Esempio n. 1
0
// if ( A==B ) return 0, else return 1
static int diff_matrix( magma_int_t m, magma_int_t n, magmaDoubleComplex *A, magma_int_t lda, magmaDoubleComplex *B, magma_int_t ldb )
{
    for( magma_int_t j = 0; j < n; j++ ) {
        for( magma_int_t i = 0; i < m; i++ ) {
            if ( ! MAGMA_Z_EQUAL( A[lda*j+i], B[ldb*j+i] ) )
                return 1;
        }
    }
    return 0;
}
Esempio n. 2
0
/**
    Purpose
    -------
    ZTRTRI computes the inverse of a real upper or lower triangular
    matrix A.

    This is the Level 3 BLAS version of the algorithm.

    Arguments
    ---------
    @param[in]
    uplo    magma_uplo_t
      -     = MagmaUpper:  A is upper triangular;
      -     = MagmaLower:  A is lower triangular.

    @param[in]
    diag    magma_diag_t
      -     = MagmaNonUnit:  A is non-unit triangular;
      -     = MagmaUnit:     A is unit triangular.

    @param[in]
    n       INTEGER
            The order of the matrix A.  N >= 0.

    @param[in,out]
    A       COMPLEX_16 array, dimension (LDA,N)
            On entry, the triangular matrix A.  If UPLO = MagmaUpper, the
            leading N-by-N upper triangular part of the array A contains
            the upper triangular matrix, and the strictly lower
            triangular part of A is not referenced.  If UPLO = MagmaLower, the
            leading N-by-N lower triangular part of the array A contains
            the lower triangular matrix, and the strictly upper
            triangular part of A is not referenced.  If DIAG = MagmaUnit, the
            diagonal elements of A are also not referenced and are
            assumed to be 1.
            On exit, the (triangular) inverse of the original matrix, in
            the same storage format.

    @param[in]
    lda     INTEGER
            The leading dimension of the array A.  LDA >= max(1,N).

    @param[out]
    info    INTEGER
      -     = 0: successful exit
      -     < 0: if INFO = -i, the i-th argument had an illegal value
      -     > 0: if INFO = i, A(i,i) is exactly zero.  The triangular
                    matrix is singular and its inverse cannot be computed.

    @ingroup magma_zgesv_aux
    ********************************************************************/
extern "C" magma_int_t
magma_ztrtri(
    magma_uplo_t uplo, magma_diag_t diag, magma_int_t n,
    magmaDoubleComplex *A, magma_int_t lda,
    magma_int_t *info)
{
    #define  A(i, j) ( A + (i) + (j)*lda )
    #define dA(i, j) (dA + (i) + (j)*ldda)

    /* Local variables */
    const char* uplo_ = lapack_uplo_const( uplo );
    const char* diag_ = lapack_diag_const( diag );
    magma_int_t     ldda, nb, nn, j, jb;
    magmaDoubleComplex c_zero     = MAGMA_Z_ZERO;
    magmaDoubleComplex c_one      = MAGMA_Z_ONE;
    magmaDoubleComplex c_neg_one  = MAGMA_Z_NEG_ONE;
    magmaDoubleComplex *dA;

    int upper  = (uplo == MagmaUpper);
    int nounit = (diag == MagmaNonUnit);

    *info = 0;

    if (! upper && uplo != MagmaLower)
        *info = -1;
    else if (! nounit && diag != MagmaUnit)
        *info = -2;
    else if (n < 0)
        *info = -3;
    else if (lda < max(1,n))
        *info = -5;

    if (*info != 0) {
        magma_xerbla( __func__, -(*info) );
        return *info;
    }

    /* Quick return */
    if ( n == 0 )
        return *info;

    /* Check for singularity if non-unit */
    if (nounit) {
        for (j=0; j < n; ++j) {
            if ( MAGMA_Z_EQUAL( *A(j,j), c_zero )) {
                *info = j+1;  // Fortran index
                return *info;
            }
        }
    }

    /* Determine the block size for this environment */
    nb = magma_get_zpotrf_nb(n);

    ldda = ((n+31)/32)*32;
    if (MAGMA_SUCCESS != magma_zmalloc( &dA, (n)*ldda )) {
        *info = MAGMA_ERR_DEVICE_ALLOC;
        return *info;
    }

    magma_queue_t stream[2];
    magma_queue_create( &stream[0] );
    magma_queue_create( &stream[1] );

    if (nb <= 1 || nb >= n)
        lapackf77_ztrtri(uplo_, diag_, &n, A, &lda, info);
    else {
        if (upper) {
            /* Compute inverse of upper triangular matrix */
            for (j=0; j < n; j += nb) {
                jb = min(nb, (n-j));
                magma_zsetmatrix( jb, (n-j),
                                  A(j, j),  lda,
                                  dA(j, j), ldda );

                /* Compute rows 1:j-1 of current block column */
                magma_ztrmm( MagmaLeft, MagmaUpper,
                             MagmaNoTrans, MagmaNonUnit, j, jb,
                             c_one, dA(0,0), ldda, dA(0, j),ldda);

                magma_ztrsm( MagmaRight, MagmaUpper,
                             MagmaNoTrans, MagmaNonUnit, j, jb,
                             c_neg_one, dA(j,j), ldda, dA(0, j),ldda);

                magma_zgetmatrix_async( jb, jb,
                                        dA(j, j), ldda,
                                        A(j, j),  lda, stream[1] );

                magma_zgetmatrix_async( j, jb,
                                        dA(0, j), ldda,
                                        A(0, j),  lda, stream[0] );

                magma_queue_sync( stream[1] );

                /* Compute inverse of current diagonal block */
                lapackf77_ztrtri(MagmaUpperStr, diag_, &jb, A(j,j), &lda, info);

                magma_zsetmatrix( jb, jb,
                                  A(j, j),  lda,
                                  dA(j, j), ldda );
            }
        }
        else {
            /* Compute inverse of lower triangular matrix */
            nn=((n-1)/nb)*nb+1;

            for (j=nn-1; j >= 0; j -= nb) {
                jb=min(nb,(n-j));

                if ((j+jb) < n) {
                    magma_zsetmatrix( (n-j), jb,
                                      A(j, j),  lda,
                                      dA(j, j), ldda );

                    /* Compute rows j+jb:n of current block column */
                    magma_ztrmm( MagmaLeft, MagmaLower,
                                 MagmaNoTrans, MagmaNonUnit, (n-j-jb), jb,
                                 c_one, dA(j+jb,j+jb), ldda, dA(j+jb, j), ldda );

                    magma_ztrsm( MagmaRight, MagmaLower,
                                 MagmaNoTrans, MagmaNonUnit, (n-j-jb), jb,
                                 c_neg_one, dA(j,j), ldda, dA(j+jb, j), ldda );

                    magma_zgetmatrix_async( n-j-jb, jb,
                                            dA(j+jb, j), ldda,
                                            A(j+jb, j),  lda, stream[1] );

                    magma_zgetmatrix_async( jb, jb,
                                            dA(j,j), ldda,
                                            A(j,j),  lda, stream[0] );

                    magma_queue_sync( stream[0] );
                }

                /* Compute inverse of current diagonal block */
                lapackf77_ztrtri(MagmaLowerStr, diag_, &jb, A(j,j), &lda, info);

                magma_zsetmatrix( jb, jb,
                                  A(j, j),  lda,
                                  dA(j, j), ldda );
            }
        }
    }

    magma_queue_destroy( stream[0] );
    magma_queue_destroy( stream[1] );
    magma_free( dA );

    return *info;
}
Esempio n. 3
0
extern "C" magma_int_t
magma_zpidr_merge(
    magma_z_matrix A, magma_z_matrix b, magma_z_matrix *x,
    magma_z_solver_par *solver_par,
    magma_z_preconditioner *precond_par,
    magma_queue_t queue )
{
    magma_int_t info = MAGMA_NOTCONVERGED;

    // prepare solver feedback
    solver_par->solver = Magma_PIDRMERGE;
    solver_par->numiter = 0;
    solver_par->spmv_count = 0;
    solver_par->init_res = 0.0;
    solver_par->final_res = 0.0;
    solver_par->iter_res = 0.0;
    solver_par->runtime = 0.0;

    // constants
    const magmaDoubleComplex c_zero = MAGMA_Z_ZERO;
    const magmaDoubleComplex c_one = MAGMA_Z_ONE;
    const magmaDoubleComplex c_n_one = MAGMA_Z_NEG_ONE;

    // internal user parameters
    const magma_int_t smoothing = 1;   // 0 = disable, 1 = enable
    const double angle = 0.7;          // [0-1]

    // local variables
    magma_int_t iseed[4] = {0, 0, 0, 1};
    magma_int_t dof;
    magma_int_t s;
    magma_int_t distr;
    magma_int_t k, i, sk;
    magma_int_t innerflag;
    magma_int_t ldd;
    double residual;
    double nrm;
    double nrmb;
    double nrmr;
    double nrmt;
    double rho;
    magmaDoubleComplex om;
    magmaDoubleComplex gamma;
    magmaDoubleComplex fk;

    // matrices and vectors
    magma_z_matrix dxs = {Magma_CSR};
    magma_z_matrix dr = {Magma_CSR}, drs = {Magma_CSR};
    magma_z_matrix dP = {Magma_CSR}, dP1 = {Magma_CSR};
    magma_z_matrix dG = {Magma_CSR}, dGcol = {Magma_CSR};
    magma_z_matrix dU = {Magma_CSR};
    magma_z_matrix dM = {Magma_CSR}, hMdiag = {Magma_CSR};
    magma_z_matrix df = {Magma_CSR};
    magma_z_matrix dt = {Magma_CSR}, dtt = {Magma_CSR};
    magma_z_matrix dc = {Magma_CSR};
    magma_z_matrix dv = {Magma_CSR};
    magma_z_matrix dlu = {Magma_CSR};
    magma_z_matrix dskp = {Magma_CSR}, hskp = {Magma_CSR};
    magma_z_matrix dalpha = {Magma_CSR}, halpha = {Magma_CSR};
    magma_z_matrix dbeta = {Magma_CSR}, hbeta = {Magma_CSR};
    magmaDoubleComplex *d1 = NULL, *d2 = NULL;

    // chronometry
    real_Double_t tempo1, tempo2;

    // initial s space
    // TODO: add option for 's' (shadow space number)
    // Hack: uses '--restart' option as the shadow space number.
    //       This is not a good idea because the default value of restart option is used to detect
    //       if the user provided a custom restart. This means that if the default restart value
    //       is changed then the code will think it was the user (unless the default value is
    //       also updated in the 'if' statement below.
    s = 1;
    if ( solver_par->restart != 50 ) {
        if ( solver_par->restart > A.num_cols ) {
            s = A.num_cols;
        } else {
            s = solver_par->restart;
        }
    }
    solver_par->restart = s;

    // set max iterations
    solver_par->maxiter = min( 2 * A.num_cols, solver_par->maxiter );

    // check if matrix A is square
    if ( A.num_rows != A.num_cols ) {
        //printf("Matrix A is not square.\n");
        info = MAGMA_ERR_NOT_SUPPORTED;
        goto cleanup;
    }

    // |b|
    nrmb = magma_dznrm2( b.num_rows, b.dval, 1, queue );
    if ( nrmb == 0.0 ) {
        magma_zscal( x->num_rows, MAGMA_Z_ZERO, x->dval, 1, queue );
        info = MAGMA_SUCCESS;
        goto cleanup;
    }

    // t = 0
    // make t twice as large to contain both, dt and dr
    ldd = magma_roundup( b.num_rows, 32 );
    CHECK( magma_zvinit( &dt, Magma_DEV, ldd, 2, c_zero, queue ));
    dt.num_rows = b.num_rows;
    dt.num_cols = 1;
    dt.nnz = dt.num_rows;

    // redirect the dr.dval to the second part of dt
    CHECK( magma_zvinit( &dr, Magma_DEV, b.num_rows, 1, c_zero, queue ));
    magma_free( dr.dval );
    dr.dval = dt.dval + ldd;

    // r = b - A x
    CHECK( magma_zresidualvec( A, b, *x, &dr, &nrmr, queue ));
    
    // |r|
    solver_par->init_res = nrmr;
    solver_par->final_res = solver_par->init_res;
    solver_par->iter_res = solver_par->init_res;
    if ( solver_par->verbose > 0 ) {
        solver_par->res_vec[0] = (real_Double_t)nrmr;
    }

    // check if initial is guess good enough
    if ( nrmr <= solver_par->atol ||
        nrmr/nrmb <= solver_par->rtol ) {
        info = MAGMA_SUCCESS;
        goto cleanup;
    }

    // P = randn(n, s)
    // P = ortho(P)
//---------------------------------------
    // P = 0.0
    CHECK( magma_zvinit( &dP, Magma_CPU, A.num_cols, s, c_zero, queue ));

    // P = randn(n, s)
    distr = 3;        // 1 = unif (0,1), 2 = unif (-1,1), 3 = normal (0,1) 
    dof = dP.num_rows * dP.num_cols;
    lapackf77_zlarnv( &distr, iseed, &dof, dP.val );

    // transfer P to device
    CHECK( magma_zmtransfer( dP, &dP1, Magma_CPU, Magma_DEV, queue ));
    magma_zmfree( &dP, queue );

    // P = ortho(P1)
    if ( dP1.num_cols > 1 ) {
        // P = magma_zqr(P1), QR factorization
        CHECK( magma_zqr( dP1.num_rows, dP1.num_cols, dP1, dP1.ld, &dP, NULL, queue ));
    } else {
        // P = P1 / |P1|
        nrm = magma_dznrm2( dof, dP1.dval, 1, queue );
        nrm = 1.0 / nrm;
        magma_zdscal( dof, nrm, dP1.dval, 1, queue );
        CHECK( magma_zmtransfer( dP1, &dP, Magma_DEV, Magma_DEV, queue ));
    }
    magma_zmfree( &dP1, queue );
//---------------------------------------

    // allocate memory for the scalar products
    CHECK( magma_zvinit( &hskp, Magma_CPU, 4, 1, c_zero, queue ));
    CHECK( magma_zvinit( &dskp, Magma_DEV, 4, 1, c_zero, queue ));

    CHECK( magma_zvinit( &halpha, Magma_CPU, s, 1, c_zero, queue ));
    CHECK( magma_zvinit( &dalpha, Magma_DEV, s, 1, c_zero, queue ));

    CHECK( magma_zvinit( &hbeta, Magma_CPU, s, 1, c_zero, queue ));
    CHECK( magma_zvinit( &dbeta, Magma_DEV, s, 1, c_zero, queue ));

    // workspace for merged dot product
    CHECK( magma_zmalloc( &d1, max(2, s) * b.num_rows ));
    CHECK( magma_zmalloc( &d2, max(2, s) * b.num_rows ));

    // smoothing enabled
    if ( smoothing > 0 ) {
        // set smoothing solution vector
        CHECK( magma_zmtransfer( *x, &dxs, Magma_DEV, Magma_DEV, queue ));

        // tt = 0
        // make tt twice as large to contain both, dtt and drs
        ldd = magma_roundup( b.num_rows, 32 );
        CHECK( magma_zvinit( &dtt, Magma_DEV, ldd, 2, c_zero, queue ));
        dtt.num_rows = dr.num_rows;
        dtt.num_cols = 1;
        dtt.nnz = dtt.num_rows;

        // redirect the drs.dval to the second part of dtt
        CHECK( magma_zvinit( &drs, Magma_DEV, dr.num_rows, 1, c_zero, queue ));
        magma_free( drs.dval );
        drs.dval = dtt.dval + ldd;

        // set smoothing residual vector
        magma_zcopyvector( dr.num_rows, dr.dval, 1, drs.dval, 1, queue );
    }

    // G(n,s) = 0
    if ( s > 1 ) {
        ldd = magma_roundup( A.num_rows, 32 );
        CHECK( magma_zvinit( &dG, Magma_DEV, ldd, s, c_zero, queue ));
        dG.num_rows = A.num_rows;
    } else {
        CHECK( magma_zvinit( &dG, Magma_DEV, A.num_rows, s, c_zero, queue ));
    }

    // dGcol represents a single column of dG, array pointer is set inside loop
    CHECK( magma_zvinit( &dGcol, Magma_DEV, dG.num_rows, 1, c_zero, queue ));
    magma_free( dGcol.dval );

    // U(n,s) = 0
    if ( s > 1 ) {
        ldd = magma_roundup( A.num_cols, 32 );
        CHECK( magma_zvinit( &dU, Magma_DEV, ldd, s, c_zero, queue ));
        dU.num_rows = A.num_cols;
    } else {
        CHECK( magma_zvinit( &dU, Magma_DEV, A.num_cols, s, c_zero, queue ));
    }

    // M(s,s) = I
    CHECK( magma_zvinit( &dM, Magma_DEV, s, s, c_zero, queue ));
    CHECK( magma_zvinit( &hMdiag, Magma_CPU, s, 1, c_zero, queue ));
    magmablas_zlaset( MagmaFull, dM.num_rows, dM.num_cols, c_zero, c_one, dM.dval, dM.ld, queue );

    // f = 0
    CHECK( magma_zvinit( &df, Magma_DEV, dP.num_cols, 1, c_zero, queue ));

    // c = 0
    CHECK( magma_zvinit( &dc, Magma_DEV, dM.num_cols, 1, c_zero, queue ));

    // v = 0
    CHECK( magma_zvinit( &dv, Magma_DEV, dr.num_rows, 1, c_zero, queue ));

    // lu = 0
    CHECK( magma_zvinit( &dlu, Magma_DEV, dr.num_rows, 1, c_zero, queue ));

    //--------------START TIME---------------
    // chronometry
    tempo1 = magma_sync_wtime( queue );
    if ( solver_par->verbose > 0 ) {
        solver_par->timing[0] = 0.0;
    }

    om = MAGMA_Z_ONE;
    innerflag = 0;

    // start iteration
    do
    {
        solver_par->numiter++;
    
        // new RHS for small systems
        // f = P' r
        magma_zgemvmdot_shfl( dP.num_rows, dP.num_cols, dP.dval, dr.dval, d1, d2, df.dval, queue );

        // shadow space loop
        for ( k = 0; k < s; ++k ) {
            sk = s - k;
    
            // c(k:s) = M(k:s,k:s) \ f(k:s)
            magma_zcopyvector( sk, &df.dval[k], 1, &dc.dval[k], 1, queue );
            magma_ztrsv( MagmaLower, MagmaNoTrans, MagmaNonUnit, sk, &dM.dval[k*dM.ld+k], dM.ld, &dc.dval[k], 1, queue );

            // v = r - G(:,k:s) c(k:s)
            magma_zcopyvector( dr.num_rows, dr.dval, 1, dv.dval, 1, queue );
            magmablas_zgemv( MagmaNoTrans, dG.num_rows, sk, c_n_one, &dG.dval[k*dG.ld], dG.ld, &dc.dval[k], 1, c_one, dv.dval, 1, queue );

            // preconditioning operation 
            // v = L \ v;
            // v = U \ v;
            CHECK( magma_z_applyprecond_left( MagmaNoTrans, A, dv, &dlu, precond_par, queue )); 
            CHECK( magma_z_applyprecond_right( MagmaNoTrans, A, dlu, &dv, precond_par, queue )); 
            
            // U(:,k) = om * v + U(:,k:s) c(k:s)
            magmablas_zgemv( MagmaNoTrans, dU.num_rows, sk, c_one, &dU.dval[k*dU.ld], dU.ld, &dc.dval[k], 1, om, dv.dval, 1, queue );
            magma_zcopyvector( dU.num_rows, dv.dval, 1, &dU.dval[k*dU.ld], 1, queue );

            // G(:,k) = A U(:,k)
            dGcol.dval = dG.dval + k * dG.ld;
            CHECK( magma_z_spmv( c_one, A, dv, c_zero, dGcol, queue ));
            solver_par->spmv_count++;

            // bi-orthogonalize the new basis vectors
            for ( i = 0; i < k; ++i ) {
                // alpha = P(:,i)' G(:,k)
                halpha.val[i] = magma_zdotc( dP.num_rows, &dP.dval[i*dP.ld], 1, &dG.dval[k*dG.ld], 1, queue );

                // alpha = alpha / M(i,i)
                halpha.val[i] = halpha.val[i] / hMdiag.val[i];
                
                // G(:,k) = G(:,k) - alpha * G(:,i)
                magma_zaxpy( dG.num_rows, -halpha.val[i], &dG.dval[i*dG.ld], 1, &dG.dval[k*dG.ld], 1, queue );
            }

            // non-first s iteration
            if ( k > 0 ) {
                // U update outside of loop using GEMV
                // U(:,k) = U(:,k) - U(:,1:k) * alpha(1:k)
                magma_zsetvector( k, halpha.val, 1, dalpha.dval, 1, queue );
                magmablas_zgemv( MagmaNoTrans, dU.num_rows, k, c_n_one, dU.dval, dU.ld, dalpha.dval, 1, c_one, &dU.dval[k*dU.ld], 1, queue );
            }

            // new column of M = P'G, first k-1 entries are zero
            // M(k:s,k) = P(:,k:s)' G(:,k)
            magma_zgemvmdot_shfl( dP.num_rows, sk, &dP.dval[k*dP.ld], &dG.dval[k*dG.ld], d1, d2, &dM.dval[k*dM.ld+k], queue );
            magma_zgetvector( 1, &dM.dval[k*dM.ld+k], 1, &hMdiag.val[k], 1, queue );

            // check M(k,k) == 0
            if ( MAGMA_Z_EQUAL(hMdiag.val[k], MAGMA_Z_ZERO) ) {
                innerflag = 1;
                info = MAGMA_DIVERGENCE;
                break;
            }

            // beta = f(k) / M(k,k)
            magma_zgetvector( 1, &df.dval[k], 1, &fk, 1, queue );
            hbeta.val[k] = fk / hMdiag.val[k]; 

            // check for nan
            if ( magma_z_isnan( hbeta.val[k] ) || magma_z_isinf( hbeta.val[k] )) {
                innerflag = 1;
                info = MAGMA_DIVERGENCE;
                break;
            }

            // r = r - beta * G(:,k)
            magma_zaxpy( dr.num_rows, -hbeta.val[k], &dG.dval[k*dG.ld], 1, dr.dval, 1, queue );

            // smoothing disabled
            if ( smoothing <= 0 ) {
                // |r|
                nrmr = magma_dznrm2( dr.num_rows, dr.dval, 1, queue );

            // smoothing enabled
            } else {
                // x = x + beta * U(:,k)
                magma_zaxpy( x->num_rows, hbeta.val[k], &dU.dval[k*dU.ld], 1, x->dval, 1, queue );

                // smoothing operation
//---------------------------------------
                // t = rs - r
                magma_zidr_smoothing_1( drs.num_rows, drs.num_cols, drs.dval, dr.dval, dtt.dval, queue );

                // t't
                // t'rs
                CHECK( magma_zgemvmdot_shfl( dt.ld, 2, dtt.dval, dtt.dval, d1, d2, &dskp.dval[2], queue ));
                magma_zgetvector( 2, &dskp.dval[2], 1, &hskp.val[2], 1, queue );

                // gamma = (t' * rs) / (t' * t)
                gamma = hskp.val[3] / hskp.val[2];
                
                // rs = rs - gamma * (rs - r) 
                magma_zaxpy( drs.num_rows, -gamma, dtt.dval, 1, drs.dval, 1, queue );

                // xs = xs - gamma * (xs - x) 
                magma_zidr_smoothing_2( dxs.num_rows, dxs.num_cols, -gamma, x->dval, dxs.dval, queue );

                // |rs|
                nrmr = magma_dznrm2( drs.num_rows, drs.dval, 1, queue );       
//---------------------------------------
            }

            // store current timing and residual
            if ( solver_par->verbose > 0 ) {
                tempo2 = magma_sync_wtime( queue );
                if ( (solver_par->numiter) % solver_par->verbose == 0 ) {
                    solver_par->res_vec[(solver_par->numiter) / solver_par->verbose]
                            = (real_Double_t)nrmr;
                    solver_par->timing[(solver_par->numiter) / solver_par->verbose]
                            = (real_Double_t)tempo2 - tempo1;
                }
            }

            // check convergence or iteration limit
            if ( nrmr <= solver_par->atol ||
                nrmr/nrmb <= solver_par->rtol ) {
                s = k + 1; // for the x-update outside the loop
                innerflag = 2;
                info = MAGMA_SUCCESS;
                break;
            }
            
            // non-last s iteration
            if ( (k + 1) < s ) {
                // f(k+1:s) = f(k+1:s) - beta * M(k+1:s,k)
                magma_zaxpy( sk-1, -hbeta.val[k], &dM.dval[k*dM.ld+(k+1)], 1, &df.dval[k+1], 1, queue );
            }

        }

        // smoothing disabled
        if ( smoothing <= 0 && innerflag != 1 ) {
            // update solution approximation x
            // x = x + U(:,1:s) * beta(1:s)
            magma_zsetvector( s, hbeta.val, 1, dbeta.dval, 1, queue );
            magmablas_zgemv( MagmaNoTrans, dU.num_rows, s, c_one, dU.dval, dU.ld, dbeta.dval, 1, c_one, x->dval, 1, queue );
        }

        // check convergence or iteration limit or invalid result of inner loop
        if ( innerflag > 0 ) {
            break;
        }

        // v = r
        magma_zcopy( dr.num_rows, dr.dval, 1, dv.dval, 1, queue );

        // preconditioning operation 
        // v = L \ v;
        // v = U \ v;
        CHECK( magma_z_applyprecond_left( MagmaNoTrans, A, dv, &dlu, precond_par, queue )); 
        CHECK( magma_z_applyprecond_right( MagmaNoTrans, A, dlu, &dv, precond_par, queue )); 
            
        // t = A v
        CHECK( magma_z_spmv( c_one, A, dv, c_zero, dt, queue ));
        solver_par->spmv_count++;

        // computation of a new omega
//---------------------------------------
        // t't
        // t'r 
        CHECK( magma_zgemvmdot_shfl( dt.ld, 2, dt.dval, dt.dval, d1, d2, dskp.dval, queue ));
        magma_zgetvector( 2, dskp.dval, 1, hskp.val, 1, queue );

        // |t| 
        nrmt = magma_dsqrt( MAGMA_Z_REAL(hskp.val[0]) );

        // rho = abs((t' * r) / (|t| * |r|))
        rho = MAGMA_D_ABS( MAGMA_Z_REAL(hskp.val[1]) / (nrmt * nrmr) );

        // om = (t' * r) / (|t| * |t|)
        om = hskp.val[1] / hskp.val[0];
        if ( rho < angle ) {
            om = (om * angle) / rho;
        }
//---------------------------------------
        if ( MAGMA_Z_EQUAL(om, MAGMA_Z_ZERO) ) {
            info = MAGMA_DIVERGENCE;
            break;
        }

        // update approximation vector
        // x = x + om * v
        magma_zaxpy( x->num_rows, om, dv.dval, 1, x->dval, 1, queue );

        // update residual vector
        // r = r - om * t
        magma_zaxpy( dr.num_rows, -om, dt.dval, 1, dr.dval, 1, queue );

        // smoothing disabled
        if ( smoothing <= 0 ) {
            // residual norm
            nrmr = magma_dznrm2( dr.num_rows, dr.dval, 1, queue );

        // smoothing enabled
        } else {
            // smoothing operation
//---------------------------------------
            // t = rs - r
            magma_zidr_smoothing_1( drs.num_rows, drs.num_cols, drs.dval, dr.dval, dtt.dval, queue );

            // t't
            // t'rs
            CHECK( magma_zgemvmdot_shfl( dt.ld, 2, dtt.dval, dtt.dval, d1, d2, &dskp.dval[2], queue ));
            magma_zgetvector( 2, &dskp.dval[2], 1, &hskp.val[2], 1, queue );

            // gamma = (t' * rs) / (t' * t)
            gamma = hskp.val[3] / hskp.val[2];

            // rs = rs - gamma * (rs - r) 
            magma_zaxpy( drs.num_rows, -gamma, dtt.dval, 1, drs.dval, 1, queue );

            // xs = xs - gamma * (xs - x) 
            magma_zidr_smoothing_2( dxs.num_rows, dxs.num_cols, -gamma, x->dval, dxs.dval, queue );

            // |rs|
            nrmr = magma_dznrm2( drs.num_rows, drs.dval, 1, queue );           
//---------------------------------------
        }

        // store current timing and residual
        if ( solver_par->verbose > 0 ) {
            tempo2 = magma_sync_wtime( queue );
            if ( (solver_par->numiter) % solver_par->verbose == 0 ) {
                solver_par->res_vec[(solver_par->numiter) / solver_par->verbose]
                        = (real_Double_t)nrmr;
                solver_par->timing[(solver_par->numiter) / solver_par->verbose]
                        = (real_Double_t)tempo2 - tempo1;
            }
        }

        // check convergence
        if ( nrmr <= solver_par->atol ||
            nrmr/nrmb <= solver_par->rtol ) {
            info = MAGMA_SUCCESS;
            break;
        }
    }
    while ( solver_par->numiter + 1 <= solver_par->maxiter );

    // smoothing enabled
    if ( smoothing > 0 ) {
        // x = xs
        magma_zcopyvector( x->num_rows, dxs.dval, 1, x->dval, 1, queue );

        // r = rs
        magma_zcopyvector( dr.num_rows, drs.dval, 1, dr.dval, 1, queue );
    }

    // get last iteration timing
    tempo2 = magma_sync_wtime( queue );
    solver_par->runtime = (real_Double_t)tempo2 - tempo1;
//--------------STOP TIME----------------

    // get final stats
    solver_par->iter_res = nrmr;
    CHECK( magma_zresidualvec( A, b, *x, &dr, &residual, queue ));
    solver_par->final_res = residual;

    // set solver conclusion
    if ( info != MAGMA_SUCCESS && info != MAGMA_DIVERGENCE ) {
        if ( solver_par->init_res > solver_par->final_res ) {
            info = MAGMA_SLOW_CONVERGENCE;
        }
    }


cleanup:
    // free resources
    // smoothing enabled
    if ( smoothing > 0 ) {
        drs.dval = NULL;  // needed because its pointer is redirected to dtt
        magma_zmfree( &dxs, queue );
        magma_zmfree( &drs, queue ); 
        magma_zmfree( &dtt, queue );
    }
    dr.dval = NULL;       // needed because its pointer is redirected to dt
    dGcol.dval = NULL;    // needed because its pointer is redirected to dG
    magma_zmfree( &dr, queue );
    magma_zmfree( &dP, queue );
    magma_zmfree( &dP1, queue );
    magma_zmfree( &dG, queue );
    magma_zmfree( &dGcol, queue );
    magma_zmfree( &dU, queue );
    magma_zmfree( &dM, queue );
    magma_zmfree( &hMdiag, queue );
    magma_zmfree( &df, queue );
    magma_zmfree( &dt, queue );
    magma_zmfree( &dc, queue );
    magma_zmfree( &dv, queue );
    magma_zmfree( &dlu, queue );
    magma_zmfree( &dskp, queue );
    magma_zmfree( &dalpha, queue );
    magma_zmfree( &dbeta, queue );
    magma_zmfree( &hskp, queue );
    magma_zmfree( &halpha, queue );
    magma_zmfree( &hbeta, queue );
    magma_free( d1 );
    magma_free( d2 );

    solver_par->info = info;
    return info;
    /* magma_zpidr_merge */
}
Esempio n. 4
0
extern "C" magma_int_t
magma_ztrtri(char uplo, char diag, magma_int_t n,
              magmaDoubleComplex *A, magma_int_t lda, magma_int_t *info)
{
/*  -- MAGMA (version 1.4.0) --
       Univ. of Tennessee, Knoxville
       Univ. of California, Berkeley
       Univ. of Colorado, Denver
       August 2013

    Purpose
    =======
    ZTRTRI computes the inverse of a real upper or lower triangular
    matrix A.

    This is the Level 3 BLAS version of the algorithm.

    Arguments
    =========
    UPLO    (input) CHARACTER*1
            = 'U':  A is upper triangular;
            = 'L':  A is lower triangular.

    DIAG    (input) CHARACTER*1
            = 'N':  A is non-unit triangular;
            = 'U':  A is unit triangular.

    N       (input) INTEGER
            The order of the matrix A.  N >= 0.

    A       (input/output) COMPLEX_16 array, dimension (LDA,N)
            On entry, the triangular matrix A.  If UPLO = 'U', the
            leading N-by-N upper triangular part of the array A contains
            the upper triangular matrix, and the strictly lower
            triangular part of A is not referenced.  If UPLO = 'L', the
            leading N-by-N lower triangular part of the array A contains
            the lower triangular matrix, and the strictly upper
            triangular part of A is not referenced.  If DIAG = 'U', the
            diagonal elements of A are also not referenced and are
            assumed to be 1.
            On exit, the (triangular) inverse of the original matrix, in
            the same storage format.

    LDA     (input) INTEGER
            The leading dimension of the array A.  LDA >= max(1,N).

    INFO    (output) INTEGER
            = 0: successful exit
            < 0: if INFO = -i, the i-th argument had an illegal value
            > 0: if INFO = i, A(i,i) is exactly zero.  The triangular
                    matrix is singular and its inverse cannot be computed.

    ===================================================================== */

    #define  A(i, j) ( A + (i) + (j)*lda )
    #define dA(i, j) (dA + (i) + (j)*ldda)

    /* Local variables */
    char uplo_[2] = {uplo, 0};
    char diag_[2] = {diag, 0};
    magma_int_t     ldda, nb, nn, j, jb;
    magmaDoubleComplex c_zero     = MAGMA_Z_ZERO;
    magmaDoubleComplex c_one      = MAGMA_Z_ONE;
    magmaDoubleComplex c_neg_one  = MAGMA_Z_NEG_ONE;
    magmaDoubleComplex *dA;

    int upper  = lapackf77_lsame(uplo_, "U");
    int nounit = lapackf77_lsame(diag_, "N");

    *info = 0;

    if ((! upper) && (! lapackf77_lsame(uplo_, "L")))
        *info = -1;
    else if ((! nounit) && (! lapackf77_lsame(diag_, "U")))
        *info = -2;
    else if (n < 0)
        *info = -3;
    else if (lda < max(1,n))
        *info = -5;

    if (*info != 0) {
        magma_xerbla( __func__, -(*info) );
        return *info;
    }

    /* Quick return */
    if ( n == 0 )
        return *info;

    /* Check for singularity if non-unit */
    if (nounit) {
        for ( j=0; j<n; ++j ) {
            if ( MAGMA_Z_EQUAL( *A(j,j), c_zero )) {
                *info = j+1;  // Fortran index
                return *info;
            }
        }
    }

    /* Determine the block size for this environment */
    nb = magma_get_zpotrf_nb(n);

    ldda = ((n+31)/32)*32;
    if (MAGMA_SUCCESS != magma_zmalloc( &dA, (n)*ldda )) {
        *info = MAGMA_ERR_DEVICE_ALLOC;
        return *info;
    }

    magma_queue_t stream[2];
    magma_queue_create( &stream[0] );
    magma_queue_create( &stream[1] );

    if (nb <= 1 || nb >= n)
        lapackf77_ztrtri(uplo_, diag_, &n, A, &lda, info);
    else {
        if (upper) {
            /* Compute inverse of upper triangular matrix */
            for (j=0; j<n; j=j+nb) {
                jb = min(nb, (n-j));
                magma_zsetmatrix( jb, (n-j),
                                  A(j, j),  lda,
                                  dA(j, j), ldda );

                /* Compute rows 1:j-1 of current block column */
                magma_ztrmm( MagmaLeft, MagmaUpper,
                             MagmaNoTrans, MagmaNonUnit, j, jb,
                             c_one, dA(0,0), ldda, dA(0, j),ldda);

                magma_ztrsm( MagmaRight, MagmaUpper,
                             MagmaNoTrans, MagmaNonUnit, j, jb,
                             c_neg_one, dA(j,j), ldda, dA(0, j),ldda);

                magma_zgetmatrix_async( jb, jb,
                                        dA(j, j), ldda,
                                        A(j, j),  lda, stream[1] );

                magma_zgetmatrix_async( j, jb,
                                        dA(0, j), ldda,
                                        A(0, j),  lda, stream[0] );

                magma_queue_sync( stream[1] );

                /* Compute inverse of current diagonal block */
                lapackf77_ztrtri(MagmaUpperStr, diag_, &jb, A(j,j), &lda, info);

                magma_zsetmatrix( jb, jb,
                                  A(j, j),  lda,
                                  dA(j, j), ldda );
            }
        }
        else {
            /* Compute inverse of lower triangular matrix */
            nn=((n-1)/nb)*nb+1;

            for(j=nn-1; j>=0; j=j-nb) {
                jb=min(nb,(n-j));

                if((j+jb) < n) {
                    magma_zsetmatrix( (n-j), jb,
                                      A(j, j),  lda,
                                      dA(j, j), ldda );

                    /* Compute rows j+jb:n of current block column */
                    magma_ztrmm( MagmaLeft, MagmaLower,
                                 MagmaNoTrans, MagmaNonUnit, (n-j-jb), jb,
                                 c_one, dA(j+jb,j+jb), ldda, dA(j+jb, j), ldda );

                    magma_ztrsm( MagmaRight, MagmaLower,
                                 MagmaNoTrans, MagmaNonUnit, (n-j-jb), jb,
                                 c_neg_one, dA(j,j), ldda, dA(j+jb, j), ldda );

                    magma_zgetmatrix_async( n-j-jb, jb,
                                            dA(j+jb, j), ldda,
                                            A(j+jb, j),  lda, stream[1] );

                    magma_zgetmatrix_async( jb, jb,
                                            dA(j,j), ldda,
                                            A(j,j),  lda, stream[0] );

                    magma_queue_sync( stream[0] );
                }

                /* Compute inverse of current diagonal block */
                lapackf77_ztrtri(MagmaLowerStr, diag_, &jb, A(j,j), &lda, info);

                magma_zsetmatrix( jb, jb,
                                  A(j, j),  lda,
                                  dA(j, j), ldda );
            }
        }
    }

    magma_queue_destroy( stream[0] );
    magma_queue_destroy( stream[1] );
    magma_free( dA );

    return *info;
}