// if ( A==B ) return 0, else return 1 static int diff_matrix( magma_int_t m, magma_int_t n, magmaDoubleComplex *A, magma_int_t lda, magmaDoubleComplex *B, magma_int_t ldb ) { for( magma_int_t j = 0; j < n; j++ ) { for( magma_int_t i = 0; i < m; i++ ) { if ( ! MAGMA_Z_EQUAL( A[lda*j+i], B[ldb*j+i] ) ) return 1; } } return 0; }
/** Purpose ------- ZTRTRI computes the inverse of a real upper or lower triangular matrix A. This is the Level 3 BLAS version of the algorithm. Arguments --------- @param[in] uplo magma_uplo_t - = MagmaUpper: A is upper triangular; - = MagmaLower: A is lower triangular. @param[in] diag magma_diag_t - = MagmaNonUnit: A is non-unit triangular; - = MagmaUnit: A is unit triangular. @param[in] n INTEGER The order of the matrix A. N >= 0. @param[in,out] A COMPLEX_16 array, dimension (LDA,N) On entry, the triangular matrix A. If UPLO = MagmaUpper, the leading N-by-N upper triangular part of the array A contains the upper triangular matrix, and the strictly lower triangular part of A is not referenced. If UPLO = MagmaLower, the leading N-by-N lower triangular part of the array A contains the lower triangular matrix, and the strictly upper triangular part of A is not referenced. If DIAG = MagmaUnit, the diagonal elements of A are also not referenced and are assumed to be 1. On exit, the (triangular) inverse of the original matrix, in the same storage format. @param[in] lda INTEGER The leading dimension of the array A. LDA >= max(1,N). @param[out] info INTEGER - = 0: successful exit - < 0: if INFO = -i, the i-th argument had an illegal value - > 0: if INFO = i, A(i,i) is exactly zero. The triangular matrix is singular and its inverse cannot be computed. @ingroup magma_zgesv_aux ********************************************************************/ extern "C" magma_int_t magma_ztrtri( magma_uplo_t uplo, magma_diag_t diag, magma_int_t n, magmaDoubleComplex *A, magma_int_t lda, magma_int_t *info) { #define A(i, j) ( A + (i) + (j)*lda ) #define dA(i, j) (dA + (i) + (j)*ldda) /* Local variables */ const char* uplo_ = lapack_uplo_const( uplo ); const char* diag_ = lapack_diag_const( diag ); magma_int_t ldda, nb, nn, j, jb; magmaDoubleComplex c_zero = MAGMA_Z_ZERO; magmaDoubleComplex c_one = MAGMA_Z_ONE; magmaDoubleComplex c_neg_one = MAGMA_Z_NEG_ONE; magmaDoubleComplex *dA; int upper = (uplo == MagmaUpper); int nounit = (diag == MagmaNonUnit); *info = 0; if (! upper && uplo != MagmaLower) *info = -1; else if (! nounit && diag != MagmaUnit) *info = -2; else if (n < 0) *info = -3; else if (lda < max(1,n)) *info = -5; if (*info != 0) { magma_xerbla( __func__, -(*info) ); return *info; } /* Quick return */ if ( n == 0 ) return *info; /* Check for singularity if non-unit */ if (nounit) { for (j=0; j < n; ++j) { if ( MAGMA_Z_EQUAL( *A(j,j), c_zero )) { *info = j+1; // Fortran index return *info; } } } /* Determine the block size for this environment */ nb = magma_get_zpotrf_nb(n); ldda = ((n+31)/32)*32; if (MAGMA_SUCCESS != magma_zmalloc( &dA, (n)*ldda )) { *info = MAGMA_ERR_DEVICE_ALLOC; return *info; } magma_queue_t stream[2]; magma_queue_create( &stream[0] ); magma_queue_create( &stream[1] ); if (nb <= 1 || nb >= n) lapackf77_ztrtri(uplo_, diag_, &n, A, &lda, info); else { if (upper) { /* Compute inverse of upper triangular matrix */ for (j=0; j < n; j += nb) { jb = min(nb, (n-j)); magma_zsetmatrix( jb, (n-j), A(j, j), lda, dA(j, j), ldda ); /* Compute rows 1:j-1 of current block column */ magma_ztrmm( MagmaLeft, MagmaUpper, MagmaNoTrans, MagmaNonUnit, j, jb, c_one, dA(0,0), ldda, dA(0, j),ldda); magma_ztrsm( MagmaRight, MagmaUpper, MagmaNoTrans, MagmaNonUnit, j, jb, c_neg_one, dA(j,j), ldda, dA(0, j),ldda); magma_zgetmatrix_async( jb, jb, dA(j, j), ldda, A(j, j), lda, stream[1] ); magma_zgetmatrix_async( j, jb, dA(0, j), ldda, A(0, j), lda, stream[0] ); magma_queue_sync( stream[1] ); /* Compute inverse of current diagonal block */ lapackf77_ztrtri(MagmaUpperStr, diag_, &jb, A(j,j), &lda, info); magma_zsetmatrix( jb, jb, A(j, j), lda, dA(j, j), ldda ); } } else { /* Compute inverse of lower triangular matrix */ nn=((n-1)/nb)*nb+1; for (j=nn-1; j >= 0; j -= nb) { jb=min(nb,(n-j)); if ((j+jb) < n) { magma_zsetmatrix( (n-j), jb, A(j, j), lda, dA(j, j), ldda ); /* Compute rows j+jb:n of current block column */ magma_ztrmm( MagmaLeft, MagmaLower, MagmaNoTrans, MagmaNonUnit, (n-j-jb), jb, c_one, dA(j+jb,j+jb), ldda, dA(j+jb, j), ldda ); magma_ztrsm( MagmaRight, MagmaLower, MagmaNoTrans, MagmaNonUnit, (n-j-jb), jb, c_neg_one, dA(j,j), ldda, dA(j+jb, j), ldda ); magma_zgetmatrix_async( n-j-jb, jb, dA(j+jb, j), ldda, A(j+jb, j), lda, stream[1] ); magma_zgetmatrix_async( jb, jb, dA(j,j), ldda, A(j,j), lda, stream[0] ); magma_queue_sync( stream[0] ); } /* Compute inverse of current diagonal block */ lapackf77_ztrtri(MagmaLowerStr, diag_, &jb, A(j,j), &lda, info); magma_zsetmatrix( jb, jb, A(j, j), lda, dA(j, j), ldda ); } } } magma_queue_destroy( stream[0] ); magma_queue_destroy( stream[1] ); magma_free( dA ); return *info; }
extern "C" magma_int_t magma_zpidr_merge( magma_z_matrix A, magma_z_matrix b, magma_z_matrix *x, magma_z_solver_par *solver_par, magma_z_preconditioner *precond_par, magma_queue_t queue ) { magma_int_t info = MAGMA_NOTCONVERGED; // prepare solver feedback solver_par->solver = Magma_PIDRMERGE; solver_par->numiter = 0; solver_par->spmv_count = 0; solver_par->init_res = 0.0; solver_par->final_res = 0.0; solver_par->iter_res = 0.0; solver_par->runtime = 0.0; // constants const magmaDoubleComplex c_zero = MAGMA_Z_ZERO; const magmaDoubleComplex c_one = MAGMA_Z_ONE; const magmaDoubleComplex c_n_one = MAGMA_Z_NEG_ONE; // internal user parameters const magma_int_t smoothing = 1; // 0 = disable, 1 = enable const double angle = 0.7; // [0-1] // local variables magma_int_t iseed[4] = {0, 0, 0, 1}; magma_int_t dof; magma_int_t s; magma_int_t distr; magma_int_t k, i, sk; magma_int_t innerflag; magma_int_t ldd; double residual; double nrm; double nrmb; double nrmr; double nrmt; double rho; magmaDoubleComplex om; magmaDoubleComplex gamma; magmaDoubleComplex fk; // matrices and vectors magma_z_matrix dxs = {Magma_CSR}; magma_z_matrix dr = {Magma_CSR}, drs = {Magma_CSR}; magma_z_matrix dP = {Magma_CSR}, dP1 = {Magma_CSR}; magma_z_matrix dG = {Magma_CSR}, dGcol = {Magma_CSR}; magma_z_matrix dU = {Magma_CSR}; magma_z_matrix dM = {Magma_CSR}, hMdiag = {Magma_CSR}; magma_z_matrix df = {Magma_CSR}; magma_z_matrix dt = {Magma_CSR}, dtt = {Magma_CSR}; magma_z_matrix dc = {Magma_CSR}; magma_z_matrix dv = {Magma_CSR}; magma_z_matrix dlu = {Magma_CSR}; magma_z_matrix dskp = {Magma_CSR}, hskp = {Magma_CSR}; magma_z_matrix dalpha = {Magma_CSR}, halpha = {Magma_CSR}; magma_z_matrix dbeta = {Magma_CSR}, hbeta = {Magma_CSR}; magmaDoubleComplex *d1 = NULL, *d2 = NULL; // chronometry real_Double_t tempo1, tempo2; // initial s space // TODO: add option for 's' (shadow space number) // Hack: uses '--restart' option as the shadow space number. // This is not a good idea because the default value of restart option is used to detect // if the user provided a custom restart. This means that if the default restart value // is changed then the code will think it was the user (unless the default value is // also updated in the 'if' statement below. s = 1; if ( solver_par->restart != 50 ) { if ( solver_par->restart > A.num_cols ) { s = A.num_cols; } else { s = solver_par->restart; } } solver_par->restart = s; // set max iterations solver_par->maxiter = min( 2 * A.num_cols, solver_par->maxiter ); // check if matrix A is square if ( A.num_rows != A.num_cols ) { //printf("Matrix A is not square.\n"); info = MAGMA_ERR_NOT_SUPPORTED; goto cleanup; } // |b| nrmb = magma_dznrm2( b.num_rows, b.dval, 1, queue ); if ( nrmb == 0.0 ) { magma_zscal( x->num_rows, MAGMA_Z_ZERO, x->dval, 1, queue ); info = MAGMA_SUCCESS; goto cleanup; } // t = 0 // make t twice as large to contain both, dt and dr ldd = magma_roundup( b.num_rows, 32 ); CHECK( magma_zvinit( &dt, Magma_DEV, ldd, 2, c_zero, queue )); dt.num_rows = b.num_rows; dt.num_cols = 1; dt.nnz = dt.num_rows; // redirect the dr.dval to the second part of dt CHECK( magma_zvinit( &dr, Magma_DEV, b.num_rows, 1, c_zero, queue )); magma_free( dr.dval ); dr.dval = dt.dval + ldd; // r = b - A x CHECK( magma_zresidualvec( A, b, *x, &dr, &nrmr, queue )); // |r| solver_par->init_res = nrmr; solver_par->final_res = solver_par->init_res; solver_par->iter_res = solver_par->init_res; if ( solver_par->verbose > 0 ) { solver_par->res_vec[0] = (real_Double_t)nrmr; } // check if initial is guess good enough if ( nrmr <= solver_par->atol || nrmr/nrmb <= solver_par->rtol ) { info = MAGMA_SUCCESS; goto cleanup; } // P = randn(n, s) // P = ortho(P) //--------------------------------------- // P = 0.0 CHECK( magma_zvinit( &dP, Magma_CPU, A.num_cols, s, c_zero, queue )); // P = randn(n, s) distr = 3; // 1 = unif (0,1), 2 = unif (-1,1), 3 = normal (0,1) dof = dP.num_rows * dP.num_cols; lapackf77_zlarnv( &distr, iseed, &dof, dP.val ); // transfer P to device CHECK( magma_zmtransfer( dP, &dP1, Magma_CPU, Magma_DEV, queue )); magma_zmfree( &dP, queue ); // P = ortho(P1) if ( dP1.num_cols > 1 ) { // P = magma_zqr(P1), QR factorization CHECK( magma_zqr( dP1.num_rows, dP1.num_cols, dP1, dP1.ld, &dP, NULL, queue )); } else { // P = P1 / |P1| nrm = magma_dznrm2( dof, dP1.dval, 1, queue ); nrm = 1.0 / nrm; magma_zdscal( dof, nrm, dP1.dval, 1, queue ); CHECK( magma_zmtransfer( dP1, &dP, Magma_DEV, Magma_DEV, queue )); } magma_zmfree( &dP1, queue ); //--------------------------------------- // allocate memory for the scalar products CHECK( magma_zvinit( &hskp, Magma_CPU, 4, 1, c_zero, queue )); CHECK( magma_zvinit( &dskp, Magma_DEV, 4, 1, c_zero, queue )); CHECK( magma_zvinit( &halpha, Magma_CPU, s, 1, c_zero, queue )); CHECK( magma_zvinit( &dalpha, Magma_DEV, s, 1, c_zero, queue )); CHECK( magma_zvinit( &hbeta, Magma_CPU, s, 1, c_zero, queue )); CHECK( magma_zvinit( &dbeta, Magma_DEV, s, 1, c_zero, queue )); // workspace for merged dot product CHECK( magma_zmalloc( &d1, max(2, s) * b.num_rows )); CHECK( magma_zmalloc( &d2, max(2, s) * b.num_rows )); // smoothing enabled if ( smoothing > 0 ) { // set smoothing solution vector CHECK( magma_zmtransfer( *x, &dxs, Magma_DEV, Magma_DEV, queue )); // tt = 0 // make tt twice as large to contain both, dtt and drs ldd = magma_roundup( b.num_rows, 32 ); CHECK( magma_zvinit( &dtt, Magma_DEV, ldd, 2, c_zero, queue )); dtt.num_rows = dr.num_rows; dtt.num_cols = 1; dtt.nnz = dtt.num_rows; // redirect the drs.dval to the second part of dtt CHECK( magma_zvinit( &drs, Magma_DEV, dr.num_rows, 1, c_zero, queue )); magma_free( drs.dval ); drs.dval = dtt.dval + ldd; // set smoothing residual vector magma_zcopyvector( dr.num_rows, dr.dval, 1, drs.dval, 1, queue ); } // G(n,s) = 0 if ( s > 1 ) { ldd = magma_roundup( A.num_rows, 32 ); CHECK( magma_zvinit( &dG, Magma_DEV, ldd, s, c_zero, queue )); dG.num_rows = A.num_rows; } else { CHECK( magma_zvinit( &dG, Magma_DEV, A.num_rows, s, c_zero, queue )); } // dGcol represents a single column of dG, array pointer is set inside loop CHECK( magma_zvinit( &dGcol, Magma_DEV, dG.num_rows, 1, c_zero, queue )); magma_free( dGcol.dval ); // U(n,s) = 0 if ( s > 1 ) { ldd = magma_roundup( A.num_cols, 32 ); CHECK( magma_zvinit( &dU, Magma_DEV, ldd, s, c_zero, queue )); dU.num_rows = A.num_cols; } else { CHECK( magma_zvinit( &dU, Magma_DEV, A.num_cols, s, c_zero, queue )); } // M(s,s) = I CHECK( magma_zvinit( &dM, Magma_DEV, s, s, c_zero, queue )); CHECK( magma_zvinit( &hMdiag, Magma_CPU, s, 1, c_zero, queue )); magmablas_zlaset( MagmaFull, dM.num_rows, dM.num_cols, c_zero, c_one, dM.dval, dM.ld, queue ); // f = 0 CHECK( magma_zvinit( &df, Magma_DEV, dP.num_cols, 1, c_zero, queue )); // c = 0 CHECK( magma_zvinit( &dc, Magma_DEV, dM.num_cols, 1, c_zero, queue )); // v = 0 CHECK( magma_zvinit( &dv, Magma_DEV, dr.num_rows, 1, c_zero, queue )); // lu = 0 CHECK( magma_zvinit( &dlu, Magma_DEV, dr.num_rows, 1, c_zero, queue )); //--------------START TIME--------------- // chronometry tempo1 = magma_sync_wtime( queue ); if ( solver_par->verbose > 0 ) { solver_par->timing[0] = 0.0; } om = MAGMA_Z_ONE; innerflag = 0; // start iteration do { solver_par->numiter++; // new RHS for small systems // f = P' r magma_zgemvmdot_shfl( dP.num_rows, dP.num_cols, dP.dval, dr.dval, d1, d2, df.dval, queue ); // shadow space loop for ( k = 0; k < s; ++k ) { sk = s - k; // c(k:s) = M(k:s,k:s) \ f(k:s) magma_zcopyvector( sk, &df.dval[k], 1, &dc.dval[k], 1, queue ); magma_ztrsv( MagmaLower, MagmaNoTrans, MagmaNonUnit, sk, &dM.dval[k*dM.ld+k], dM.ld, &dc.dval[k], 1, queue ); // v = r - G(:,k:s) c(k:s) magma_zcopyvector( dr.num_rows, dr.dval, 1, dv.dval, 1, queue ); magmablas_zgemv( MagmaNoTrans, dG.num_rows, sk, c_n_one, &dG.dval[k*dG.ld], dG.ld, &dc.dval[k], 1, c_one, dv.dval, 1, queue ); // preconditioning operation // v = L \ v; // v = U \ v; CHECK( magma_z_applyprecond_left( MagmaNoTrans, A, dv, &dlu, precond_par, queue )); CHECK( magma_z_applyprecond_right( MagmaNoTrans, A, dlu, &dv, precond_par, queue )); // U(:,k) = om * v + U(:,k:s) c(k:s) magmablas_zgemv( MagmaNoTrans, dU.num_rows, sk, c_one, &dU.dval[k*dU.ld], dU.ld, &dc.dval[k], 1, om, dv.dval, 1, queue ); magma_zcopyvector( dU.num_rows, dv.dval, 1, &dU.dval[k*dU.ld], 1, queue ); // G(:,k) = A U(:,k) dGcol.dval = dG.dval + k * dG.ld; CHECK( magma_z_spmv( c_one, A, dv, c_zero, dGcol, queue )); solver_par->spmv_count++; // bi-orthogonalize the new basis vectors for ( i = 0; i < k; ++i ) { // alpha = P(:,i)' G(:,k) halpha.val[i] = magma_zdotc( dP.num_rows, &dP.dval[i*dP.ld], 1, &dG.dval[k*dG.ld], 1, queue ); // alpha = alpha / M(i,i) halpha.val[i] = halpha.val[i] / hMdiag.val[i]; // G(:,k) = G(:,k) - alpha * G(:,i) magma_zaxpy( dG.num_rows, -halpha.val[i], &dG.dval[i*dG.ld], 1, &dG.dval[k*dG.ld], 1, queue ); } // non-first s iteration if ( k > 0 ) { // U update outside of loop using GEMV // U(:,k) = U(:,k) - U(:,1:k) * alpha(1:k) magma_zsetvector( k, halpha.val, 1, dalpha.dval, 1, queue ); magmablas_zgemv( MagmaNoTrans, dU.num_rows, k, c_n_one, dU.dval, dU.ld, dalpha.dval, 1, c_one, &dU.dval[k*dU.ld], 1, queue ); } // new column of M = P'G, first k-1 entries are zero // M(k:s,k) = P(:,k:s)' G(:,k) magma_zgemvmdot_shfl( dP.num_rows, sk, &dP.dval[k*dP.ld], &dG.dval[k*dG.ld], d1, d2, &dM.dval[k*dM.ld+k], queue ); magma_zgetvector( 1, &dM.dval[k*dM.ld+k], 1, &hMdiag.val[k], 1, queue ); // check M(k,k) == 0 if ( MAGMA_Z_EQUAL(hMdiag.val[k], MAGMA_Z_ZERO) ) { innerflag = 1; info = MAGMA_DIVERGENCE; break; } // beta = f(k) / M(k,k) magma_zgetvector( 1, &df.dval[k], 1, &fk, 1, queue ); hbeta.val[k] = fk / hMdiag.val[k]; // check for nan if ( magma_z_isnan( hbeta.val[k] ) || magma_z_isinf( hbeta.val[k] )) { innerflag = 1; info = MAGMA_DIVERGENCE; break; } // r = r - beta * G(:,k) magma_zaxpy( dr.num_rows, -hbeta.val[k], &dG.dval[k*dG.ld], 1, dr.dval, 1, queue ); // smoothing disabled if ( smoothing <= 0 ) { // |r| nrmr = magma_dznrm2( dr.num_rows, dr.dval, 1, queue ); // smoothing enabled } else { // x = x + beta * U(:,k) magma_zaxpy( x->num_rows, hbeta.val[k], &dU.dval[k*dU.ld], 1, x->dval, 1, queue ); // smoothing operation //--------------------------------------- // t = rs - r magma_zidr_smoothing_1( drs.num_rows, drs.num_cols, drs.dval, dr.dval, dtt.dval, queue ); // t't // t'rs CHECK( magma_zgemvmdot_shfl( dt.ld, 2, dtt.dval, dtt.dval, d1, d2, &dskp.dval[2], queue )); magma_zgetvector( 2, &dskp.dval[2], 1, &hskp.val[2], 1, queue ); // gamma = (t' * rs) / (t' * t) gamma = hskp.val[3] / hskp.val[2]; // rs = rs - gamma * (rs - r) magma_zaxpy( drs.num_rows, -gamma, dtt.dval, 1, drs.dval, 1, queue ); // xs = xs - gamma * (xs - x) magma_zidr_smoothing_2( dxs.num_rows, dxs.num_cols, -gamma, x->dval, dxs.dval, queue ); // |rs| nrmr = magma_dznrm2( drs.num_rows, drs.dval, 1, queue ); //--------------------------------------- } // store current timing and residual if ( solver_par->verbose > 0 ) { tempo2 = magma_sync_wtime( queue ); if ( (solver_par->numiter) % solver_par->verbose == 0 ) { solver_par->res_vec[(solver_par->numiter) / solver_par->verbose] = (real_Double_t)nrmr; solver_par->timing[(solver_par->numiter) / solver_par->verbose] = (real_Double_t)tempo2 - tempo1; } } // check convergence or iteration limit if ( nrmr <= solver_par->atol || nrmr/nrmb <= solver_par->rtol ) { s = k + 1; // for the x-update outside the loop innerflag = 2; info = MAGMA_SUCCESS; break; } // non-last s iteration if ( (k + 1) < s ) { // f(k+1:s) = f(k+1:s) - beta * M(k+1:s,k) magma_zaxpy( sk-1, -hbeta.val[k], &dM.dval[k*dM.ld+(k+1)], 1, &df.dval[k+1], 1, queue ); } } // smoothing disabled if ( smoothing <= 0 && innerflag != 1 ) { // update solution approximation x // x = x + U(:,1:s) * beta(1:s) magma_zsetvector( s, hbeta.val, 1, dbeta.dval, 1, queue ); magmablas_zgemv( MagmaNoTrans, dU.num_rows, s, c_one, dU.dval, dU.ld, dbeta.dval, 1, c_one, x->dval, 1, queue ); } // check convergence or iteration limit or invalid result of inner loop if ( innerflag > 0 ) { break; } // v = r magma_zcopy( dr.num_rows, dr.dval, 1, dv.dval, 1, queue ); // preconditioning operation // v = L \ v; // v = U \ v; CHECK( magma_z_applyprecond_left( MagmaNoTrans, A, dv, &dlu, precond_par, queue )); CHECK( magma_z_applyprecond_right( MagmaNoTrans, A, dlu, &dv, precond_par, queue )); // t = A v CHECK( magma_z_spmv( c_one, A, dv, c_zero, dt, queue )); solver_par->spmv_count++; // computation of a new omega //--------------------------------------- // t't // t'r CHECK( magma_zgemvmdot_shfl( dt.ld, 2, dt.dval, dt.dval, d1, d2, dskp.dval, queue )); magma_zgetvector( 2, dskp.dval, 1, hskp.val, 1, queue ); // |t| nrmt = magma_dsqrt( MAGMA_Z_REAL(hskp.val[0]) ); // rho = abs((t' * r) / (|t| * |r|)) rho = MAGMA_D_ABS( MAGMA_Z_REAL(hskp.val[1]) / (nrmt * nrmr) ); // om = (t' * r) / (|t| * |t|) om = hskp.val[1] / hskp.val[0]; if ( rho < angle ) { om = (om * angle) / rho; } //--------------------------------------- if ( MAGMA_Z_EQUAL(om, MAGMA_Z_ZERO) ) { info = MAGMA_DIVERGENCE; break; } // update approximation vector // x = x + om * v magma_zaxpy( x->num_rows, om, dv.dval, 1, x->dval, 1, queue ); // update residual vector // r = r - om * t magma_zaxpy( dr.num_rows, -om, dt.dval, 1, dr.dval, 1, queue ); // smoothing disabled if ( smoothing <= 0 ) { // residual norm nrmr = magma_dznrm2( dr.num_rows, dr.dval, 1, queue ); // smoothing enabled } else { // smoothing operation //--------------------------------------- // t = rs - r magma_zidr_smoothing_1( drs.num_rows, drs.num_cols, drs.dval, dr.dval, dtt.dval, queue ); // t't // t'rs CHECK( magma_zgemvmdot_shfl( dt.ld, 2, dtt.dval, dtt.dval, d1, d2, &dskp.dval[2], queue )); magma_zgetvector( 2, &dskp.dval[2], 1, &hskp.val[2], 1, queue ); // gamma = (t' * rs) / (t' * t) gamma = hskp.val[3] / hskp.val[2]; // rs = rs - gamma * (rs - r) magma_zaxpy( drs.num_rows, -gamma, dtt.dval, 1, drs.dval, 1, queue ); // xs = xs - gamma * (xs - x) magma_zidr_smoothing_2( dxs.num_rows, dxs.num_cols, -gamma, x->dval, dxs.dval, queue ); // |rs| nrmr = magma_dznrm2( drs.num_rows, drs.dval, 1, queue ); //--------------------------------------- } // store current timing and residual if ( solver_par->verbose > 0 ) { tempo2 = magma_sync_wtime( queue ); if ( (solver_par->numiter) % solver_par->verbose == 0 ) { solver_par->res_vec[(solver_par->numiter) / solver_par->verbose] = (real_Double_t)nrmr; solver_par->timing[(solver_par->numiter) / solver_par->verbose] = (real_Double_t)tempo2 - tempo1; } } // check convergence if ( nrmr <= solver_par->atol || nrmr/nrmb <= solver_par->rtol ) { info = MAGMA_SUCCESS; break; } } while ( solver_par->numiter + 1 <= solver_par->maxiter ); // smoothing enabled if ( smoothing > 0 ) { // x = xs magma_zcopyvector( x->num_rows, dxs.dval, 1, x->dval, 1, queue ); // r = rs magma_zcopyvector( dr.num_rows, drs.dval, 1, dr.dval, 1, queue ); } // get last iteration timing tempo2 = magma_sync_wtime( queue ); solver_par->runtime = (real_Double_t)tempo2 - tempo1; //--------------STOP TIME---------------- // get final stats solver_par->iter_res = nrmr; CHECK( magma_zresidualvec( A, b, *x, &dr, &residual, queue )); solver_par->final_res = residual; // set solver conclusion if ( info != MAGMA_SUCCESS && info != MAGMA_DIVERGENCE ) { if ( solver_par->init_res > solver_par->final_res ) { info = MAGMA_SLOW_CONVERGENCE; } } cleanup: // free resources // smoothing enabled if ( smoothing > 0 ) { drs.dval = NULL; // needed because its pointer is redirected to dtt magma_zmfree( &dxs, queue ); magma_zmfree( &drs, queue ); magma_zmfree( &dtt, queue ); } dr.dval = NULL; // needed because its pointer is redirected to dt dGcol.dval = NULL; // needed because its pointer is redirected to dG magma_zmfree( &dr, queue ); magma_zmfree( &dP, queue ); magma_zmfree( &dP1, queue ); magma_zmfree( &dG, queue ); magma_zmfree( &dGcol, queue ); magma_zmfree( &dU, queue ); magma_zmfree( &dM, queue ); magma_zmfree( &hMdiag, queue ); magma_zmfree( &df, queue ); magma_zmfree( &dt, queue ); magma_zmfree( &dc, queue ); magma_zmfree( &dv, queue ); magma_zmfree( &dlu, queue ); magma_zmfree( &dskp, queue ); magma_zmfree( &dalpha, queue ); magma_zmfree( &dbeta, queue ); magma_zmfree( &hskp, queue ); magma_zmfree( &halpha, queue ); magma_zmfree( &hbeta, queue ); magma_free( d1 ); magma_free( d2 ); solver_par->info = info; return info; /* magma_zpidr_merge */ }
extern "C" magma_int_t magma_ztrtri(char uplo, char diag, magma_int_t n, magmaDoubleComplex *A, magma_int_t lda, magma_int_t *info) { /* -- MAGMA (version 1.4.0) -- Univ. of Tennessee, Knoxville Univ. of California, Berkeley Univ. of Colorado, Denver August 2013 Purpose ======= ZTRTRI computes the inverse of a real upper or lower triangular matrix A. This is the Level 3 BLAS version of the algorithm. Arguments ========= UPLO (input) CHARACTER*1 = 'U': A is upper triangular; = 'L': A is lower triangular. DIAG (input) CHARACTER*1 = 'N': A is non-unit triangular; = 'U': A is unit triangular. N (input) INTEGER The order of the matrix A. N >= 0. A (input/output) COMPLEX_16 array, dimension (LDA,N) On entry, the triangular matrix A. If UPLO = 'U', the leading N-by-N upper triangular part of the array A contains the upper triangular matrix, and the strictly lower triangular part of A is not referenced. If UPLO = 'L', the leading N-by-N lower triangular part of the array A contains the lower triangular matrix, and the strictly upper triangular part of A is not referenced. If DIAG = 'U', the diagonal elements of A are also not referenced and are assumed to be 1. On exit, the (triangular) inverse of the original matrix, in the same storage format. LDA (input) INTEGER The leading dimension of the array A. LDA >= max(1,N). INFO (output) INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value > 0: if INFO = i, A(i,i) is exactly zero. The triangular matrix is singular and its inverse cannot be computed. ===================================================================== */ #define A(i, j) ( A + (i) + (j)*lda ) #define dA(i, j) (dA + (i) + (j)*ldda) /* Local variables */ char uplo_[2] = {uplo, 0}; char diag_[2] = {diag, 0}; magma_int_t ldda, nb, nn, j, jb; magmaDoubleComplex c_zero = MAGMA_Z_ZERO; magmaDoubleComplex c_one = MAGMA_Z_ONE; magmaDoubleComplex c_neg_one = MAGMA_Z_NEG_ONE; magmaDoubleComplex *dA; int upper = lapackf77_lsame(uplo_, "U"); int nounit = lapackf77_lsame(diag_, "N"); *info = 0; if ((! upper) && (! lapackf77_lsame(uplo_, "L"))) *info = -1; else if ((! nounit) && (! lapackf77_lsame(diag_, "U"))) *info = -2; else if (n < 0) *info = -3; else if (lda < max(1,n)) *info = -5; if (*info != 0) { magma_xerbla( __func__, -(*info) ); return *info; } /* Quick return */ if ( n == 0 ) return *info; /* Check for singularity if non-unit */ if (nounit) { for ( j=0; j<n; ++j ) { if ( MAGMA_Z_EQUAL( *A(j,j), c_zero )) { *info = j+1; // Fortran index return *info; } } } /* Determine the block size for this environment */ nb = magma_get_zpotrf_nb(n); ldda = ((n+31)/32)*32; if (MAGMA_SUCCESS != magma_zmalloc( &dA, (n)*ldda )) { *info = MAGMA_ERR_DEVICE_ALLOC; return *info; } magma_queue_t stream[2]; magma_queue_create( &stream[0] ); magma_queue_create( &stream[1] ); if (nb <= 1 || nb >= n) lapackf77_ztrtri(uplo_, diag_, &n, A, &lda, info); else { if (upper) { /* Compute inverse of upper triangular matrix */ for (j=0; j<n; j=j+nb) { jb = min(nb, (n-j)); magma_zsetmatrix( jb, (n-j), A(j, j), lda, dA(j, j), ldda ); /* Compute rows 1:j-1 of current block column */ magma_ztrmm( MagmaLeft, MagmaUpper, MagmaNoTrans, MagmaNonUnit, j, jb, c_one, dA(0,0), ldda, dA(0, j),ldda); magma_ztrsm( MagmaRight, MagmaUpper, MagmaNoTrans, MagmaNonUnit, j, jb, c_neg_one, dA(j,j), ldda, dA(0, j),ldda); magma_zgetmatrix_async( jb, jb, dA(j, j), ldda, A(j, j), lda, stream[1] ); magma_zgetmatrix_async( j, jb, dA(0, j), ldda, A(0, j), lda, stream[0] ); magma_queue_sync( stream[1] ); /* Compute inverse of current diagonal block */ lapackf77_ztrtri(MagmaUpperStr, diag_, &jb, A(j,j), &lda, info); magma_zsetmatrix( jb, jb, A(j, j), lda, dA(j, j), ldda ); } } else { /* Compute inverse of lower triangular matrix */ nn=((n-1)/nb)*nb+1; for(j=nn-1; j>=0; j=j-nb) { jb=min(nb,(n-j)); if((j+jb) < n) { magma_zsetmatrix( (n-j), jb, A(j, j), lda, dA(j, j), ldda ); /* Compute rows j+jb:n of current block column */ magma_ztrmm( MagmaLeft, MagmaLower, MagmaNoTrans, MagmaNonUnit, (n-j-jb), jb, c_one, dA(j+jb,j+jb), ldda, dA(j+jb, j), ldda ); magma_ztrsm( MagmaRight, MagmaLower, MagmaNoTrans, MagmaNonUnit, (n-j-jb), jb, c_neg_one, dA(j,j), ldda, dA(j+jb, j), ldda ); magma_zgetmatrix_async( n-j-jb, jb, dA(j+jb, j), ldda, A(j+jb, j), lda, stream[1] ); magma_zgetmatrix_async( jb, jb, dA(j,j), ldda, A(j,j), lda, stream[0] ); magma_queue_sync( stream[0] ); } /* Compute inverse of current diagonal block */ lapackf77_ztrtri(MagmaLowerStr, diag_, &jb, A(j,j), &lda, info); magma_zsetmatrix( jb, jb, A(j, j), lda, dA(j, j), ldda ); } } } magma_queue_destroy( stream[0] ); magma_queue_destroy( stream[1] ); magma_free( dA ); return *info; }