destroy_workqueue(gserial_wq);
    put_tty_driver(gs_tty_driver);
    gs_tty_driver = NULL;
    return status;
}
Example #14
0
/*<BU5D08118 zhangtao 20100419 begin*/
static int aps_12d_probe(
	
	struct i2c_client *client, const struct i2c_device_id *id)
{	
	int ret;
	struct aps_data *aps;
	/*the aps_12d sensors ispower on*/
	/* <BU5D07679 zhangtao 20100413 begin */
	struct vreg *vreg_gp4=NULL;
	int rc;
/* <DTS2010100800714 liugaofei 20101008 begin */
	int i;
/* DTS2010100800714 liugaofei 20101008 end */
	
    vreg_gp4 = vreg_get(NULL, VREG_GP4_NAME);
    /* < DTS2010061200552 zhangtao 20100612 begin */
    if (IS_ERR(vreg_gp4)) 
    {
	    pr_err("%s:gp4 power init get failed\n", __func__);
    }
    /* DTS2010061200552 zhangtao 20100612 end> */

    /* <DTS2011012600839 liliang 20110215 begin */
    /* set gp4 voltage as 2700mV for all */
    rc = vreg_set_level(vreg_gp4,VREG_GP4_VOLTAGE_VALUE_2700);
    /* <DTS2011012600839 liliang 20110215 end >*/
    
	if (rc) {
		PROXIMITY_DEBUG("%s: vreg_gp4  vreg_set_level failed \n", __func__);
		return rc;
	}
	rc = vreg_enable(vreg_gp4);
	if (rc) {
		pr_err("%s: vreg_gp4    vreg_enable failed \n", __func__);
		return rc;
	}
	mdelay(5);
       /* BU5D07679 zhangtao 20100413 end> */
	if (!i2c_check_functionality(client->adapter, I2C_FUNC_I2C)) {
		PROXIMITY_DEBUG(KERN_ERR "aps_12d_probe: need I2C_FUNC_I2C\n");
		ret = -ENODEV;
		goto err_check_functionality_failed;
	}

	/* < DTS2010091001474 zhangtao 20100910 begin */
	/* if querry the board is T1 or T2 turn off the proximity */
    /*< DTS2010092400487  lijianzhao 20100924 begin */
    /* This modification for version A&B of U8800,only */
	if((machine_is_msm7x30_u8800())&&((get_hw_sub_board_id() == HW_VER_SUB_VA) || ((get_hw_sub_board_id() == HW_VER_SUB_VB))))
	{
		printk(KERN_ERR "aps_12d_probe: aps is not supported in U8800 and U8800 T1 board!\n");
		ret = -ENODEV;
		goto err_check_functionality_failed; 
	}    
    /* DTS2010092400487  lijianzhao 20100924 end >*/ 
	/* DTS2010091001474 zhangtao 20100910 end > */

	aps = kzalloc(sizeof(*aps), GFP_KERNEL);
	if (aps == NULL) {
		ret = -ENOMEM;
		goto err_alloc_data_failed;
	}

	mutex_init(&aps->mlock);
	
	INIT_WORK(&aps->work, aps_12d_work_func);
	aps->client = client;
	i2c_set_clientdata(client, aps);

	PROXIMITY_DEBUG(KERN_INFO "ghj aps_12d_probe send command 2\n ");
	
	/* Command 2 register: 25mA,DC,12bit,Range1 */

	/* < DTS2010081803338 zhangtao 20100818 begin */
	/* make the rang smaller can make the ir changge bigger */
	ret = aps_i2c_reg_write(aps, APS_12D_REG_CMD2, \
/* < DTS2010102103994 zhangtao 20101112 begin */
	                         (uint8_t)(APS_12D_IRDR_SEL_50MA << 6 | \
	                                   APS_12D_FREQ_SEL_DC << 4 | \
	                                   APS_12D_RES_SEL_12 << 2 | \
	                                   APS_12D_RANGE_SEL_ALS_1000));
/* DTS2010102103994 zhangtao 20101112 end > */
	/* DTS2010081803338 zhangtao 20100818 end > */
	if(ret < 0)
	{
		goto err_detect_failed;
	}
/* <DTS2010100800714 liugaofei 20101008 begin */
	range_index = 0;

	for(i = 0; i < TOTAL_RANGE_NUM; i++)
	{
		/* NOTE: do NOT use the last one */
		up_range_value[i] = MAX_ADC_OUTPUT - high_threshold_value[i] - RANGE_FIX; 
	}

	down_range_value[0] = 0;
	for(i = 1; i < TOTAL_RANGE_NUM; i++)
	{
		/* NOTE: do not use the first one */
		down_range_value[i] = (MAX_ADC_OUTPUT - high_threshold_value[i-1] - (MAX_ADC_OUTPUT / ADJUST_GATE)) / 4; 
	}
/* DTS2010100800714 liugaofei 20101008 end */

	/* < DTS2011042705601 zhangtao 20110427 begin */
	/*we don't use the input device sensors again */
	aps->input_dev = input_allocate_device();
	if (aps->input_dev == NULL) {
		ret = -ENOMEM;
		PROXIMITY_DEBUG(KERN_ERR "aps_12d_probe: Failed to allocate input device\n");
		goto err_input_dev_alloc_failed;
	}
	aps->input_dev->name = "sensors_aps";
	
	aps->input_dev->id.bustype = BUS_I2C;
	
	input_set_drvdata(aps->input_dev, aps);
	
	ret = input_register_device(aps->input_dev);
	if (ret) {
		printk(KERN_ERR "aps_probe: Unable to register %s input device\n", aps->input_dev->name);
		goto err_input_register_device_failed;
	}
	/* DTS2011042705601 zhangtao 20110427 end > */
	
	set_bit(EV_ABS, aps->input_dev->evbit);
	input_set_abs_params(aps->input_dev, ABS_LIGHT, 0, 10240, 0, 0);
	input_set_abs_params(aps->input_dev, ABS_DISTANCE, 0, 1, 0, 0);

	ret = misc_register(&light_device);
	if (ret) {
		printk(KERN_ERR "aps_12d_probe: light_device register failed\n");
		goto err_light_misc_device_register_failed;
	}

	ret = misc_register(&proximity_device);
	if (ret) {
		printk(KERN_ERR "aps_12d_probe: proximity_device register failed\n");
		goto err_proximity_misc_device_register_failed;
	}

	/* < DTS2010090300997 zhangtao 20100903 begin */

	if( light_device.minor != MISC_DYNAMIC_MINOR ){
		light_device_minor = light_device.minor;
	}

	

	if( proximity_device.minor != MISC_DYNAMIC_MINOR ){
		proximity_device_minor = proximity_device.minor ;
	}

	wake_lock_init(&proximity_wake_lock, WAKE_LOCK_SUSPEND, "proximity");
	/* DTS2010090300997 zhangtao 20100903 end > */


	hrtimer_init(&aps->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	aps->timer.function = aps_timer_func;
	
	aps_wq = create_singlethread_workqueue("aps_wq");

	if (!aps_wq) 
	{
		ret = -ENOMEM;
		goto err_create_workqueue_failed;
	}
	
	this_aps_data =aps;

    /* <DTS2011032104626 shenjinming 20110321 begin */
    #ifdef CONFIG_HUAWEI_HW_DEV_DCT
    /* detect current device successful, set the flag as present */
    set_hw_dev_flag(DEV_I2C_APS);
    #endif
    /* <DTS2011032104626 shenjinming 20110321 end> */
/* < DTS2011052606009 jiaxianghong 20110527 end */	  

	printk(KERN_INFO "aps_12d_probe: Start Proximity Sensor APS-12D\n");
/* DTS2010072801000 zhangtao 20100728 end > */

	return 0;
	
err_create_workqueue_failed:
	misc_deregister(&proximity_device);
err_proximity_misc_device_register_failed:
	misc_deregister(&light_device);
err_light_misc_device_register_failed:
err_input_register_device_failed:
	input_free_device(aps->input_dev);
err_input_dev_alloc_failed:
err_detect_failed:
	kfree(aps);
err_alloc_data_failed:
err_check_functionality_failed:
/* < DTS2010061200552 zhangtao 20100612 begin */
	if(NULL != vreg_gp4)
	{
	    /* < DTS2011052101089 shenjinming 20110521 begin */
        /* can't use the flag ret here, it will change the return value of probe function */
        vreg_disable(vreg_gp4);
        /* delete a line */
        /* DTS2011052101089 shenjinming 20110521 end > */
	}
/* DTS2010061200552 zhangtao 20100612 end > */
	return ret;
  
}
int msm_cam_core_reset(void)
{
	struct clk *clk1;
	int rc = 0;

	clk1 = clk_get(NULL, "csi_vfe_clk");
	if (IS_ERR(clk1)) {
		pr_err("%s: did not get csi_vfe_clk\n", __func__);
		return PTR_ERR(clk1);
	}

	rc = clk_reset(clk1, CLK_RESET_ASSERT);
	if (rc) {
		pr_err("%s:csi_vfe_clk assert failed\n", __func__);
		clk_put(clk1);
		return rc;
	}
	usleep_range(1000, 1200);
	rc = clk_reset(clk1, CLK_RESET_DEASSERT);
	if (rc) {
		pr_err("%s:csi_vfe_clk deassert failed\n", __func__);
		clk_put(clk1);
		return rc;
	}
	clk_put(clk1);

	clk1 = clk_get(NULL, "csi_clk");
	if (IS_ERR(clk1)) {
		pr_err("%s: did not get csi_clk\n", __func__);
		return PTR_ERR(clk1);
	}

	rc = clk_reset(clk1, CLK_RESET_ASSERT);
	if (rc) {
		pr_err("%s:csi_clk assert failed\n", __func__);
		clk_put(clk1);
		return rc;
	}
	usleep_range(1000, 1200);
	rc = clk_reset(clk1, CLK_RESET_DEASSERT);
	if (rc) {
		pr_err("%s:csi_clk deassert failed\n", __func__);
		clk_put(clk1);
		return rc;
	}
	clk_put(clk1);

	clk1 = clk_get(NULL, "csi_pclk");
	if (IS_ERR(clk1)) {
		pr_err("%s: did not get csi_pclk\n", __func__);
		return PTR_ERR(clk1);
	}

	rc = clk_reset(clk1, CLK_RESET_ASSERT);
	if (rc) {
		pr_err("%s:csi_pclk assert failed\n", __func__);
		clk_put(clk1);
		return rc;
	}
	usleep_range(1000, 1200);
	rc = clk_reset(clk1, CLK_RESET_DEASSERT);
	if (rc) {
		pr_err("%s:csi_pclk deassert failed\n", __func__);
		clk_put(clk1);
		return rc;
	}
	clk_put(clk1);

	return rc;
}
Example #16
0
static int lcdc_probe(struct platform_device *pdev)
{
	struct msm_fb_data_type *mfd;
	struct fb_info *fbi;
	struct platform_device *mdp_dev = NULL;
	struct msm_fb_panel_data *pdata = NULL;
	int rc;

	if (pdev->id == 0) {
		lcdc_pdata = pdev->dev.platform_data;
		return 0;
	}

	mfd = platform_get_drvdata(pdev);

	if (!mfd)
		return -ENODEV;

	if (mfd->key != MFD_KEY)
		return -EINVAL;

	if (pdev_list_cnt >= MSM_FB_MAX_DEV_LIST)
		return -ENOMEM;

	mdp_dev = platform_device_alloc("mdp", pdev->id);
	if (!mdp_dev)
		return -ENOMEM;

	/*
	 * link to the latest pdev
	 */
	mfd->pdev = mdp_dev;
	mfd->dest = DISPLAY_LCDC;

	/*
	 * alloc panel device data
	 */
	if (platform_device_add_data
	    (mdp_dev, pdev->dev.platform_data,
	     sizeof(struct msm_fb_panel_data))) {
		printk(KERN_ERR "lcdc_probe: platform_device_add_data failed!\n");
		platform_device_put(mdp_dev);
		return -ENOMEM;
	}
	/*
	 * data chain
	 */
	pdata = (struct msm_fb_panel_data *)mdp_dev->dev.platform_data;
	pdata->on = lcdc_on;
	pdata->off = lcdc_off;
	pdata->next = pdev;

	/*
	 * get/set panel specific fb info
	 */
	mfd->panel_info = pdata->panel_info;

	if (mfd->index == 0)
		mfd->fb_imgType = MSMFB_DEFAULT_TYPE;
	else
		mfd->fb_imgType = MDP_RGB_565;

	fbi = mfd->fbi;
	fbi->var.pixclock = clk_round_rate(pixel_mdp_clk,
					mfd->panel_info.clk_rate);
	fbi->var.left_margin = mfd->panel_info.lcdc.h_back_porch;
	fbi->var.right_margin = mfd->panel_info.lcdc.h_front_porch;
	fbi->var.upper_margin = mfd->panel_info.lcdc.v_back_porch;
	fbi->var.lower_margin = mfd->panel_info.lcdc.v_front_porch;
	fbi->var.hsync_len = mfd->panel_info.lcdc.h_pulse_width;
	fbi->var.vsync_len = mfd->panel_info.lcdc.v_pulse_width;

#ifndef CONFIG_MSM_BUS_SCALING
	mfd->ebi1_clk = clk_get(NULL, "ebi1_lcdc_clk");
	if (IS_ERR(mfd->ebi1_clk))
		return PTR_ERR(mfd->ebi1_clk);
#endif
	/*
	 * set driver data
	 */
	platform_set_drvdata(mdp_dev, mfd);
	/*
	 * register in mdp driver
	 */
	rc = platform_device_add(mdp_dev);
	if (rc)
		goto lcdc_probe_err;

	pdev_list[pdev_list_cnt++] = pdev;

	return 0;

lcdc_probe_err:
	platform_device_put(mdp_dev);
	return rc;
}
Example #17
0
static int s5k4ecgx_power_down(void)
{
	struct regulator *regulator;
	int ret = 0;

	pr_debug("%s: in", __func__);

	s5k4ecgx_gpio_request();

	/* VT_CAM_nSTBY(1.3M EN) LOW */
	ret = gpio_request(GPIO_VT_CAM_nSTBY, "GPM0");
	if (ret) {
		pr_err("faile to request gpio(GPIO_VT_CAM_nSTBY)");
		return ret;
	}
	ret = gpio_direction_output(GPIO_VT_CAM_nSTBY, 0);
	CAM_CHECK_ERR_RET(ret, "low VT_CAM_nSTBY");

	/* CAM_VT_nRST(1.3M RESET) LOW */
	ret = gpio_request(GPIO_CAM_VT_nRST, "GPM1");
	if (ret) {
		pr_err("faile to request gpio(GPIO_CAM_VT_nRST)");
		return ret;
	}
	ret = gpio_direction_output(GPIO_CAM_VT_nRST, 0);
	CAM_CHECK_ERR_RET(ret, "low CAM_VT_nRST");

	/* 5M_CAM_RESET(5M RESET) LOW */
	ret = gpio_direction_output(GPIO_5M_CAM_RESET, 0);
	CAM_CHECK_ERR_RET(ret, "low 5M_CAM_RESET");

	mdelay(1);		/* 50us */

	/* MCLK */
	ret = s3c_gpio_cfgpin(GPIO_CAM_MCLK, S3C_GPIO_INPUT);
	s3c_gpio_setpull(GPIO_CAM_MCLK, S3C_GPIO_PULL_DOWN);
	CAM_CHECK_ERR(ret, "cfg mclk");

	/* 5M_CAM_nSTBY(5M STBY) LOW */
	ret = gpio_direction_output(GPIO_5M_CAM_nSTBY, 0);
	CAM_CHECK_ERR_RET(ret, "low 5M_CAM_nSTBY");

	/* CAM_AF_2.8V */
	regulator = regulator_get(NULL, "cam_af_2.8v");
	if (IS_ERR(regulator))
		return -ENODEV;
	if (regulator_is_enabled(regulator))
		ret = regulator_force_disable(regulator);
	regulator_put(regulator);
	CAM_CHECK_ERR_RET(ret, "disable cam_af_2.8v");

	/* CAM_DVDD_1.5V(1.3M Core 1.8V) */
	regulator = regulator_get(NULL, "cam_dvdd_1.5v");
	if (IS_ERR(regulator))
		return -ENODEV;
	if (regulator_is_enabled(regulator))
		ret = regulator_force_disable(regulator);
	regulator_put(regulator);
	CAM_CHECK_ERR_RET(ret, "disable cam_dvdd_1.5v");

	/* CAM_SENSOR_IO_1.8V */
	regulator = regulator_get(NULL, "cam_sensor_io_1.8v");
	if (IS_ERR(regulator))
		return -ENODEV;
	if (regulator_is_enabled(regulator))
		ret = regulator_force_disable(regulator);
	regulator_put(regulator);
	CAM_CHECK_ERR_RET(ret, "disable cam_sensor_io_1.8v");

	/* CAM_SENSOR_A2.8V */
	regulator = regulator_get(NULL, "cam_sensor_a2.8v");
	if (IS_ERR(regulator))
		return -ENODEV;
	if (regulator_is_enabled(regulator))
		ret = regulator_force_disable(regulator);
	regulator_put(regulator);
	CAM_CHECK_ERR_RET(ret, "disable cam_sensor_a2.8v");

	/* CAM_ISP_CORE_1.2V */
	regulator = regulator_get(NULL, "cam_isp_core_1.2v");
	if (IS_ERR(regulator))
		return -ENODEV;
	if (regulator_is_enabled(regulator))
		ret = regulator_force_disable(regulator);
	regulator_put(regulator);
	CAM_CHECK_ERR_RET(ret, "disable cam_isp_core_1.2v");

	gpio_free(GPIO_VT_CAM_nSTBY);
	gpio_free(GPIO_CAM_VT_nRST);
	gpio_free(GPIO_5M_CAM_RESET);
	gpio_free(GPIO_5M_CAM_nSTBY);

	return ret;
}
Example #18
0
/**
 *	seq_read -	->read() method for sequential files.
 *	@file: the file to read from
 *	@buf: the buffer to read to
 *	@size: the maximum number of bytes to read
 *	@ppos: the current position in the file
 *
 *	Ready-made ->f_op->read()
 */
ssize_t seq_read(struct file *file, char __user *buf, size_t size, loff_t *ppos)
{
	struct seq_file *m = file->private_data;
	size_t copied = 0;
	loff_t pos;
	size_t n;
	void *p;
	int err = 0;

	mutex_lock(&m->lock);

	/*
	 * seq_file->op->..m_start/m_stop/m_next may do special actions
	 * or optimisations based on the file->f_version, so we want to
	 * pass the file->f_version to those methods.
	 *
	 * seq_file->version is just copy of f_version, and seq_file
	 * methods can treat it simply as file version.
	 * It is copied in first and copied out after all operations.
	 * It is convenient to have it as  part of structure to avoid the
	 * need of passing another argument to all the seq_file methods.
	 */
	m->version = file->f_version;

	/* Don't assume *ppos is where we left it */
	if (unlikely(*ppos != m->read_pos)) {
		while ((err = traverse(m, *ppos)) == -EAGAIN)
			;
		if (err) {
			/* With prejudice... */
			m->read_pos = 0;
			m->version = 0;
			m->index = 0;
			m->count = 0;
			goto Done;
		} else {
			m->read_pos = *ppos;
		}
	}

	/* grab buffer if we didn't have one */
	if (!m->buf) {
		m->buf = seq_buf_alloc(m->size = PAGE_SIZE);
		if (!m->buf)
			goto Enomem;
	}
	/* if not empty - flush it first */
	if (m->count) {
		n = min(m->count, size);
		err = copy_to_user(buf, m->buf + m->from, n);
		if (err)
			goto Efault;
		m->count -= n;
		m->from += n;
		size -= n;
		buf += n;
		copied += n;
		if (!m->count)
			m->index++;
		if (!size)
			goto Done;
	}
	/* we need at least one record in buffer */
	pos = m->index;
	p = m->op->start(m, &pos);
	while (1) {
		err = PTR_ERR(p);
		if (!p || IS_ERR(p))
			break;
		err = m->op->show(m, p);
		if (err < 0)
			break;
		if (unlikely(err))
			m->count = 0;
		if (unlikely(!m->count)) {
			p = m->op->next(m, p, &pos);
			m->index = pos;
			continue;
		}
		if (m->count < m->size)
			goto Fill;
		m->op->stop(m, p);
		kvfree(m->buf);
		m->buf = seq_buf_alloc(m->size <<= 1);
		if (!m->buf)
			goto Enomem;
		m->count = 0;
		m->version = 0;
		pos = m->index;
		p = m->op->start(m, &pos);
	}
	m->op->stop(m, p);
	m->count = 0;
	goto Done;
Fill:
	/* they want more? let's try to get some more */
	while (m->count < size) {
		size_t offs = m->count;
		loff_t next = pos;
		p = m->op->next(m, p, &next);
		if (!p || IS_ERR(p)) {
			err = PTR_ERR(p);
			break;
		}
		err = m->op->show(m, p);
		if (seq_overflow(m) || err) {
			m->count = offs;
			if (likely(err <= 0))
				break;
		}
		pos = next;
	}
	m->op->stop(m, p);
	n = min(m->count, size);
	err = copy_to_user(buf, m->buf, n);
	if (err)
		goto Efault;
	copied += n;
	m->count -= n;
	if (m->count)
		m->from = n;
	else
		pos++;
	m->index = pos;
Done:
	if (!copied)
		copied = err;
	else {
		*ppos += copied;
		m->read_pos += copied;
	}
	file->f_version = m->version;
	mutex_unlock(&m->lock);
	return copied;
Enomem:
	err = -ENOMEM;
	goto Done;
Efault:
	err = -EFAULT;
	goto Done;
}
Example #19
0
void __init midas_camera_init(void)
{
#ifdef CONFIG_VIDEO_FIMC
	s3c_fimc0_set_platdata(&fimc_plat);
	s3c_fimc1_set_platdata(&fimc_plat);
	s3c_fimc2_set_platdata(NULL);
	s3c_fimc3_set_platdata(NULL);
#ifdef CONFIG_EXYNOS_DEV_PD
	s3c_device_fimc0.dev.parent = &exynos4_device_pd[PD_CAM].dev;
	s3c_device_fimc1.dev.parent = &exynos4_device_pd[PD_CAM].dev;
	s3c_device_fimc2.dev.parent = &exynos4_device_pd[PD_CAM].dev;
	s3c_device_fimc3.dev.parent = &exynos4_device_pd[PD_CAM].dev;
#endif
#ifdef CONFIG_VIDEO_FIMC_MIPI
	s3c_csis0_set_platdata(NULL);
	s3c_csis1_set_platdata(NULL);
#ifdef CONFIG_EXYNOS_DEV_PD
	s3c_device_csis0.dev.parent = &exynos4_device_pd[PD_CAM].dev;
	s3c_device_csis1.dev.parent = &exynos4_device_pd[PD_CAM].dev;
#endif
#endif
#endif /* CONFIG_VIDEO_FIMC */

	camera_class = class_create(THIS_MODULE, "camera");

	if (!s5k4ecgx_dev) {
		s5k4ecgx_dev = device_create(camera_class,
				NULL, 0, NULL, "rear");
		if (IS_ERR(s5k4ecgx_dev)) {
			pr_err("s5k4ecgx_dev : failed to create device!\n");
		} else {
			if (device_create_file(s5k4ecgx_dev,
				&dev_attr_rear_flash) < 0) {
				pr_err("failed to create device file, %s\n",
					dev_attr_rear_flash.attr.name);
			}
			if (device_create_file(s5k4ecgx_dev,
				&dev_attr_rear_camtype)
					< 0) {
				pr_err("failed to create device file, %s\n",
					dev_attr_rear_camtype.attr.name);
			}
			if (device_create_file(s5k4ecgx_dev,
				&dev_attr_rear_camfw) < 0) {
				pr_err("failed to create device file, %s\n",
					dev_attr_rear_camfw.attr.name);
			}
		}
	}
	if (!db8131m_dev) {
		db8131m_dev = device_create(camera_class,
				NULL, 0, NULL, "front");
		if (IS_ERR(db8131m_dev)) {
			pr_err("db8131m_dev : failed to create device!\n");
		} else {
			if (device_create_file(db8131m_dev,
				&dev_attr_front_camtype)
					< 0) {
				pr_err("failed to create device file, %s\n",
					dev_attr_front_camtype.attr.name);
			}
			if (device_create_file(db8131m_dev,
				&dev_attr_front_camfw) < 0) {
				pr_err("failed to create device file, %s\n",
					dev_attr_front_camfw.attr.name);
			}
		}
	}
}
static int mipi_dsi_panel_power(int on)
{
	static struct regulator *v_lcm, *v_lcmio, *v_dsivdd;
	static bool bPanelPowerOn = false;
	int rc;

	char *lcm_str = "8921_l11";
	char *lcmio_str = "8921_lvs5";
	char *dsivdd_str = "8921_l2";

	
	if (panel_type == PANEL_ID_NONE)
		return -ENODEV;

	PR_DISP_INFO("%s: state : %d\n", __func__, on);

	if (!dsi_power_on) {

		v_lcm = regulator_get(&msm_mipi_dsi1_device.dev,
				lcm_str);
		if (IS_ERR(v_lcm)) {
			PR_DISP_ERR("could not get %s, rc = %ld\n",
				lcm_str, PTR_ERR(v_lcm));
			return -ENODEV;
		}

		v_lcmio = regulator_get(&msm_mipi_dsi1_device.dev,
				lcmio_str);
		if (IS_ERR(v_lcmio)) {
			PR_DISP_ERR("could not get %s, rc = %ld\n",
				lcmio_str, PTR_ERR(v_lcmio));
			return -ENODEV;
		}


		v_dsivdd = regulator_get(&msm_mipi_dsi1_device.dev,
				dsivdd_str);
		if (IS_ERR(v_dsivdd)) {
			PR_DISP_ERR("could not get %s, rc = %ld\n",
				dsivdd_str, PTR_ERR(v_dsivdd));
			return -ENODEV;
		}

		rc = regulator_set_voltage(v_lcm, 3000000, 3000000);
		if (rc) {
			PR_DISP_ERR("%s#%d: set_voltage %s failed, rc=%d\n", __func__, __LINE__, lcm_str, rc);
			return -EINVAL;
		}

		rc = regulator_set_voltage(v_dsivdd, 1200000, 1200000);
		if (rc) {
			PR_DISP_ERR("%s#%d: set_voltage %s failed, rc=%d\n", __func__, __LINE__, dsivdd_str, rc);
			return -EINVAL;
		}

		rc = gpio_request(VILLE_GPIO_LCD_RSTz, "LCM_RST_N");
		if (rc) {
			PR_DISP_ERR("%s:LCM gpio %d request failed, rc=%d\n", __func__,  VILLE_GPIO_LCD_RSTz, rc);
			return -EINVAL;
		}

		dsi_power_on = true;
	}

	if (on) {
		PR_DISP_INFO("%s: on\n", __func__);
		rc = regulator_set_optimum_mode(v_lcm, 100000);
		if (rc < 0) {
			PR_DISP_ERR("set_optimum_mode %s failed, rc=%d\n", lcm_str, rc);
			return -EINVAL;
		}

		rc = regulator_set_optimum_mode(v_dsivdd, 100000);
		if (rc < 0) {
			PR_DISP_ERR("set_optimum_mode %s failed, rc=%d\n", dsivdd_str, rc);
			return -EINVAL;
		}

		rc = regulator_enable(v_dsivdd);
		if (rc) {
			PR_DISP_ERR("enable regulator %s failed, rc=%d\n", dsivdd_str, rc);
			return -ENODEV;
		}
		hr_msleep(1);
		rc = regulator_enable(v_lcmio);
		if (rc) {
			PR_DISP_ERR("enable regulator %s failed, rc=%d\n", lcmio_str, rc);
			return -ENODEV;
		}

		rc = regulator_enable(v_lcm);
		if (rc) {
			PR_DISP_ERR("enable regulator %s failed, rc=%d\n", lcm_str, rc);
			return -ENODEV;
		}

		if (!mipi_lcd_on) {
			hr_msleep(10);
			gpio_set_value(VILLE_GPIO_LCD_RSTz, 1);
			hr_msleep(1);
			gpio_set_value(VILLE_GPIO_LCD_RSTz, 0);
			hr_msleep(35);
			gpio_set_value(VILLE_GPIO_LCD_RSTz, 1);
		}
		hr_msleep(60);

		bPanelPowerOn = true;

	} else {
		PR_DISP_INFO("%s: off\n", __func__);
		if (!bPanelPowerOn) return 0;
		hr_msleep(100);
		gpio_set_value(VILLE_GPIO_LCD_RSTz, 0);
		hr_msleep(10);

		if (regulator_disable(v_dsivdd)) {
			PR_DISP_ERR("%s: Unable to enable the regulator: %s\n", __func__, dsivdd_str);
			return -EINVAL;
		}

		if (regulator_disable(v_lcm)) {
			PR_DISP_ERR("%s: Unable to enable the regulator: %s\n", __func__, lcm_str);
			return -EINVAL;
		}
		hr_msleep(5);
		if (regulator_disable(v_lcmio)) {
			PR_DISP_ERR("%s: Unable to enable the regulator: %s\n", __func__, lcmio_str);
			return -EINVAL;
		}

		rc = regulator_set_optimum_mode(v_dsivdd, 100);
		if (rc < 0) {
			PR_DISP_ERR("%s: Unable to enable the regulator: %s\n", __func__, dsivdd_str);
			return -EINVAL;
		}

		bPanelPowerOn = false;
	}
	return 0;
}
Example #21
0
/* This requires some explaining. If DNAT has taken place,
 * we will need to fix up the destination Ethernet address.
 *
 * There are two cases to consider:
 * 1. The packet was DNAT'ed to a device in the same bridge
 *    port group as it was received on. We can still bridge
 *    the packet.
 * 2. The packet was DNAT'ed to a different device, either
 *    a non-bridged device or another bridge port group.
 *    The packet will need to be routed.
 *
 * The correct way of distinguishing between these two cases is to
 * call ip_route_input() and to look at skb->dst->dev, which is
 * changed to the destination device if ip_route_input() succeeds.
 *
 * Let's first consider the case that ip_route_input() succeeds:
 *
 * If the output device equals the logical bridge device the packet
 * came in on, we can consider this bridging. The corresponding MAC
 * address will be obtained in br_nf_pre_routing_finish_bridge.
 * Otherwise, the packet is considered to be routed and we just
 * change the destination MAC address so that the packet will
 * later be passed up to the IP stack to be routed. For a redirected
 * packet, ip_route_input() will give back the localhost as output device,
 * which differs from the bridge device.
 *
 * Let's now consider the case that ip_route_input() fails:
 *
 * This can be because the destination address is martian, in which case
 * the packet will be dropped.
 * If IP forwarding is disabled, ip_route_input() will fail, while
 * ip_route_output_key() can return success. The source
 * address for ip_route_output_key() is set to zero, so ip_route_output_key()
 * thinks we're handling a locally generated packet and won't care
 * if IP forwarding is enabled. If the output device equals the logical bridge
 * device, we proceed as if ip_route_input() succeeded. If it differs from the
 * logical bridge port or if ip_route_output_key() fails we drop the packet.
 */
static int br_nf_pre_routing_finish(struct sk_buff *skb)
{
	struct net_device *dev = skb->dev;
	struct iphdr *iph = ip_hdr(skb);
	struct nf_bridge_info *nf_bridge = skb->nf_bridge;
	struct rtable *rt;
	int err;
	int frag_max_size;

	frag_max_size = IPCB(skb)->frag_max_size;
	BR_INPUT_SKB_CB(skb)->frag_max_size = frag_max_size;

	if (nf_bridge->mask & BRNF_PKT_TYPE) {
		skb->pkt_type = PACKET_OTHERHOST;
		nf_bridge->mask ^= BRNF_PKT_TYPE;
	}
	nf_bridge->mask ^= BRNF_NF_BRIDGE_PREROUTING;
	if (dnat_took_place(skb)) {
		if ((err = ip_route_input(skb, iph->daddr, iph->saddr, iph->tos, dev))) {
			struct in_device *in_dev = __in_dev_get_rcu(dev);

			/* If err equals -EHOSTUNREACH the error is due to a
			 * martian destination or due to the fact that
			 * forwarding is disabled. For most martian packets,
			 * ip_route_output_key() will fail. It won't fail for 2 types of
			 * martian destinations: loopback destinations and destination
			 * 0.0.0.0. In both cases the packet will be dropped because the
			 * destination is the loopback device and not the bridge. */
			if (err != -EHOSTUNREACH || !in_dev || IN_DEV_FORWARD(in_dev))
				goto free_skb;

			rt = ip_route_output(dev_net(dev), iph->daddr, 0,
					     RT_TOS(iph->tos), 0);
			if (!IS_ERR(rt)) {
				/* - Bridged-and-DNAT'ed traffic doesn't
				 *   require ip_forwarding. */
				if (rt->dst.dev == dev) {
					skb_dst_set(skb, &rt->dst);
					goto bridged_dnat;
				}
				ip_rt_put(rt);
			}
free_skb:
			kfree_skb(skb);
			return 0;
		} else {
			if (skb_dst(skb)->dev == dev) {
bridged_dnat:
				skb->dev = nf_bridge->physindev;
				nf_bridge_update_protocol(skb);
				nf_bridge_push_encap_header(skb);
				NF_HOOK_THRESH(NFPROTO_BRIDGE,
					       NF_BR_PRE_ROUTING,
					       skb, skb->dev, NULL,
					       br_nf_pre_routing_finish_bridge,
					       1);
				return 0;
			}
			ether_addr_copy(eth_hdr(skb)->h_dest, dev->dev_addr);
			skb->pkt_type = PACKET_HOST;
		}
	} else {
		rt = bridge_parent_rtable(nf_bridge->physindev);
		if (!rt) {
			kfree_skb(skb);
			return 0;
		}
		skb_dst_set_noref(skb, &rt->dst);
	}

	skb->dev = nf_bridge->physindev;
	nf_bridge_update_protocol(skb);
	nf_bridge_push_encap_header(skb);
	NF_HOOK_THRESH(NFPROTO_BRIDGE, NF_BR_PRE_ROUTING, skb, skb->dev, NULL,
		       br_handle_frame_finish, 1);

	return 0;
}
Example #22
0
static int wil_pcie_probe(struct pci_dev *pdev, const struct pci_device_id *id)
{
	struct wil6210_priv *wil;
	struct device *dev = &pdev->dev;
	void __iomem *csr;
	int rc;

	/* check HW */
	dev_info(&pdev->dev, WIL_NAME " device found [%04x:%04x] (rev %x)\n",
		 (int)pdev->vendor, (int)pdev->device, (int)pdev->revision);

	if (pci_resource_len(pdev, 0) != WIL6210_MEM_SIZE) {
		dev_err(&pdev->dev, "Not " WIL_NAME "? "
			"BAR0 size is %lu while expecting %lu\n",
			(ulong)pci_resource_len(pdev, 0), WIL6210_MEM_SIZE);
		return -ENODEV;
	}

	rc = pci_enable_device(pdev);
	if (rc) {
		dev_err(&pdev->dev, "pci_enable_device failed\n");
		return -ENODEV;
	}
	/* rollback to err_disable_pdev */

	rc = pci_request_region(pdev, 0, WIL_NAME);
	if (rc) {
		dev_err(&pdev->dev, "pci_request_region failed\n");
		goto err_disable_pdev;
	}
	/* rollback to err_release_reg */

	csr = pci_ioremap_bar(pdev, 0);
	if (!csr) {
		dev_err(&pdev->dev, "pci_ioremap_bar failed\n");
		rc = -ENODEV;
		goto err_release_reg;
	}
	/* rollback to err_iounmap */
	dev_info(&pdev->dev, "CSR at %pR -> 0x%p\n", &pdev->resource[0], csr);

	wil = wil_if_alloc(dev, csr);
	if (IS_ERR(wil)) {
		rc = (int)PTR_ERR(wil);
		dev_err(dev, "wil_if_alloc failed: %d\n", rc);
		goto err_iounmap;
	}
	/* rollback to if_free */

	pci_set_drvdata(pdev, wil);
	wil->pdev = pdev;

	wil6210_clear_irq(wil);
	/* FW should raise IRQ when ready */
	rc = wil_if_pcie_enable(wil);
	if (rc) {
		wil_err(wil, "Enable device failed\n");
		goto if_free;
	}
	/* rollback to bus_disable */

	rc = wil_if_add(wil);
	if (rc) {
		wil_err(wil, "wil_if_add failed: %d\n", rc);
		goto bus_disable;
	}

	wil6210_debugfs_init(wil);

	/* check FW is alive */
	wmi_echo(wil);

	return 0;

 bus_disable:
	wil_if_pcie_disable(wil);
 if_free:
	wil_if_free(wil);
 err_iounmap:
	pci_iounmap(pdev, csr);
 err_release_reg:
	pci_release_region(pdev, 0);
 err_disable_pdev:
	pci_disable_device(pdev);

	return rc;
}
Example #23
0
static struct hfs_bnode *hfs_bnode_split(struct hfs_find_data *fd)
{
	struct hfs_btree *tree;
	struct hfs_bnode *node, *new_node, *next_node;
	struct hfs_bnode_desc node_desc;
	int num_recs, new_rec_off, new_off, old_rec_off;
	int data_start, data_end, size;

	tree = fd->tree;
	node = fd->bnode;
	new_node = hfs_bmap_alloc(tree);
	if (IS_ERR(new_node))
		return new_node;
	hfs_bnode_get(node);
	hfs_dbg(BNODE_MOD, "split_nodes: %d - %d - %d\n",
		node->this, new_node->this, node->next);
	new_node->next = node->next;
	new_node->prev = node->this;
	new_node->parent = node->parent;
	new_node->type = node->type;
	new_node->height = node->height;

	if (node->next)
		next_node = hfs_bnode_find(tree, node->next);
	else
		next_node = NULL;

	if (IS_ERR(next_node)) {
		hfs_bnode_put(node);
		hfs_bnode_put(new_node);
		return next_node;
	}

	size = tree->node_size / 2 - node->num_recs * 2 - 14;
	old_rec_off = tree->node_size - 4;
	num_recs = 1;
	for (;;) {
		data_start = hfs_bnode_read_u16(node, old_rec_off);
		if (data_start > size)
			break;
		old_rec_off -= 2;
		if (++num_recs < node->num_recs)
			continue;
		/* panic? */
		hfs_bnode_put(node);
		hfs_bnode_put(new_node);
		if (next_node)
			hfs_bnode_put(next_node);
		return ERR_PTR(-ENOSPC);
	}

	if (fd->record + 1 < num_recs) {
		/* new record is in the lower half,
		 * so leave some more space there
		 */
		old_rec_off += 2;
		num_recs--;
		data_start = hfs_bnode_read_u16(node, old_rec_off);
	} else {
		hfs_bnode_put(node);
		hfs_bnode_get(new_node);
		fd->bnode = new_node;
		fd->record -= num_recs;
		fd->keyoffset -= data_start - 14;
		fd->entryoffset -= data_start - 14;
	}
	new_node->num_recs = node->num_recs - num_recs;
	node->num_recs = num_recs;

	new_rec_off = tree->node_size - 2;
	new_off = 14;
	size = data_start - new_off;
	num_recs = new_node->num_recs;
	data_end = data_start;
	while (num_recs) {
		hfs_bnode_write_u16(new_node, new_rec_off, new_off);
		old_rec_off -= 2;
		new_rec_off -= 2;
		data_end = hfs_bnode_read_u16(node, old_rec_off);
		new_off = data_end - size;
		num_recs--;
	}
	hfs_bnode_write_u16(new_node, new_rec_off, new_off);
	hfs_bnode_copy(new_node, 14, node, data_start, data_end - data_start);

	/* update new bnode header */
	node_desc.next = cpu_to_be32(new_node->next);
	node_desc.prev = cpu_to_be32(new_node->prev);
	node_desc.type = new_node->type;
	node_desc.height = new_node->height;
	node_desc.num_recs = cpu_to_be16(new_node->num_recs);
	node_desc.reserved = 0;
	hfs_bnode_write(new_node, &node_desc, 0, sizeof(node_desc));

	/* update previous bnode header */
	node->next = new_node->this;
	hfs_bnode_read(node, &node_desc, 0, sizeof(node_desc));
	node_desc.next = cpu_to_be32(node->next);
	node_desc.num_recs = cpu_to_be16(node->num_recs);
	hfs_bnode_write(node, &node_desc, 0, sizeof(node_desc));

	/* update next bnode header */
	if (next_node) {
		next_node->prev = new_node->this;
		hfs_bnode_read(next_node, &node_desc, 0, sizeof(node_desc));
		node_desc.prev = cpu_to_be32(next_node->prev);
		hfs_bnode_write(next_node, &node_desc, 0, sizeof(node_desc));
		hfs_bnode_put(next_node);
	} else if (node->this == tree->leaf_tail) {
Example #24
0
int pohmelfs_data_lock(struct pohmelfs_inode *pi, u64 start, u32 size, int type)
{
	struct pohmelfs_sb *psb = POHMELFS_SB(pi->vfs_inode.i_sb);
	struct pohmelfs_mcache *m;
	int err = -ENOMEM;
	struct iattr iattr;
	struct inode *inode = &pi->vfs_inode;

	dprintk("%s: %p: ino: %llu, start: %llu, size: %u, "
			"type: %d, locked as: %d, owned: %d.\n",
			__func__, &pi->vfs_inode, pi->ino,
			start, size, type, pi->lock_type,
			!!test_bit(NETFS_INODE_OWNED, &pi->state));

	if (!pohmelfs_need_lock(pi, type))
		return 0;

	m = pohmelfs_mcache_alloc(psb, start, size, NULL);
	if (IS_ERR(m))
		return PTR_ERR(m);

	err = pohmelfs_send_lock_trans(pi, m->gen, start, size,
			type | POHMELFS_LOCK_GRAB);
	if (err)
		goto err_out_put;

	err = wait_for_completion_timeout(&m->complete, psb->mcache_timeout);
	if (err)
		err = m->err;
	else
		err = -ETIMEDOUT;

	if (err) {
		printk("%s: %p: ino: %llu, mgen: %llu, start: %llu, size: %u, err: %d.\n",
			__func__, &pi->vfs_inode, pi->ino, m->gen, start, size, err);
	}

	if (err && (err != -ENOENT))
		goto err_out_put;

	if (!err) {
		netfs_convert_inode_info(&m->info);

		iattr.ia_valid = ATTR_MODE | ATTR_UID | ATTR_GID | ATTR_SIZE | ATTR_ATIME;
		iattr.ia_mode = m->info.mode;
		iattr.ia_uid = m->info.uid;
		iattr.ia_gid = m->info.gid;
		iattr.ia_size = m->info.size;
		iattr.ia_atime = CURRENT_TIME;

		dprintk("%s: %p: ino: %llu, mgen: %llu, start: %llu, isize: %llu -> %llu.\n",
			__func__, &pi->vfs_inode, pi->ino, m->gen, start, inode->i_size, m->info.size);

		err = pohmelfs_setattr_raw(inode, &iattr);
		if (!err) {
			struct dentry *dentry = d_find_alias(inode);
			if (dentry) {
				fsnotify_change(dentry, iattr.ia_valid);
				dput(dentry);
			}
		}
	}

	pi->lock_type = type;
	set_bit(NETFS_INODE_OWNED, &pi->state);

	pohmelfs_mcache_put(psb, m);

	return 0;

err_out_put:
	pohmelfs_mcache_put(psb, m);
	return err;
}
Example #25
0
static int
cifs_read_super(struct super_block *sb, void *data,
		const char *devname, int silent)
{
	struct inode *inode;
	struct cifs_sb_info *cifs_sb;
	int rc = 0;

	/* BB should we make this contingent on mount parm? */
	sb->s_flags |= MS_NODIRATIME | MS_NOATIME;
	sb->s_fs_info = kzalloc(sizeof(struct cifs_sb_info), GFP_KERNEL);
	cifs_sb = CIFS_SB(sb);
	if (cifs_sb == NULL)
		return -ENOMEM;

#ifdef CONFIG_CIFS_DFS_UPCALL
	/* copy mount params to sb for use in submounts */
	/* BB: should we move this after the mount so we
	 * do not have to do the copy on failed mounts?
	 * BB: May be it is better to do simple copy before
	 * complex operation (mount), and in case of fail
	 * just exit instead of doing mount and attempting
	 * undo it if this copy fails?*/
	if (data) {
		int len = strlen(data);
		cifs_sb->mountdata = kzalloc(len + 1, GFP_KERNEL);
		if (cifs_sb->mountdata == NULL) {
			kfree(sb->s_fs_info);
			sb->s_fs_info = NULL;
			return -ENOMEM;
		}
		strncpy(cifs_sb->mountdata, data, len + 1);
		cifs_sb->mountdata[len] = '\0';
	}
#endif

	rc = cifs_mount(sb, cifs_sb, data, devname);

	if (rc) {
		if (!silent)
			cERROR(1,
			       ("cifs_mount failed w/return code = %d", rc));
		goto out_mount_failed;
	}

	sb->s_magic = CIFS_MAGIC_NUMBER;
	sb->s_op = &cifs_super_ops;
/*	if (cifs_sb->tcon->ses->server->maxBuf > MAX_CIFS_HDR_SIZE + 512)
	    sb->s_blocksize =
		cifs_sb->tcon->ses->server->maxBuf - MAX_CIFS_HDR_SIZE; */
#ifdef CONFIG_CIFS_QUOTA
	sb->s_qcop = &cifs_quotactl_ops;
#endif
	sb->s_blocksize = CIFS_MAX_MSGSIZE;
	sb->s_blocksize_bits = 14;	/* default 2**14 = CIFS_MAX_MSGSIZE */
	inode = cifs_root_iget(sb, ROOT_I);

	if (IS_ERR(inode)) {
		rc = PTR_ERR(inode);
		inode = NULL;
		goto out_no_root;
	}

	sb->s_root = d_alloc_root(inode);

	if (!sb->s_root) {
		rc = -ENOMEM;
		goto out_no_root;
	}

#ifdef CONFIG_CIFS_EXPERIMENTAL
	if (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_SERVER_INUM) {
		cFYI(1, ("export ops supported"));
		sb->s_export_op = &cifs_export_ops;
	}
#endif /* EXPERIMENTAL */

	return 0;

out_no_root:
	cERROR(1, ("cifs_read_super: get root inode failed"));
	if (inode)
		iput(inode);

	cifs_umount(sb, cifs_sb);

out_mount_failed:
	if (cifs_sb) {
#ifdef CONFIG_CIFS_DFS_UPCALL
		if (cifs_sb->mountdata) {
			kfree(cifs_sb->mountdata);
			cifs_sb->mountdata = NULL;
		}
#endif
		unload_nls(cifs_sb->local_nls);
		kfree(cifs_sb);
	}
	return rc;
}
int msm_camio_clk_enable(enum msm_camio_clk_type clktype)
{
	int rc = 0;
	struct clk *clk = NULL;

	switch (clktype) {
	case CAMIO_VFE_MDC_CLK:
		camio_vfe_mdc_clk =
		clk = clk_get(NULL, "vfe_mdc_clk");
		break;

	case CAMIO_MDC_CLK:
		camio_mdc_clk =
		clk = clk_get(NULL, "mdc_clk");
		break;

	case CAMIO_VFE_CLK:
		camio_vfe_clk =
		clk = clk_get(NULL, "vfe_clk");
		msm_camio_clk_rate_set_2(clk, camio_clk.vfe_clk_rate);
		break;

	case CAMIO_VFE_CAMIF_CLK:
		camio_vfe_camif_clk =
		clk = clk_get(NULL, "vfe_camif_clk");
		break;

	case CAMIO_VFE_PBDG_CLK:
		camio_vfe_pbdg_clk =
		clk = clk_get(NULL, "vfe_pclk");
		break;

	case CAMIO_CAM_MCLK_CLK:
		camio_cam_m_clk =
		clk = clk_get(NULL, "cam_m_clk");
		msm_camio_clk_rate_set_2(clk, camio_clk.mclk_clk_rate);
		break;

	case CAMIO_CAMIF_PAD_PBDG_CLK:
		camio_camif_pad_pbdg_clk =
		clk = clk_get(NULL, "camif_pad_pclk");
		break;

	case CAMIO_CSI0_CLK:
		camio_csi_clk =
		clk = clk_get(NULL, "csi_clk");
		msm_camio_clk_rate_set_2(clk, 153600000);
		break;
	case CAMIO_CSI0_VFE_CLK:
		camio_csi_vfe_clk =
		clk = clk_get(NULL, "csi_vfe_clk");
		break;
	case CAMIO_CSI0_PCLK:
		camio_csi_pclk =
		clk = clk_get(NULL, "csi_pclk");
		break;

	case CAMIO_JPEG_CLK:
		camio_jpeg_clk =
		clk = clk_get(NULL, "jpeg_clk");
		jpeg_clk_rate = clk_round_rate(clk, 144000000);
		clk_set_rate(clk, jpeg_clk_rate);
		break;
	case CAMIO_JPEG_PCLK:
		camio_jpeg_pclk =
		clk = clk_get(NULL, "jpeg_pclk");
		break;
	case CAMIO_VPE_CLK:
		camio_vpe_clk =
		clk = clk_get(NULL, "vpe_clk");
		vpe_clk_rate = clk_round_rate(clk, vpe_clk_rate);
		clk_set_rate(clk, vpe_clk_rate);
		break;
	default:
		break;
	}

	if (!IS_ERR(clk))
		clk_enable(clk);
	else
		rc = -1;
	return rc;
}
Example #27
0
static int __init gpio_vbus_probe(struct platform_device *pdev)
{
	struct gpio_vbus_mach_info *pdata = pdev->dev.platform_data;
	struct gpio_vbus_data *gpio_vbus;
	struct resource *res;
	int err, gpio, irq;

	if (!pdata || !gpio_is_valid(pdata->gpio_vbus))
		return -EINVAL;
	gpio = pdata->gpio_vbus;

	gpio_vbus = kzalloc(sizeof(struct gpio_vbus_data), GFP_KERNEL);
	if (!gpio_vbus)
		return -ENOMEM;

	gpio_vbus->phy.otg = kzalloc(sizeof(struct usb_otg), GFP_KERNEL);
	if (!gpio_vbus->phy.otg) {
		kfree(gpio_vbus);
		return -ENOMEM;
	}

	platform_set_drvdata(pdev, gpio_vbus);
	gpio_vbus->dev = &pdev->dev;
	gpio_vbus->phy.label = "gpio-vbus";
	gpio_vbus->phy.set_power = gpio_vbus_set_power;
	gpio_vbus->phy.set_suspend = gpio_vbus_set_suspend;
	gpio_vbus->phy.state = OTG_STATE_UNDEFINED;

	gpio_vbus->phy.otg->phy = &gpio_vbus->phy;
	gpio_vbus->phy.otg->set_peripheral = gpio_vbus_set_peripheral;

	err = gpio_request(gpio, "vbus_detect");
	if (err) {
		dev_err(&pdev->dev, "can't request vbus gpio %d, err: %d\n",
			gpio, err);
		goto err_gpio;
	}
	gpio_direction_input(gpio);

	res = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
	if (res) {
		irq = res->start;
		res->flags &= IRQF_TRIGGER_MASK;
		res->flags |= IRQF_SAMPLE_RANDOM | IRQF_SHARED;
	} else
		irq = gpio_to_irq(gpio);

	/* if data line pullup is in use, initialize it to "not pulling up" */
	gpio = pdata->gpio_pullup;
	if (gpio_is_valid(gpio)) {
		err = gpio_request(gpio, "udc_pullup");
		if (err) {
			dev_err(&pdev->dev,
				"can't request pullup gpio %d, err: %d\n",
				gpio, err);
			gpio_free(pdata->gpio_vbus);
			goto err_gpio;
		}
		gpio_direction_output(gpio, pdata->gpio_pullup_inverted);
	}

	err = request_irq(irq, gpio_vbus_irq, VBUS_IRQ_FLAGS,
		"vbus_detect", pdev);
	if (err) {
		dev_err(&pdev->dev, "can't request irq %i, err: %d\n",
			irq, err);
		goto err_irq;
	}

	ATOMIC_INIT_NOTIFIER_HEAD(&gpio_vbus->phy.notifier);

	INIT_DELAYED_WORK(&gpio_vbus->work, gpio_vbus_work);

	gpio_vbus->vbus_draw = regulator_get(&pdev->dev, "vbus_draw");
	if (IS_ERR(gpio_vbus->vbus_draw)) {
		dev_dbg(&pdev->dev, "can't get vbus_draw regulator, err: %ld\n",
			PTR_ERR(gpio_vbus->vbus_draw));
		gpio_vbus->vbus_draw = NULL;
	}

	/* only active when a gadget is registered */
	err = usb_set_transceiver(&gpio_vbus->phy);
	if (err) {
		dev_err(&pdev->dev, "can't register transceiver, err: %d\n",
			err);
		goto err_otg;
	}

	return 0;
err_otg:
	free_irq(irq, &pdev->dev);
err_irq:
	if (gpio_is_valid(pdata->gpio_pullup))
		gpio_free(pdata->gpio_pullup);
	gpio_free(pdata->gpio_vbus);
err_gpio:
	platform_set_drvdata(pdev, NULL);
	kfree(gpio_vbus->phy.otg);
	kfree(gpio_vbus);
	return err;
}
int msm_camio_clk_disable(enum msm_camio_clk_type clktype)
{
	int rc = 0;
	struct clk *clk = NULL;

	switch (clktype) {
	case CAMIO_VFE_MDC_CLK:
		clk = camio_vfe_mdc_clk;
		break;

	case CAMIO_MDC_CLK:
		clk = camio_mdc_clk;
		break;

	case CAMIO_VFE_CLK:
		clk = camio_vfe_clk;
		break;

	case CAMIO_VFE_CAMIF_CLK:
		clk = camio_vfe_camif_clk;
		break;

	case CAMIO_VFE_PBDG_CLK:
		clk = camio_vfe_pbdg_clk;
		break;

	case CAMIO_CAM_MCLK_CLK:
		clk = camio_cam_m_clk;
		break;

	case CAMIO_CAMIF_PAD_PBDG_CLK:
		clk = camio_camif_pad_pbdg_clk;
		break;
	case CAMIO_CSI0_CLK:
		clk = camio_csi_clk;
		break;
	case CAMIO_CSI0_VFE_CLK:
		clk = camio_csi_vfe_clk;
		break;
	case CAMIO_CSI0_PCLK:
		clk = camio_csi_pclk;
		break;
	case CAMIO_JPEG_CLK:
		clk = camio_jpeg_clk;
		break;
	case CAMIO_JPEG_PCLK:
		clk = camio_jpeg_pclk;
		break;
	case CAMIO_VPE_CLK:
		clk = camio_vpe_clk;
		break;
	default:
		break;
	}

	if (!IS_ERR(clk)) {
		clk_disable(clk);
		clk_put(clk);
	} else
		rc = -1;

	return rc;
}
Example #29
0
static int ext4_convert_inline_data_to_extent(struct address_space *mapping,
					      struct inode *inode,
					      unsigned flags)
{
	int ret, needed_blocks;
	handle_t *handle = NULL;
	int retries = 0, sem_held = 0;
	struct page *page = NULL;
	unsigned from, to;
	struct ext4_iloc iloc;

	if (!ext4_has_inline_data(inode)) {
		/*
		 * clear the flag so that no new write
		 * will trap here again.
		 */
		ext4_clear_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA);
		return 0;
	}

	needed_blocks = ext4_writepage_trans_blocks(inode);

	ret = ext4_get_inode_loc(inode, &iloc);
	if (ret)
		return ret;

retry:
	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
	if (IS_ERR(handle)) {
		ret = PTR_ERR(handle);
		handle = NULL;
		goto out;
	}

	/* We cannot recurse into the filesystem as the transaction is already
	 * started */
	flags |= AOP_FLAG_NOFS;

	page = grab_cache_page_write_begin(mapping, 0, flags);
	if (!page) {
		ret = -ENOMEM;
		goto out;
	}

	down_write(&EXT4_I(inode)->xattr_sem);
	sem_held = 1;
	/* If some one has already done this for us, just exit. */
	if (!ext4_has_inline_data(inode)) {
		ret = 0;
		goto out;
	}

	from = 0;
	to = ext4_get_inline_size(inode);
	if (!PageUptodate(page)) {
		ret = ext4_read_inline_page(inode, page);
		if (ret < 0)
			goto out;
	}

	ret = ext4_destroy_inline_data_nolock(handle, inode);
	if (ret)
		goto out;

	if (ext4_should_dioread_nolock(inode))
		ret = __block_write_begin(page, from, to, ext4_get_block_write);
	else
		ret = __block_write_begin(page, from, to, ext4_get_block);

	if (!ret && ext4_should_journal_data(inode)) {
		ret = ext4_walk_page_buffers(handle, page_buffers(page),
					     from, to, NULL,
					     do_journal_get_write_access);
	}

	if (ret) {
		unlock_page(page);
		page_cache_release(page);
		ext4_orphan_add(handle, inode);
		up_write(&EXT4_I(inode)->xattr_sem);
		sem_held = 0;
		ext4_journal_stop(handle);
		handle = NULL;
		ext4_truncate_failed_write(inode);
		/*
		 * If truncate failed early the inode might
		 * still be on the orphan list; we need to
		 * make sure the inode is removed from the
		 * orphan list in that case.
		 */
		if (inode->i_nlink)
			ext4_orphan_del(NULL, inode);
	}

	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
		goto retry;

	block_commit_write(page, from, to);
out:
	if (page) {
		unlock_page(page);
		page_cache_release(page);
	}
	if (sem_held)
		up_write(&EXT4_I(inode)->xattr_sem);
	if (handle)
		ext4_journal_stop(handle);
	brelse(iloc.bh);
	return ret;
}
Example #30
0
static int xhci_histb_probe(struct platform_device *pdev)
{
	struct device *dev = &pdev->dev;
	struct xhci_hcd_histb *histb;
	const struct hc_driver *driver;
	struct usb_hcd *hcd;
	struct xhci_hcd *xhci;
	struct resource *res;
	int irq;
	int ret = -ENODEV;

	if (usb_disabled())
		return -ENODEV;

	driver = &xhci_histb_hc_driver;
	histb = devm_kzalloc(dev, sizeof(*histb), GFP_KERNEL);
	if (!histb)
		return -ENOMEM;

	histb->dev = dev;

	irq = platform_get_irq(pdev, 0);
	if (irq < 0)
		return irq;

	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
	histb->ctrl = devm_ioremap_resource(&pdev->dev, res);
	if (IS_ERR(histb->ctrl))
		return PTR_ERR(histb->ctrl);

	ret = xhci_histb_clks_get(histb);
	if (ret)
		return ret;

	histb->soft_reset = devm_reset_control_get(dev, "soft");
	if (IS_ERR(histb->soft_reset)) {
		dev_err(dev, "failed to get soft reset\n");
		return PTR_ERR(histb->soft_reset);
	}

	pm_runtime_enable(dev);
	pm_runtime_get_sync(dev);
	device_enable_async_suspend(dev);

	/* Initialize dma_mask and coherent_dma_mask to 32-bits */
	ret = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(32));
	if (ret)
		return ret;

	hcd = usb_create_hcd(driver, dev, dev_name(dev));
	if (!hcd) {
		ret = -ENOMEM;
		goto disable_pm;
	}

	hcd->regs = histb->ctrl;
	hcd->rsrc_start = res->start;
	hcd->rsrc_len = resource_size(res);

	histb->hcd = hcd;
	dev_set_drvdata(hcd->self.controller, histb);

	ret = xhci_histb_host_enable(histb);
	if (ret)
		goto put_hcd;

	xhci = hcd_to_xhci(hcd);

	device_wakeup_enable(hcd->self.controller);

	xhci->main_hcd = hcd;
	xhci->shared_hcd = usb_create_shared_hcd(driver, dev, dev_name(dev),
						 hcd);
	if (!xhci->shared_hcd) {
		ret = -ENOMEM;
		goto disable_host;
	}

	if (device_property_read_bool(dev, "usb2-lpm-disable"))
		xhci->quirks |= XHCI_HW_LPM_DISABLE;

	if (device_property_read_bool(dev, "usb3-lpm-capable"))
		xhci->quirks |= XHCI_LPM_SUPPORT;

	/* imod_interval is the interrupt moderation value in nanoseconds. */
	xhci->imod_interval = 40000;
	device_property_read_u32(dev, "imod-interval-ns",
				 &xhci->imod_interval);

	ret = usb_add_hcd(hcd, irq, IRQF_SHARED);
	if (ret)
		goto put_usb3_hcd;

	if (HCC_MAX_PSA(xhci->hcc_params) >= 4)
		xhci->shared_hcd->can_do_streams = 1;

	ret = usb_add_hcd(xhci->shared_hcd, irq, IRQF_SHARED);
	if (ret)
		goto dealloc_usb2_hcd;

	device_enable_async_suspend(dev);
	pm_runtime_put_noidle(dev);

	/*
	 * Prevent runtime pm from being on as default, users should enable
	 * runtime pm using power/control in sysfs.
	 */
	pm_runtime_forbid(dev);

	return 0;

dealloc_usb2_hcd:
	usb_remove_hcd(hcd);
put_usb3_hcd:
	usb_put_hcd(xhci->shared_hcd);
disable_host:
	xhci_histb_host_disable(histb);
put_hcd:
	usb_put_hcd(hcd);
disable_pm:
	pm_runtime_put_sync(dev);
	pm_runtime_disable(dev);

	return ret;
}