GEN gcdii(GEN a, GEN b) { long v, w; pari_sp av; GEN t; switch (absi_cmp(a,b)) { case 0: return absi(a); case -1: swap(a,b); } if (!signe(b)) return absi(a); /* here |a|>|b|>0. Try single precision first */ if (lgefint(a)==3) return igcduu((ulong)a[2], (ulong)b[2]); if (lgefint(b)==3) { ulong u = resiu(a,(ulong)b[2]); if (!u) return absi(b); return igcduu((ulong)b[2], u); } /* larger than gcd: "avma=av" gerepile (erasing t) is valid */ av = avma; (void)new_chunk(lgefint(b)+1); /* HACK */ t = remii(a,b); if (!signe(t)) { avma=av; return absi(b); } a = b; b = t; v = vali(a); a = shifti(a,-v); setabssign(a); w = vali(b); b = shifti(b,-w); setabssign(b); if (w < v) v = w; switch(absi_cmp(a,b)) { case 0: avma=av; a=shifti(a,v); return a; case -1: swap(a,b); } if (is_pm1(b)) { avma=av; return int2n(v); } { /* general case */ /*This serve two purposes: 1) mpn_gcd destroy its input and need an extra * limb 2) this allows us to use icopy instead of gerepile later. NOTE: we * must put u before d else the final icopy could fail. */ GEN res= cgeti(lgefint(a)+1); GEN ca = icopy_ef(a,lgefint(a)+1); GEN cb = icopy_ef(b,lgefint(b)+1); long l = mpn_gcd(LIMBS(res), LIMBS(ca), NLIMBS(ca), LIMBS(cb), NLIMBS(cb)); res[1] = evalsigne(1)|evallgefint(l+2); avma=av; return shifti(res,v); } }
static GEN nf_chk_factors(nfcmbf_t *T, GEN P, GEN M_L, GEN famod, GEN pk) { GEN nf = T->nf, bound = T->bound; GEN nfT = gel(nf,1); long i, r; GEN pol = P, list, piv, y; GEN C2ltpol, C = T->L->topowden, Tpk = T->L->Tpk; GEN lc = absi(leading_term(pol)), lt = is_pm1(lc)? NULL: lc; GEN Clt = mul_content(C, lt); GEN C2lt = mul_content(C,Clt); piv = special_pivot(M_L); if (!piv) return NULL; if (DEBUGLEVEL>3) fprintferr("special_pivot output:\n%Z\n",piv); r = lg(piv)-1; list = cgetg(r+1, t_COL); C2ltpol = C2lt? gmul(C2lt,pol): pol; for (i = 1;;) { pari_sp av = avma; if (DEBUGLEVEL) fprintferr("nf_LLL_cmbf: checking factor %ld (avma - bot = %lu)\n", i, avma - bot); y = chk_factors_get(lt, famod, gel(piv,i), Tpk, pk); if (DEBUGLEVEL>2) fprintferr("... mod p^k (avma - bot = %lu)\n", avma-bot); if (! (y = nf_pol_lift(y, bound, T)) ) return NULL; if (DEBUGLEVEL>2) fprintferr("... lifted (avma - bot = %lu)\n", avma-bot); y = gerepilecopy(av, y); /* y is the candidate factor */ pol = RgXQX_divrem(C2ltpol, y, nfT, ONLY_DIVIDES); if (!pol) return NULL; y = Q_primpart(y); gel(list,i) = QXQX_normalize(y, nfT); if (++i >= r) break; if (C2lt) pol = Q_primpart(pol); if (lt) lt = absi(leading_term(pol)); Clt = mul_content(C, lt); C2lt = mul_content(C,Clt); C2ltpol = C2lt? gmul(C2lt,pol): pol; } y = Q_primpart(pol); gel(list,i) = QXQX_normalize(y, nfT); return list; }
int effect(ImageData *img,ImageData *outimg,int som) { int x,y; int i; int val; int xx,yy; int rrx,ggx,bbx; int rry,ggy,bby; int rr,gg,bb; Pixel col; int sadr; int x1,y1,x2,y2; int area,sum; x1=0; y1=0; x2=img->width-1; y2=img->height-1; area=som*2+1; sum=0; for(yy=0;yy<area;yy++) { sadr=(yy+(5-som))*11+(5-som); for(xx=0;xx<area;xx++) { sum+=absi(fil_x[sadr]); sadr++; } } for(y=y1;y<=y2;y++) { for(x=x1;x<=x2;x++) { rrx=ggx=bbx=0; rry=ggy=bby=0; for(yy=0;yy<area;yy++) { sadr=(yy+(5-som))*11+(5-som); for(xx=0;xx<area;xx++) { val = getPixel(img,x+xx-1,y+yy-1,&col); εΎ— rrx+= (int)col.r*fil_x[sadr]; ggx+= (int)col.g*fil_x[sadr]; bbx+= (int)col.b*fil_x[sadr]; rry+= (int)col.r*fil_y[sadr]; ggy+= (int)col.g*fil_y[sadr]; bby+= (int)col.b*fil_y[sadr]; sadr++; } } rr=(int)(sqrt(rrx*rrx+rry*rry)/(double)sum); gg=(int)(sqrt(ggx*ggx+ggy*ggy)/(double)sum); bb=(int)(sqrt(bbx*bbx+bby*bby)/(double)sum); col.r = rr; col.g = gg; col.b = bb; setPixel(outimg,x,y,&col); } } return TRUE; }
static void subfields_poldata(GEN T, poldata *PD) { GEN nf,L,dis; T = shallowcopy(get_nfpol(T, &nf)); PD->pol = T; setvarn(T, 0); if (nf) { PD->den = Q_denom(gel(nf,7)); PD->roo = gel(nf,6); PD->dis = mulii(absi(gel(nf,3)), sqri(gel(nf,4))); } else { PD->den = initgaloisborne(T,NULL,ZX_get_prec(T), &L,NULL,&dis); PD->roo = L; PD->dis = absi(dis); } }
bool UCamRad::removeRadialErrorPixels(UPixel ps[], UPixel pd[], unsigned int height, unsigned int width, float pixSize) { // int result = true; UXYoffset oxy; // offset x and y UXYoffset * oxyh; // line with ofset values int decimalFactor = roundi(resultDecimalFactor * pixSize); int w, h, i; int rhx, rhy; double dhx, dhy; int ix, iy; // pixel offset in Intensity resolution int r1, r2, c1, c2; int i1, i2; // intensity (decimal part) from pix 1 and 2 UPixel * pss; // source pixel pointer intensity (Y) UPixel * pdd; // destination pixel pointer Intensity UPixel p1, p2, p3, p4, pt, pb, pr; // pixel values UPixel gray(128,128,128); bool outside, outsideByOne; // // head point in actual resolution dhx = par.getHx(); dhy = par.getHy(); rhx = int(dhx); rhy = int(dhx); // correct all lines for (h = 0; h < int(height); h++) { // get destination pdd = &pd[h * width]; // get line in offset table i = absi(int(pixSize * (double(h)- dhy))); // get pointer to first line of offsets oxyh = radialOffset[i]; for (w = 0; w < int(width); w++) { // get index to offset value on this line i = absi(int(pixSize * (double(w) - dhx))); // get offset for this pixel oxy = oxyh[i]; // corrext for right quadrant - matrix is for lower-right if (w < rhx) oxy.dx = -oxy.dx; if (h < rhy) oxy.dy = -oxy.dy; // if not exact right find 4 pixels to interpolate if ((oxy.dx != 0) or (oxy.dy != 0)) { // get top left pixel offset ix = oxy.dx / decimalFactor; if (oxy.dx < 0) ix--; iy = oxy.dy / decimalFactor; if (oxy.dy < 0) iy--; // limit to edge of image (reuse border pixels) r1 = h + iy; r2 = r1 + 1; c1 = w + ix; c2 = c1 + 1; outside = (r1 < 0) or (r2 >= int(height)) or (c1 < 0) or (c2 >= int(width)); if (outside) // may be outside by just one pixel outsideByOne = (((r2 == 0) or (r2 == int(height))) and (c2 > 0) and (c2 < int(width))) or (((c2 == 0) or (c2 == int(width))) and (r2 > 0) and (r2 < int(height))); else outsideByOne = false; // if (outside and not outsideByOne) // both outside - use gray *pdd = gray; else { // not (completely) outside // get pixels i = r1 * width + c1; pss = &ps[i]; p1 = pss[0]; p2 = pss[1]; p3 = pss[width]; p4 = pss[width + 1]; if (outsideByOne) { // just outside by one, so adjust index to inside if (r2 == 0) { // top row missing p1 = p3; p2 = p4; } if (r2 == int(height)) { // bottom row missing p3 = p1; p4 = p2; } if (c2 == 0) { // left column missing p1 = p2; p3 = p4; } if (c2 == int(width)) { // right column missing p2 = p1; p4 = p3; } } outside = false; } if (not outside) { // get index to top-left of pixels in question // get 4 pixels in question // get left and right share i2 = oxy.dx - ix * decimalFactor; // part of pixel in position (ix, iy) i1 = decimalFactor - i2; // part of (ix+1, iy+1) // average for top set of pixels pt.y = (unsigned char)((int(p1.y) * i1 + int(p2.y) * i2)/decimalFactor); pt.u = (unsigned char)((int(p1.u) * i1 + int(p2.u) * i2)/decimalFactor); pt.v = (unsigned char)((int(p1.v) * i1 + int(p2.v) * i2)/decimalFactor); // average for bottom set of pixels pb.y = (unsigned char)((int(p3.y) * i1 + int(p4.y) * i2)/decimalFactor); pb.u = (unsigned char)((int(p3.u) * i1 + int(p4.u) * i2)/decimalFactor); pb.v = (unsigned char)((int(p3.v) * i1 + int(p4.v) * i2)/decimalFactor); // get shares of top and bottom i2 = oxy.dy - iy * decimalFactor; // part of pixel in position (ix, iy) i1 = decimalFactor - i2; // part of (ix, iy+1) // find result pixel intensity pr.y = (unsigned char)((int(pt.y) * i1 + int(pb.y) * i2)/decimalFactor); pr.u = (unsigned char)((int(pt.u) * i1 + int(pb.u) * i2)/decimalFactor); pr.v = (unsigned char)((int(pt.v) * i1 + int(pb.v) * i2)/decimalFactor); // implement *pdd = pr; } } else { // no change, so set destination to source pss = &ps[h * width]; *pdd = pss[w]; } pdd++; } } return result; }
GEN bezout(GEN a, GEN b, GEN *pu, GEN *pv) { GEN t,u,u1,v,v1,d,d1,q,r; GEN *pt; pari_sp av, av1; long s, sa, sb; ulong g; ulong xu,xu1,xv,xv1; /* Lehmer stage recurrence matrix */ int lhmres; /* Lehmer stage return value */ s = abscmpii(a,b); if (s < 0) { t=b; b=a; a=t; pt=pu; pu=pv; pv=pt; } /* now |a| >= |b| */ sa = signe(a); sb = signe(b); if (!sb) { if (pv) *pv = gen_0; switch(sa) { case 0: if (pu) *pu = gen_0; return gen_0; case 1: if (pu) *pu = gen_1; return icopy(a); case -1: if (pu) *pu = gen_m1; return(negi(a)); } } if (s == 0) /* |a| == |b| != 0 */ { if (pu) *pu = gen_0; if (sb > 0) { if (pv) *pv = gen_1; return icopy(b); } else { if (pv) *pv = gen_m1; return(negi(b)); } } /* now |a| > |b| > 0 */ if (lgefint(a) == 3) /* single-word affair */ { g = xxgcduu(uel(a,2), uel(b,2), 0, &xu, &xu1, &xv, &xv1, &s); sa = s > 0 ? sa : -sa; sb = s > 0 ? -sb : sb; if (pu) { if (xu == 0) *pu = gen_0; /* can happen when b divides a */ else if (xu == 1) *pu = sa < 0 ? gen_m1 : gen_1; else if (xu == 2) *pu = sa < 0 ? gen_m2 : gen_2; else { *pu = cgeti(3); (*pu)[1] = evalsigne(sa)|evallgefint(3); (*pu)[2] = xu; } } if (pv) { if (xv == 1) *pv = sb < 0 ? gen_m1 : gen_1; else if (xv == 2) *pv = sb < 0 ? gen_m2 : gen_2; else { *pv = cgeti(3); (*pv)[1] = evalsigne(sb)|evallgefint(3); (*pv)[2] = xv; } } if (g == 1) return gen_1; else if (g == 2) return gen_2; else return utoipos(g); } /* general case */ av = avma; (void)new_chunk(lgefint(b) + (lgefint(a)<<1)); /* room for u,v,gcd */ /* if a is significantly larger than b, calling lgcdii() is not the best * way to start -- reduce a mod b first */ if (lgefint(a) > lgefint(b)) { d = absi(b), q = dvmdii(absi(a), d, &d1); if (!signe(d1)) /* a == qb */ { avma = av; if (pu) *pu = gen_0; if (pv) *pv = sb < 0 ? gen_m1 : gen_1; return (icopy(d)); } else { u = gen_0; u1 = v = gen_1; v1 = negi(q); } /* if this results in lgefint(d) == 3, will fall past main loop */ } else { d = absi(a); d1 = absi(b); u = v1 = gen_1; u1 = v = gen_0; } av1 = avma; /* main loop is almost identical to that of invmod() */ while (lgefint(d) > 3 && signe(d1)) { lhmres = lgcdii((ulong *)d, (ulong *)d1, &xu, &xu1, &xv, &xv1, ULONG_MAX); if (lhmres != 0) /* check progress */ { /* apply matrix */ if ((lhmres == 1) || (lhmres == -1)) { if (xv1 == 1) { r = subii(d,d1); d=d1; d1=r; a = subii(u,u1); u=u1; u1=a; a = subii(v,v1); v=v1; v1=a; } else { r = subii(d, mului(xv1,d1)); d=d1; d1=r; a = subii(u, mului(xv1,u1)); u=u1; u1=a; a = subii(v, mului(xv1,v1)); v=v1; v1=a; } } else { r = subii(muliu(d,xu), muliu(d1,xv)); d1 = subii(muliu(d,xu1), muliu(d1,xv1)); d = r; a = subii(muliu(u,xu), muliu(u1,xv)); u1 = subii(muliu(u,xu1), muliu(u1,xv1)); u = a; a = subii(muliu(v,xu), muliu(v1,xv)); v1 = subii(muliu(v,xu1), muliu(v1,xv1)); v = a; if (lhmres&1) { togglesign(d); togglesign(u); togglesign(v); } else { togglesign(d1); togglesign(u1); togglesign(v1); } } } if (lhmres <= 0 && signe(d1)) { q = dvmdii(d,d1,&r); a = subii(u,mulii(q,u1)); u=u1; u1=a; a = subii(v,mulii(q,v1)); v=v1; v1=a; d=d1; d1=r; } if (gc_needed(av,1)) { if(DEBUGMEM>1) pari_warn(warnmem,"bezout"); gerepileall(av1,6, &d,&d1,&u,&u1,&v,&v1); } } /* end while */ /* Postprocessing - final sprint */ if (signe(d1)) { /* Assertions: lgefint(d)==lgefint(d1)==3, and * gcd(d,d1) is nonzero and fits into one word */ g = xxgcduu(uel(d,2), uel(d1,2), 0, &xu, &xu1, &xv, &xv1, &s); u = subii(muliu(u,xu), muliu(u1, xv)); v = subii(muliu(v,xu), muliu(v1, xv)); if (s < 0) { sa = -sa; sb = -sb; } avma = av; if (pu) *pu = sa < 0 ? negi(u) : icopy(u); if (pv) *pv = sb < 0 ? negi(v) : icopy(v); if (g == 1) return gen_1; else if (g == 2) return gen_2; else return utoipos(g); } /* get here when the final sprint was skipped (d1 was zero already). * Now the matrix is final, and d contains the gcd. */ avma = av; if (pu) *pu = sa < 0 ? negi(u) : icopy(u); if (pv) *pv = sb < 0 ? negi(v) : icopy(v); return icopy(d); }
int effect(ImageData *img,ImageData *outimg,int th,int nn) { int val; int x,y; int xx,yy; int hh; int tot,count; int dr,dg,db; int endn; int c1,c2; int rr,gg,bb; Pixel col,ncol; Pixel ans; int bufR[400],bufG[400],bufB[400]; int ovx; int n2; int adr; int x1,y1,x2,y2; x1=0; y1=0; x2=img->width-1; y2=img->height-1; n2=nn*2+1; for(y=y1;y<=y2;y++) { x=x1; for(yy=(-nn);yy<=nn;yy++) { adr=(yy+nn)*BUF_MX; for(xx=(-nn);xx<nn;xx++) { val = getPixel(img,x+xx,y+yy,&ncol); bufR[adr]=ncol.r; bufG[adr]=ncol.g; bufB[adr]=ncol.b; adr++; } } ovx=n2-1; for(x=x1;x<=x2;x++) { xx=nn; for(yy=(-nn);yy<=nn;yy++) { adr=(yy+nn)*BUF_MX+ovx; val = getPixel(img,x+xx,y+yy,&ncol); bufR[adr]=ncol.r; bufG[adr]=ncol.g; bufB[adr]=ncol.b; adr++; } ovx=(ovx+1)%n2; rr=gg=bb=0; count=0; val = getPixel(img,x,y,&col); for(yy=0;yy<n2;yy++) { adr=yy*BUF_MX; for(xx=0;xx<n2;xx++) { dr=absi((int)(col.r) - bufR[adr]); dg=absi((int)(col.g) - bufG[adr]); db=absi((int)(col.b) - bufB[adr]); if(dr<th && dg<th && db<th) { rr+= bufR[adr]; gg+= bufG[adr]; bb+= bufB[adr]; count++; } adr++; } } if(count) { hh=rr/count; ans.r = hh; hh=gg/count; ans.g = hh; hh=bb/count; ans.b = hh; } else { ans=col; } setPixel(outimg,x,y,&ans); } } return TRUE; }
/* Naive recombination of modular factors: combine up to maxK modular * factors, degree <= klim and divisible by hint * * target = polynomial we want to factor * famod = array of modular factors. Product should be congruent to * target/lc(target) modulo p^a * For true factors: S1,S2 <= p^b, with b <= a and p^(b-a) < 2^31 */ static GEN nfcmbf(nfcmbf_t *T, GEN p, long a, long maxK, long klim) { GEN pol = T->pol, nf = T->nf, famod = T->fact, dn = T->dn; GEN bound = T->bound; GEN nfpol = gel(nf,1); long K = 1, cnt = 1, i,j,k, curdeg, lfamod = lg(famod)-1, dnf = degpol(nfpol); GEN res = cgetg(3, t_VEC); pari_sp av0 = avma; GEN pk = gpowgs(p,a), pks2 = shifti(pk,-1); GEN ind = cgetg(lfamod+1, t_VECSMALL); GEN degpol = cgetg(lfamod+1, t_VECSMALL); GEN degsofar = cgetg(lfamod+1, t_VECSMALL); GEN listmod = cgetg(lfamod+1, t_COL); GEN fa = cgetg(lfamod+1, t_COL); GEN lc = absi(leading_term(pol)), lt = is_pm1(lc)? NULL: lc; GEN C2ltpol, C = T->L->topowden, Tpk = T->L->Tpk; GEN Clt = mul_content(C, lt); GEN C2lt = mul_content(C,Clt); const double Bhigh = get_Bhigh(lfamod, dnf); trace_data _T1, _T2, *T1, *T2; pari_timer ti; TIMERstart(&ti); if (maxK < 0) maxK = lfamod-1; C2ltpol = C2lt? gmul(C2lt,pol): pol; { GEN q = ceil_safe(sqrtr(T->BS_2)); GEN t1,t2, ltdn, lt2dn; GEN trace1 = cgetg(lfamod+1, t_MAT); GEN trace2 = cgetg(lfamod+1, t_MAT); ltdn = mul_content(lt, dn); lt2dn= mul_content(ltdn, lt); for (i=1; i <= lfamod; i++) { pari_sp av = avma; GEN P = gel(famod,i); long d = degpol(P); degpol[i] = d; P += 2; t1 = gel(P,d-1);/* = - S_1 */ t2 = gsqr(t1); if (d > 1) t2 = gsub(t2, gmul2n(gel(P,d-2), 1)); /* t2 = S_2 Newton sum */ t2 = typ(t2)!=t_INT? FpX_rem(t2, Tpk, pk): modii(t2, pk); if (lt) { if (typ(t2)!=t_INT) { t1 = FpX_red(gmul(ltdn, t1), pk); t2 = FpX_red(gmul(lt2dn,t2), pk); } else { t1 = remii(mulii(ltdn, t1), pk); t2 = remii(mulii(lt2dn,t2), pk); } } gel(trace1,i) = gclone( nf_bestlift(t1, NULL, T->L) ); gel(trace2,i) = gclone( nf_bestlift(t2, NULL, T->L) ); avma = av; } T1 = init_trace(&_T1, trace1, T->L, q); T2 = init_trace(&_T2, trace2, T->L, q); for (i=1; i <= lfamod; i++) { gunclone(gel(trace1,i)); gunclone(gel(trace2,i)); } } degsofar[0] = 0; /* sentinel */ /* ind runs through strictly increasing sequences of length K, * 1 <= ind[i] <= lfamod */ nextK: if (K > maxK || 2*K > lfamod) goto END; if (DEBUGLEVEL > 3) fprintferr("\n### K = %d, %Z combinations\n", K,binomial(utoipos(lfamod), K)); setlg(ind, K+1); ind[1] = 1; i = 1; curdeg = degpol[ind[1]]; for(;;) { /* try all combinations of K factors */ for (j = i; j < K; j++) { degsofar[j] = curdeg; ind[j+1] = ind[j]+1; curdeg += degpol[ind[j+1]]; } if (curdeg <= klim && curdeg % T->hint == 0) /* trial divide */ { GEN t, y, q, list; pari_sp av; av = avma; /* d - 1 test */ if (T1) { t = get_trace(ind, T1); if (rtodbl(QuickNormL2(t,DEFAULTPREC)) > Bhigh) { if (DEBUGLEVEL>6) fprintferr("."); avma = av; goto NEXT; } } /* d - 2 test */ if (T2) { t = get_trace(ind, T2); if (rtodbl(QuickNormL2(t,DEFAULTPREC)) > Bhigh) { if (DEBUGLEVEL>3) fprintferr("|"); avma = av; goto NEXT; } } avma = av; y = lt; /* full computation */ for (i=1; i<=K; i++) { GEN q = gel(famod, ind[i]); if (y) q = gmul(y, q); y = FqX_centermod(q, Tpk, pk, pks2); } y = nf_pol_lift(y, bound, T); if (!y) { if (DEBUGLEVEL>3) fprintferr("@"); avma = av; goto NEXT; } /* try out the new combination: y is the candidate factor */ q = RgXQX_divrem(C2ltpol, y, nfpol, ONLY_DIVIDES); if (!q) { if (DEBUGLEVEL>3) fprintferr("*"); avma = av; goto NEXT; } /* found a factor */ list = cgetg(K+1, t_VEC); gel(listmod,cnt) = list; for (i=1; i<=K; i++) list[i] = famod[ind[i]]; y = Q_primpart(y); gel(fa,cnt++) = QXQX_normalize(y, nfpol); /* fix up pol */ pol = q; for (i=j=k=1; i <= lfamod; i++) { /* remove used factors */ if (j <= K && i == ind[j]) j++; else { famod[k] = famod[i]; update_trace(T1, k, i); update_trace(T2, k, i); degpol[k] = degpol[i]; k++; } } lfamod -= K; if (lfamod < 2*K) goto END; i = 1; curdeg = degpol[ind[1]]; if (C2lt) pol = Q_primpart(pol); if (lt) lt = absi(leading_term(pol)); Clt = mul_content(C, lt); C2lt = mul_content(C,Clt); C2ltpol = C2lt? gmul(C2lt,pol): pol; if (DEBUGLEVEL > 2) { fprintferr("\n"); msgTIMER(&ti, "to find factor %Z",y); fprintferr("remaining modular factor(s): %ld\n", lfamod); } continue; } NEXT: for (i = K+1;;) { if (--i == 0) { K++; goto nextK; } if (++ind[i] <= lfamod - K + i) { curdeg = degsofar[i-1] + degpol[ind[i]]; if (curdeg <= klim) break; } } } END: if (degpol(pol) > 0) { /* leftover factor */ if (signe(leading_term(pol)) < 0) pol = gneg_i(pol); if (C2lt && lfamod < 2*K) pol = QXQX_normalize(Q_primpart(pol), nfpol); setlg(famod, lfamod+1); gel(listmod,cnt) = shallowcopy(famod); gel(fa,cnt++) = pol; } if (DEBUGLEVEL>6) fprintferr("\n"); if (cnt == 2) { avma = av0; gel(res,1) = mkvec(T->pol); gel(res,2) = mkvec(T->fact); } else { setlg(listmod, cnt); setlg(fa, cnt); gel(res,1) = fa; gel(res,2) = listmod; res = gerepilecopy(av0, res); } return res; }
static long nf_pick_prime(long ct, GEN nf, GEN polbase, long fl, GEN *lt, GEN *Fa, GEN *pr, GEN *Tp) { GEN nfpol = gel(nf,1), dk, bad; long maxf, n = degpol(nfpol), dpol = degpol(polbase), nbf = 0; byteptr pt = diffptr; ulong pp = 0; *lt = leading_term(polbase); /* t_INT */ if (gcmp1(*lt)) *lt = NULL; dk = absi(gel(nf,3)); bad = mulii(dk,gel(nf,4)); if (*lt) bad = mulii(bad, *lt); /* FIXME: slow factorization of large polynomials over large Fq */ maxf = 1; if (ct > 1) { if (dpol > 100) /* tough */ { if (n >= 20) maxf = 4; } else { if (n >= 15) maxf = 4; } } for (ct = 5;;) { GEN aT, apr, ap, modpr, red; long anbf; pari_timer ti_pr; GEN list, r = NULL, fa = NULL; pari_sp av2 = avma; if (DEBUGLEVEL>3) TIMERstart(&ti_pr); for (;;) { NEXT_PRIME_VIADIFF_CHECK(pp, pt); if (! umodiu(bad,pp)) continue; ap = utoipos(pp); list = (GEN)FpX_factor(nfpol, ap)[1]; if (maxf == 1) { /* deg.1 factors are best */ r = gel(list,1); if (degpol(r) == 1) break; } else { /* otherwise, pick factor of largish degree */ long i, dr; for (i = lg(list)-1; i > 0; i--) { r = gel(list,i); dr = degpol(r); if (dr <= maxf) break; } if (i > 0) break; } avma = av2; } apr = primedec_apply_kummer(nf,r,1,ap); modpr = zk_to_ff_init(nf,&apr,&aT,&ap); red = modprX(polbase, nf, modpr); if (!aT) { /* degree 1 */ red = ZX_to_Flx(red, pp); if (!Flx_is_squarefree(red, pp)) { avma = av2; continue; } anbf = fl? Flx_nbroots(red, pp): Flx_nbfact(red, pp); } else { GEN q; if (!FqX_is_squarefree(red,aT,ap)) { avma = av2; continue; } q = gpowgs(ap, degpol(aT)); anbf = fl? FqX_split_deg1(&fa, red, q, aT, ap) : FqX_split_by_degree(&fa, red, q, aT, ap); } if (fl == 2 && anbf < dpol) return anbf; if (anbf <= 1) { if (!fl) return anbf; /* irreducible */ if (!anbf) return 0; /* no root */ } if (!nbf || anbf < nbf || (anbf == nbf && cmpii(gel(apr,4), gel(*pr,4)) > 0)) { nbf = anbf; *pr = apr; *Tp = aT; *Fa = fa; } else avma = av2; if (DEBUGLEVEL>3) fprintferr("%3ld %s at prime\n %Z\nTime: %ld\n", anbf, fl?"roots": "factors", apr, TIMER(&ti_pr)); if (--ct <= 0) return nbf; } }
static GEN nf_LLL_cmbf(nfcmbf_t *T, GEN p, long k, long rec) { nflift_t *L = T->L; GEN pk = L->pk, PRK = L->prk, PRKinv = L->iprk, GSmin = L->GSmin; GEN Tpk = L->Tpk; GEN famod = T->fact, nf = T->nf, ZC = T->ZC, Br = T->Br; GEN Pbase = T->polbase, P = T->pol, dn = T->dn; GEN nfT = gel(nf,1); GEN Btra; long dnf = degpol(nfT), dP = degpol(P); double BitPerFactor = 0.5; /* nb bits / modular factor */ long i, C, tmax, n0; GEN lP, Bnorm, Tra, T2, TT, CM_L, m, list, ZERO; double Bhigh; pari_sp av, av2, lim; long ti_LLL = 0, ti_CF = 0; pari_timer ti2, TI; lP = absi(leading_term(P)); if (is_pm1(lP)) lP = NULL; n0 = lg(famod) - 1; /* Lattice: (S PRK), small vector (vS vP). To find k bound for the image, * write S = S1 q + S0, P = P1 q + P0 * |S1 vS + P1 vP|^2 <= Bhigh for all (vS,vP) assoc. to true factors */ Btra = mulrr(ZC, mulsr(dP*dP, normlp(Br, 2, dnf))); Bhigh = get_Bhigh(n0, dnf); C = (long)ceil(sqrt(Bhigh/n0)) + 1; /* C^2 n0 ~ Bhigh */ Bnorm = dbltor( n0 * C * C + Bhigh ); ZERO = zeromat(n0, dnf); av = avma; lim = stack_lim(av, 1); TT = cgetg(n0+1, t_VEC); Tra = cgetg(n0+1, t_MAT); for (i=1; i<=n0; i++) TT[i] = 0; CM_L = gscalsmat(C, n0); /* tmax = current number of traces used (and computed so far) */ for(tmax = 0;; tmax++) { long a, b, bmin, bgood, delta, tnew = tmax + 1, r = lg(CM_L)-1; GEN oldCM_L, M_L, q, S1, P1, VV; int first = 1; /* bound for f . S_k(genuine factor) = ZC * bound for T_2(S_tnew) */ Btra = mulrr(ZC, mulsr(dP*dP, normlp(Br, 2*tnew, dnf))); bmin = logint(ceil_safe(sqrtr(Btra)), gen_2, NULL); if (DEBUGLEVEL>2) fprintferr("\nLLL_cmbf: %ld potential factors (tmax = %ld, bmin = %ld)\n", r, tmax, bmin); /* compute Newton sums (possibly relifting first) */ if (gcmp(GSmin, Btra) < 0) { nflift_t L1; GEN polred; bestlift_init(k<<1, nf, T->pr, Btra, &L1); polred = ZqX_normalize(Pbase, lP, &L1); k = L1.k; pk = L1.pk; PRK = L1.prk; PRKinv = L1.iprk; GSmin = L1.GSmin; Tpk = L1.Tpk; famod = hensel_lift_fact(polred, famod, Tpk, p, pk, k); for (i=1; i<=n0; i++) TT[i] = 0; } for (i=1; i<=n0; i++) { GEN h, lPpow = lP? gpowgs(lP, tnew): NULL; GEN z = polsym_gen(gel(famod,i), gel(TT,i), tnew, Tpk, pk); gel(TT,i) = z; h = gel(z,tnew+1); /* make Newton sums integral */ lPpow = mul_content(lPpow, dn); if (lPpow) h = FpX_red(gmul(h,lPpow), pk); gel(Tra,i) = nf_bestlift(h, NULL, L); /* S_tnew(famod) */ } /* compute truncation parameter */ if (DEBUGLEVEL>2) { TIMERstart(&ti2); TIMERstart(&TI); } oldCM_L = CM_L; av2 = avma; b = delta = 0; /* -Wall */ AGAIN: M_L = Q_div_to_int(CM_L, utoipos(C)); VV = get_V(Tra, M_L, PRK, PRKinv, pk, &a); if (first) { /* initialize lattice, using few p-adic digits for traces */ bgood = (long)(a - max(32, BitPerFactor * r)); b = max(bmin, bgood); delta = a - b; } else { /* add more p-adic digits and continue reduction */ if (a < b) b = a; b = max(b-delta, bmin); if (b - delta/2 < bmin) b = bmin; /* near there. Go all the way */ } /* restart with truncated entries */ q = int2n(b); P1 = gdivround(PRK, q); S1 = gdivround(Tra, q); T2 = gsub(gmul(S1, M_L), gmul(P1, VV)); m = vconcat( CM_L, T2 ); if (first) { first = 0; m = shallowconcat( m, vconcat(ZERO, P1) ); /* [ C M_L 0 ] * m = [ ] square matrix * [ T2' PRK ] T2' = Tra * M_L truncated */ } CM_L = LLL_check_progress(Bnorm, n0, m, b == bmin, /*dbg:*/ &ti_LLL); if (DEBUGLEVEL>2) fprintferr("LLL_cmbf: (a,b) =%4ld,%4ld; r =%3ld -->%3ld, time = %ld\n", a,b, lg(m)-1, CM_L? lg(CM_L)-1: 1, TIMER(&TI)); if (!CM_L) { list = mkcol(QXQX_normalize(P,nfT)); break; } if (b > bmin) { CM_L = gerepilecopy(av2, CM_L); goto AGAIN; } if (DEBUGLEVEL>2) msgTIMER(&ti2, "for this trace"); i = lg(CM_L) - 1; if (i == r && gequal(CM_L, oldCM_L)) { CM_L = oldCM_L; avma = av2; continue; } if (i <= r && i*rec < n0) { pari_timer ti; if (DEBUGLEVEL>2) TIMERstart(&ti); list = nf_chk_factors(T, P, Q_div_to_int(CM_L,utoipos(C)), famod, pk); if (DEBUGLEVEL>2) ti_CF += TIMER(&ti); if (list) break; CM_L = gerepilecopy(av2, CM_L); } if (low_stack(lim, stack_lim(av,1))) { if(DEBUGMEM>1) pari_warn(warnmem,"nf_LLL_cmbf"); gerepileall(av, Tpk? 9: 8, &CM_L,&TT,&Tra,&famod,&pk,&GSmin,&PRK,&PRKinv,&Tpk); } } if (DEBUGLEVEL>2) fprintferr("* Time LLL: %ld\n* Time Check Factor: %ld\n",ti_LLL,ti_CF); return list; }
int invmod(GEN a, GEN b, GEN *res) #endif { GEN v,v1,d,d1,q,r; pari_sp av, av1, lim; long s; ulong g; ulong xu,xu1,xv,xv1; /* Lehmer stage recurrence matrix */ int lhmres; /* Lehmer stage return value */ if (typ(a) != t_INT || typ(b) != t_INT) pari_err(arither1); if (!signe(b)) { *res=absi(a); return 0; } av = avma; if (lgefint(b) == 3) /* single-word affair */ { ulong d1 = umodiu(a, (ulong)(b[2])); if (d1 == 0) { if (b[2] == 1L) { *res = gen_0; return 1; } else { *res = absi(b); return 0; } } g = xgcduu((ulong)(b[2]), d1, 1, &xv, &xv1, &s); #ifdef DEBUG_LEHMER fprintferr(" <- %lu,%lu\n", (ulong)(b[2]), (ulong)(d1[2])); fprintferr(" -> %lu,%ld,%lu; %lx\n", g,s,xv1,avma); #endif avma = av; if (g != 1UL) { *res = utoipos(g); return 0; } xv = xv1 % (ulong)(b[2]); if (s < 0) xv = ((ulong)(b[2])) - xv; *res = utoipos(xv); return 1; } (void)new_chunk(lgefint(b)); d = absi(b); d1 = modii(a,d); v=gen_0; v1=gen_1; /* general case */ #ifdef DEBUG_LEHMER fprintferr("INVERT: -------------------------\n"); output(d1); #endif av1 = avma; lim = stack_lim(av,1); while (lgefint(d) > 3 && signe(d1)) { #ifdef DEBUG_LEHMER fprintferr("Calling Lehmer:\n"); #endif lhmres = lgcdii((ulong*)d, (ulong*)d1, &xu, &xu1, &xv, &xv1, MAXULONG); if (lhmres != 0) /* check progress */ { /* apply matrix */ #ifdef DEBUG_LEHMER fprintferr("Lehmer returned %d [%lu,%lu;%lu,%lu].\n", lhmres, xu, xu1, xv, xv1); #endif if ((lhmres == 1) || (lhmres == -1)) { if (xv1 == 1) { r = subii(d,d1); d=d1; d1=r; a = subii(v,v1); v=v1; v1=a; } else { r = subii(d, mului(xv1,d1)); d=d1; d1=r; a = subii(v, mului(xv1,v1)); v=v1; v1=a; } } else { r = subii(muliu(d,xu), muliu(d1,xv)); a = subii(muliu(v,xu), muliu(v1,xv)); d1 = subii(muliu(d,xu1), muliu(d1,xv1)); d = r; v1 = subii(muliu(v,xu1), muliu(v1,xv1)); v = a; if (lhmres&1) { setsigne(d,-signe(d)); setsigne(v,-signe(v)); } else { if (signe(d1)) { setsigne(d1,-signe(d1)); } setsigne(v1,-signe(v1)); } } } #ifdef DEBUG_LEHMER else fprintferr("Lehmer returned 0.\n"); output(d); output(d1); output(v); output(v1); sleep(1); #endif if (lhmres <= 0 && signe(d1)) { q = dvmdii(d,d1,&r); #ifdef DEBUG_LEHMER fprintferr("Full division:\n"); printf(" q = "); output(q); sleep (1); #endif a = subii(v,mulii(q,v1)); v=v1; v1=a; d=d1; d1=r; } if (low_stack(lim, stack_lim(av,1))) { GEN *gptr[4]; gptr[0]=&d; gptr[1]=&d1; gptr[2]=&v; gptr[3]=&v1; if(DEBUGMEM>1) pari_warn(warnmem,"invmod"); gerepilemany(av1,gptr,4); } } /* end while */ /* Postprocessing - final sprint */ if (signe(d1)) { /* Assertions: lgefint(d)==lgefint(d1)==3, and * gcd(d,d1) is nonzero and fits into one word */ g = xxgcduu((ulong)d[2], (ulong)d1[2], 1, &xu, &xu1, &xv, &xv1, &s); #ifdef DEBUG_LEHMER output(d);output(d1);output(v);output(v1); fprintferr(" <- %lu,%lu\n", (ulong)d[2], (ulong)d1[2]); fprintferr(" -> %lu,%ld,%lu; %lx\n", g,s,xv1,avma); #endif if (g != 1UL) { avma = av; *res = utoipos(g); return 0; } /* (From the xgcduu() blurb:) * For finishing the multiword modinv, we now have to multiply the * returned matrix (with properly adjusted signs) onto the values * v' and v1' previously obtained from the multiword division steps. * Actually, it is sufficient to take the scalar product of [v',v1'] * with [u1,-v1], and change the sign if s==1. */ v = subii(muliu(v,xu1),muliu(v1,xv1)); if (s > 0) setsigne(v,-signe(v)); avma = av; *res = modii(v,b); #ifdef DEBUG_LEHMER output(*res); fprintfderr("============================Done.\n"); sleep(1); #endif return 1; } /* get here when the final sprint was skipped (d1 was zero already) */ avma = av; if (!equalii(d,gen_1)) { *res = icopy(d); return 0; } *res = modii(v,b); #ifdef DEBUG_LEHMER output(*res); fprintferr("============================Done.\n"); sleep(1); #endif return 1; }