void libblis_test_amaxv_check ( test_params_t* params, obj_t* x, obj_t* index, double* resid ) { obj_t index_test; obj_t chi_i; obj_t chi_i_test; dim_t i; dim_t i_test; double i_d, junk; double i_d_test; // // Pre-conditions: // - x is randomized. // // Under these conditions, we assume that the implementation for // // index := amaxv( x ) // // is functioning correctly if // // x[ index ] = max( x ) // // where max() is implemented via the bli_?amaxv_test() function. // // The following two calls have already been made by the caller. That // is, the index object has already been created and the library's // amaxv implementation has already been tested. //bli_obj_scalar_init_detached( BLIS_INT, &index ); //bli_amaxv( x, &index ); bli_getsc( index, &i_d, &junk ); i = i_d; bli_acquire_vi( i, x, &chi_i ); bli_obj_scalar_init_detached( BLIS_INT, &index_test ); bli_amaxv_test( x, &index_test ); bli_getsc( &index_test, &i_d_test, &junk ); i_test = i_d_test; bli_acquire_vi( i_test, x, &chi_i_test ); // Verify that the values referenced by index and index_test are equal. if ( bli_obj_equals( &chi_i, &chi_i_test ) ) *resid = 0.0; else *resid = 1.0; }
void libblis_test_addv_check( obj_t* alpha, obj_t* beta, obj_t* x, obj_t* y, double* resid ) { num_t dt = bli_obj_datatype( *x ); num_t dt_real = bli_obj_datatype_proj_to_real( *x ); dim_t m = bli_obj_vector_dim( *x ); conj_t conjx = bli_obj_conj_status( *x ); obj_t aplusb; obj_t alpha_conj; obj_t norm_r, m_r, temp_r; double junk; // // Pre-conditions: // - x is set to alpha. // - y_orig is set to beta. // Note: // - alpha and beta should have non-zero imaginary components in the // complex cases in order to more fully exercise the implementation. // // Under these conditions, we assume that the implementation for // // y := y_orig + conjx(x) // // is functioning correctly if // // fnormv(y) - sqrt( absqsc( beta + conjx(alpha) ) * m ) // // is negligible. // bli_obj_scalar_init_detached( dt, &aplusb ); bli_obj_scalar_init_detached( dt_real, &temp_r ); bli_obj_scalar_init_detached( dt_real, &norm_r ); bli_obj_scalar_init_detached( dt_real, &m_r ); bli_obj_scalar_init_detached_copy_of( dt, conjx, alpha, &alpha_conj ); bli_fnormv( y, &norm_r ); bli_copysc( beta, &aplusb ); bli_addsc( &alpha_conj, &aplusb ); bli_setsc( ( double )m, 0.0, &m_r ); bli_absqsc( &aplusb, &temp_r ); bli_mulsc( &m_r, &temp_r ); bli_sqrtsc( &temp_r, &temp_r ); bli_subsc( &temp_r, &norm_r ); bli_getsc( &norm_r, resid, &junk ); }
void libblis_test_hemv_check( obj_t* alpha, obj_t* a, obj_t* x, obj_t* beta, obj_t* y, obj_t* y_orig, double* resid ) { num_t dt = bli_obj_datatype( *y ); num_t dt_real = bli_obj_datatype_proj_to_real( *y ); dim_t m = bli_obj_vector_dim( *y ); obj_t v; obj_t norm; double junk; // // Pre-conditions: // - a is randomized and Hermitian. // - x is randomized. // - y_orig is randomized. // Note: // - alpha and beta should have non-zero imaginary components in the // complex cases in order to more fully exercise the implementation. // // Under these conditions, we assume that the implementation for // // y := beta * y_orig + alpha * conja(A) * conjx(x) // // is functioning correctly if // // normf( y - v ) // // is negligible, where // // v = beta * y_orig + alpha * conja(A_dense) * x // bli_obj_scalar_init_detached( dt_real, &norm ); bli_obj_create( dt, m, 1, 0, 0, &v ); bli_copyv( y_orig, &v ); bli_mkherm( a ); bli_obj_set_struc( BLIS_GENERAL, *a ); bli_obj_set_uplo( BLIS_DENSE, *a ); bli_gemv( alpha, a, x, beta, &v ); bli_subv( &v, y ); bli_normfv( y, &norm ); bli_getsc( &norm, resid, &junk ); bli_obj_free( &v ); }
void libblis_test_xpbym_check ( test_params_t* params, obj_t* x, obj_t* beta, obj_t* y, obj_t* y_orig, double* resid ) { num_t dt = bli_obj_dt( y ); num_t dt_real = bli_obj_dt_proj_to_real( y ); dim_t m = bli_obj_length( y ); dim_t n = bli_obj_width( y ); obj_t x_temp, y_temp; obj_t norm; double junk; // // Pre-conditions: // - x is randomized. // - y_orig is randomized. // Note: // - alpha should have a non-zero imaginary component in the complex // cases in order to more fully exercise the implementation. // // Under these conditions, we assume that the implementation for // // y := beta * y_orig + conjx(x) // // is functioning correctly if // // normf( y - ( beta * y_orig + conjx(x) ) ) // // is negligible. // bli_obj_scalar_init_detached( dt_real, &norm ); bli_obj_create( dt, m, n, 0, 0, &x_temp ); bli_obj_create( dt, m, n, 0, 0, &y_temp ); bli_copym( x, &x_temp ); bli_copym( y_orig, &y_temp ); bli_scalm( beta, &y_temp ); bli_addm( &x_temp, &y_temp ); bli_subm( &y_temp, y ); bli_normfm( y, &norm ); bli_getsc( &norm, resid, &junk ); bli_obj_free( &x_temp ); bli_obj_free( &y_temp ); }
void libblis_test_scalv_check ( test_params_t* params, obj_t* beta, obj_t* y, obj_t* y_orig, double* resid ) { num_t dt = bli_obj_dt( y ); num_t dt_real = bli_obj_dt_proj_to_real( y ); dim_t m = bli_obj_vector_dim( y ); obj_t norm_y_r; obj_t nbeta; obj_t y2; double junk; // // Pre-conditions: // - y_orig is randomized. // Note: // - beta should have a non-zero imaginary component in the complex // cases in order to more fully exercise the implementation. // // Under these conditions, we assume that the implementation for // // y := conjbeta(beta) * y_orig // // is functioning correctly if // // normf( y + -conjbeta(beta) * y_orig ) // // is negligible. // bli_obj_create( dt, m, 1, 0, 0, &y2 ); bli_copyv( y_orig, &y2 ); bli_obj_scalar_init_detached( dt, &nbeta ); bli_obj_scalar_init_detached( dt_real, &norm_y_r ); bli_copysc( beta, &nbeta ); bli_mulsc( &BLIS_MINUS_ONE, &nbeta ); bli_scalv( &nbeta, &y2 ); bli_addv( &y2, y ); bli_normfv( y, &norm_y_r ); bli_getsc( &norm_y_r, resid, &junk ); bli_obj_free( &y2 ); }
void libblis_test_axpbyv_check( obj_t* alpha, obj_t* x, obj_t* beta, obj_t* y, obj_t* y_orig, double* resid ) { num_t dt = bli_obj_datatype( *y ); num_t dt_real = bli_obj_datatype_proj_to_real( *y ); dim_t m = bli_obj_vector_dim( *y ); obj_t x_temp, y_temp; obj_t norm; double junk; // // Pre-conditions: // - x is randomized. // - y_orig is randomized. // Note: // - alpha should have a non-zero imaginary component in the complex // cases in order to more fully exercise the implementation. // // Under these conditions, we assume that the implementation for // // y := beta * y_orig + alpha * conjx(x) // // is functioning correctly if // // normf( y - ( beta * y_orig + alpha * conjx(x) ) ) // // is negligible. // bli_obj_scalar_init_detached( dt_real, &norm ); bli_obj_create( dt, m, 1, 0, 0, &x_temp ); bli_obj_create( dt, m, 1, 0, 0, &y_temp ); bli_copyv( x, &x_temp ); bli_copyv( y_orig, &y_temp ); bli_scalv( alpha, &x_temp ); bli_scalv( beta, &y_temp ); bli_addv( &x_temp, &y_temp ); bli_subv( &y_temp, y ); bli_normfv( y, &norm ); bli_getsc( &norm, resid, &junk ); bli_obj_free( &x_temp ); bli_obj_free( &y_temp ); }
err_t bli_check_real_valued_object( obj_t* a ) { err_t e_val = BLIS_SUCCESS; double a_real; double a_imag; bli_getsc( a, &a_real, &a_imag ); if ( a_imag != 0.0 ) e_val = BLIS_EXPECTED_REAL_VALUED_OBJECT; return e_val; }
void libblis_test_normfm_check ( test_params_t* params, obj_t* beta, obj_t* x, obj_t* norm, double* resid ) { num_t dt_real = bli_obj_datatype_proj_to_real( *x ); dim_t m = bli_obj_length( *x ); dim_t n = bli_obj_width( *x ); obj_t m_r, n_r, temp_r; double junk; // // Pre-conditions: // - x is set to beta. // Note: // - beta should have a non-zero imaginary component in the complex // cases in order to more fully exercise the implementation. // // Under these conditions, we assume that the implementation for // // norm := normf( x ) // // is functioning correctly if // // norm = sqrt( absqsc( beta ) * m * n ) // // where m and n are the dimensions of x. // bli_obj_scalar_init_detached( dt_real, &temp_r ); bli_obj_scalar_init_detached( dt_real, &m_r ); bli_obj_scalar_init_detached( dt_real, &n_r ); bli_setsc( ( double )m, 0.0, &m_r ); bli_setsc( ( double )n, 0.0, &n_r ); bli_absqsc( beta, &temp_r ); bli_mulsc( &m_r, &temp_r ); bli_mulsc( &n_r, &temp_r ); bli_sqrtsc( &temp_r, &temp_r ); bli_subsc( &temp_r, norm ); bli_getsc( norm, resid, &junk ); }
void libblis_test_fnormv_check( obj_t* beta, obj_t* x, obj_t* norm, double* resid ) { num_t dt_real = bli_obj_datatype_proj_to_real( *x ); dim_t m = bli_obj_vector_dim( *x ); obj_t m_r, temp_r; double junk; // // Pre-conditions: // - x is set to beta. // Note: // - beta should have a non-zero imaginary component in the complex // cases in order to more fully exercise the implementation. // // Under these conditions, we assume that the implementation for // // norm := fnorm( x ) // // is functioning correctly if // // norm = sqrt( absqsc( beta ) * m ) // // where m is the length of x. // bli_obj_init_scalar( dt_real, &temp_r ); bli_obj_init_scalar( dt_real, &m_r ); bli_setsc( ( double )m, 0.0, &m_r ); bli_absqsc( beta, &temp_r ); bli_mulsc( &m_r, &temp_r ); bli_sqrtsc( &temp_r, &temp_r ); bli_subsc( &temp_r, norm ); bli_getsc( norm, resid, &junk ); }
void libblis_test_copym_check ( test_params_t* params, obj_t* x, obj_t* y, double* resid ) { num_t dt_real = bli_obj_dt_proj_to_real( x ); obj_t norm_y_r; double junk; // // Pre-conditions: // - x is randomized. // // Under these conditions, we assume that the implementation for // // y := conjx(x) // // is functioning correctly if // // normfm( y - conjx(x) ) // // is negligible. // bli_obj_scalar_init_detached( dt_real, &norm_y_r ); bli_subm( x, y ); bli_normfm( y, &norm_y_r ); bli_getsc( &norm_y_r, resid, &junk ); }
void libblis_test_syr2_check( obj_t* alpha, obj_t* x, obj_t* y, obj_t* a, obj_t* a_orig, double* resid ) { num_t dt = bli_obj_datatype( *a ); num_t dt_real = bli_obj_datatype_proj_to_real( *a ); dim_t m_a = bli_obj_length( *a ); obj_t xt, yt; obj_t t, v, w1, w2; obj_t tau, rho, norm; double junk; // // Pre-conditions: // - x is randomized. // - y is randomized. // - a is randomized and symmetric. // Note: // - alpha should have a non-zero imaginary component in the // complex cases in order to more fully exercise the implementation. // // Under these conditions, we assume that the implementation for // // A := A_orig + alpha * conjx(x) * conjy(y)^T + alpha * conjy(y) * conjx(x)^T // // is functioning correctly if // // normf( v - w ) // // is negligible, where // // v = A * t // w = ( A_orig + alpha * conjx(x) * conjy(y)^T + alpha * conjy(y) * conjx(x)^T ) * t // = A_orig * t + alpha * conjx(x) * conjy(y)^T * t + alpha * conjy(y) * conjx(x)^T * t // = A_orig * t + alpha * conjx(x) * conjy(y)^T * t + alpha * conjy(y) * rho // = A_orig * t + alpha * conjx(x) * conjy(y)^T * t + w1 // = A_orig * t + alpha * conjx(x) * rho + w1 // = A_orig * t + w2 + w1 // bli_mksymm( a ); bli_mksymm( a_orig ); bli_obj_set_struc( BLIS_GENERAL, *a ); bli_obj_set_struc( BLIS_GENERAL, *a_orig ); bli_obj_set_uplo( BLIS_DENSE, *a ); bli_obj_set_uplo( BLIS_DENSE, *a_orig ); bli_obj_scalar_init_detached( dt, &tau ); bli_obj_scalar_init_detached( dt, &rho ); bli_obj_scalar_init_detached( dt_real, &norm ); bli_obj_create( dt, m_a, 1, 0, 0, &t ); bli_obj_create( dt, m_a, 1, 0, 0, &v ); bli_obj_create( dt, m_a, 1, 0, 0, &w1 ); bli_obj_create( dt, m_a, 1, 0, 0, &w2 ); bli_obj_alias_to( *x, xt ); bli_obj_alias_to( *y, yt ); bli_setsc( 1.0/( double )m_a, -1.0/( double )m_a, &tau ); bli_setv( &tau, &t ); bli_gemv( &BLIS_ONE, a, &t, &BLIS_ZERO, &v ); bli_dotv( &xt, &t, &rho ); bli_mulsc( alpha, &rho ); bli_scal2v( &rho, y, &w1 ); bli_dotv( &yt, &t, &rho ); bli_mulsc( alpha, &rho ); bli_scal2v( &rho, x, &w2 ); bli_addv( &w2, &w1 ); bli_gemv( &BLIS_ONE, a_orig, &t, &BLIS_ONE, &w1 ); bli_subv( &w1, &v ); bli_normfv( &v, &norm ); bli_getsc( &norm, resid, &junk ); bli_obj_free( &t ); bli_obj_free( &v ); bli_obj_free( &w1 ); bli_obj_free( &w2 ); }
void libblis_test_gemmtrsm_ukr_check( side_t side, obj_t* alpha, obj_t* a1x, obj_t* a11, obj_t* bx1, obj_t* b11, obj_t* c11, obj_t* c11_orig, double* resid ) { num_t dt = bli_obj_datatype( *b11 ); num_t dt_real = bli_obj_datatype_proj_to_real( *b11 ); dim_t m = bli_obj_length( *b11 ); dim_t n = bli_obj_width( *b11 ); dim_t k = bli_obj_width( *a1x ); obj_t kappa, norm; obj_t t, v, w, z; double junk; // // Pre-conditions: // - a1x, a11, bx1, c11_orig are randomized; a11 is triangular. // - contents of b11 == contents of c11. // - side == BLIS_LEFT. // // Under these conditions, we assume that the implementation for // // B := inv(A11) * ( alpha * B11 - A1x * Bx1 ) (side = left) // // is functioning correctly if // // fnorm( v - z ) // // is negligible, where // // v = B11 * t // // z = ( inv(A11) * ( alpha * B11_orig - A1x * Bx1 ) ) * t // = inv(A11) * ( alpha * B11_orig * t - A1x * Bx1 * t ) // = inv(A11) * ( alpha * B11_orig * t - A1x * w ) // bli_obj_scalar_init_detached( dt, &kappa ); bli_obj_scalar_init_detached( dt_real, &norm ); if ( bli_is_left( side ) ) { bli_obj_create( dt, n, 1, 0, 0, &t ); bli_obj_create( dt, m, 1, 0, 0, &v ); bli_obj_create( dt, k, 1, 0, 0, &w ); bli_obj_create( dt, m, 1, 0, 0, &z ); } else // else if ( bli_is_left( side ) ) { // BLIS does not currently support right-side micro-kernels. bli_check_error_code( BLIS_NOT_YET_IMPLEMENTED ); } bli_randv( &t ); bli_setsc( 1.0/( double )n, 0.0, &kappa ); bli_scalv( &kappa, &t ); bli_gemv( &BLIS_ONE, b11, &t, &BLIS_ZERO, &v ); // Restore the diagonal of a11 to its original, un-inverted state // (needed for trsv). bli_invertd( a11 ); if ( bli_is_left( side ) ) { bli_gemv( &BLIS_ONE, bx1, &t, &BLIS_ZERO, &w ); bli_gemv( alpha, c11_orig, &t, &BLIS_ZERO, &z ); bli_gemv( &BLIS_MINUS_ONE, a1x, &w, &BLIS_ONE, &z ); bli_trsv( &BLIS_ONE, a11, &z ); } else // else if ( bli_is_left( side ) ) { // BLIS does not currently support right-side micro-kernels. bli_check_error_code( BLIS_NOT_YET_IMPLEMENTED ); } bli_subv( &z, &v ); bli_fnormv( &v, &norm ); bli_getsc( &norm, resid, &junk ); bli_obj_free( &t ); bli_obj_free( &v ); bli_obj_free( &w ); bli_obj_free( &z ); }
void libblis_test_dotaxpyv_check( obj_t* alpha, obj_t* xt, obj_t* x, obj_t* y, obj_t* rho, obj_t* z, obj_t* z_orig, double* resid ) { num_t dt = bli_obj_datatype( *z ); num_t dt_real = bli_obj_datatype_proj_to_real( *z ); dim_t m = bli_obj_vector_dim( *z ); obj_t rho_temp; obj_t z_temp; obj_t norm_z; double resid1, resid2; double junk; // // Pre-conditions: // - x is randomized. // - y is randomized. // - z_orig is randomized. // - xt is an alias to x. // Note: // - alpha should have a non-zero imaginary component in the complex // cases in order to more fully exercise the implementation. // // Under these conditions, we assume that the implementation for // // rho := conjxt(x^T) conjy(y) // z := z_orig + alpha * conjx(x) // // is functioning correctly if // // ( rho - rho_temp ) // // and // // normf( z - z_temp ) // // are negligible, where rho_temp and z_temp contain rho and z as // computed by dotv and axpyv, respectively. // bli_obj_scalar_init_detached( dt, &rho_temp ); bli_obj_scalar_init_detached( dt_real, &norm_z ); bli_obj_create( dt, m, 1, 0, 0, &z_temp ); bli_copyv( z_orig, &z_temp ); bli_dotv( xt, y, &rho_temp ); bli_axpyv( alpha, x, &z_temp ); bli_subsc( rho, &rho_temp ); bli_getsc( &rho_temp, &resid1, &junk ); bli_subv( &z_temp, z ); bli_normfv( z, &norm_z ); bli_getsc( &norm_z, &resid2, &junk ); *resid = bli_fmaxabs( resid1, resid2 ); bli_obj_free( &z_temp ); }
void libblis_test_herk_check( obj_t* alpha, obj_t* a, obj_t* beta, obj_t* c, obj_t* c_orig, double* resid ) { num_t dt = bli_obj_datatype( *c ); num_t dt_real = bli_obj_datatype_proj_to_real( *c ); dim_t m = bli_obj_length( *c ); dim_t k = bli_obj_width_after_trans( *a ); obj_t ah; obj_t kappa, norm; obj_t t, v, w, z; double junk; // // Pre-conditions: // - a is randomized. // - c_orig is randomized and Hermitian. // Note: // - alpha and beta must be real-valued. // // Under these conditions, we assume that the implementation for // // C := beta * C_orig + alpha * transa(A) * transa(A)^H // // is functioning correctly if // // fnorm( v - z ) // // is negligible, where // // v = C * t // z = ( beta * C_orig + alpha * transa(A) * transa(A)^H ) * t // = beta * C_orig * t + alpha * transa(A) * transa(A)^H * t // = beta * C_orig * t + alpha * transa(A) * w // = beta * C_orig * t + z // bli_obj_alias_with_trans( BLIS_CONJ_TRANSPOSE, *a, ah ); bli_obj_scalar_init_detached( dt, &kappa ); bli_obj_scalar_init_detached( dt_real, &norm ); bli_obj_create( dt, m, 1, 0, 0, &t ); bli_obj_create( dt, m, 1, 0, 0, &v ); bli_obj_create( dt, k, 1, 0, 0, &w ); bli_obj_create( dt, m, 1, 0, 0, &z ); bli_randv( &t ); bli_setsc( 1.0/( double )m, 0.0, &kappa ); bli_scalv( &kappa, &t ); bli_hemv( &BLIS_ONE, c, &t, &BLIS_ZERO, &v ); bli_gemv( &BLIS_ONE, &ah, &t, &BLIS_ZERO, &w ); bli_gemv( alpha, a, &w, &BLIS_ZERO, &z ); bli_hemv( beta, c_orig, &t, &BLIS_ONE, &z ); bli_subv( &z, &v ); bli_fnormv( &v, &norm ); bli_getsc( &norm, resid, &junk ); bli_obj_free( &t ); bli_obj_free( &v ); bli_obj_free( &w ); bli_obj_free( &z ); }
void libblis_test_gemv_check( obj_t* kappa, obj_t* alpha, obj_t* a, obj_t* x, obj_t* beta, obj_t* y, obj_t* y_orig, double* resid ) { num_t dt = bli_obj_datatype( *y ); num_t dt_real = bli_obj_datatype_proj_to_real( *y ); conj_t conja = bli_obj_conj_status( *a ); dim_t n_x = bli_obj_vector_dim( *x ); dim_t m_y = bli_obj_vector_dim( *y ); dim_t min_m_n = bli_min( m_y, n_x ); obj_t x_temp, y_temp; obj_t kappac, norm; obj_t xT_temp, yT_temp, yT; double junk; // // Pre-conditions: // - a is initialized to kappa along the diagonal. // - x is randomized. // - y_orig is randomized. // Note: // - alpha, beta, and kappa should have non-zero imaginary components in // the complex cases in order to more fully exercise the implementation. // // Under these conditions, we assume that the implementation for // // y := beta * y_orig + alpha * transa(A) * conjx(x) // // is functioning correctly if // // normf( y - z ) // // is negligible, where // // z = beta * y_orig + alpha * conja(kappa) * x // bli_obj_scalar_init_detached_copy_of( dt, conja, kappa, &kappac ); bli_obj_scalar_init_detached( dt_real, &norm ); bli_obj_create( dt, n_x, 1, 0, 0, &x_temp ); bli_obj_create( dt, m_y, 1, 0, 0, &y_temp ); bli_copyv( x, &x_temp ); bli_copyv( y_orig, &y_temp ); bli_acquire_vpart_f2b( BLIS_SUBPART1, 0, min_m_n, &x_temp, &xT_temp ); bli_acquire_vpart_f2b( BLIS_SUBPART1, 0, min_m_n, &y_temp, &yT_temp ); bli_acquire_vpart_f2b( BLIS_SUBPART1, 0, min_m_n, y, &yT ); bli_scalv( &kappac, &xT_temp ); bli_scalv( beta, &yT_temp ); bli_axpyv( alpha, &xT_temp, &yT_temp ); bli_subv( &yT_temp, &yT ); bli_normfv( &yT, &norm ); bli_getsc( &norm, resid, &junk ); bli_obj_free( &x_temp ); bli_obj_free( &y_temp ); }
void libblis_test_her2k_check ( test_params_t* params, obj_t* alpha, obj_t* a, obj_t* b, obj_t* beta, obj_t* c, obj_t* c_orig, double* resid ) { num_t dt = bli_obj_datatype( *c ); num_t dt_real = bli_obj_datatype_proj_to_real( *c ); dim_t m = bli_obj_length( *c ); dim_t k = bli_obj_width_after_trans( *a ); obj_t alphac, ah, bh; obj_t norm; obj_t t, v, w1, w2, z; double junk; // // Pre-conditions: // - a is randomized. // - b is randomized. // - c_orig is randomized and Hermitian. // Note: // - alpha should have a non-zero imaginary component in the // complex cases in order to more fully exercise the implementation. // - beta must be real-valued. // // Under these conditions, we assume that the implementation for // // C := beta * C_orig + alpha * transa(A) * transb(B)^H + conj(alpha) * transb(B) * transa(A)^H // // is functioning correctly if // // normf( v - z ) // // is negligible, where // // v = C * t // z = ( beta * C_orig + alpha * transa(A) * transb(B)^H + conj(alpha) * transb(B) * transa(A)^H ) * t // = beta * C_orig * t + alpha * transa(A) * transb(B)^H * t + conj(alpha) * transb(B) * transa(A)^H * t // = beta * C_orig * t + alpha * transa(A) * transb(B)^H * t + conj(alpha) * transb(B) * w2 // = beta * C_orig * t + alpha * transa(A) * w1 + conj(alpha) * transb(B) * w2 // = beta * C_orig * t + alpha * transa(A) * w1 + z // = beta * C_orig * t + z // bli_obj_alias_with_trans( BLIS_CONJ_TRANSPOSE, *a, ah ); bli_obj_alias_with_trans( BLIS_CONJ_TRANSPOSE, *b, bh ); bli_obj_scalar_init_detached( dt_real, &norm ); bli_obj_scalar_init_detached_copy_of( dt, BLIS_CONJUGATE, alpha, &alphac ); bli_obj_create( dt, m, 1, 0, 0, &t ); bli_obj_create( dt, m, 1, 0, 0, &v ); bli_obj_create( dt, k, 1, 0, 0, &w1 ); bli_obj_create( dt, k, 1, 0, 0, &w2 ); bli_obj_create( dt, m, 1, 0, 0, &z ); libblis_test_vobj_randomize( params, TRUE, &t ); bli_hemv( &BLIS_ONE, c, &t, &BLIS_ZERO, &v ); bli_gemv( &BLIS_ONE, &ah, &t, &BLIS_ZERO, &w2 ); bli_gemv( &BLIS_ONE, &bh, &t, &BLIS_ZERO, &w1 ); bli_gemv( alpha, a, &w1, &BLIS_ZERO, &z ); bli_gemv( &alphac, b, &w2, &BLIS_ONE, &z ); bli_hemv( beta, c_orig, &t, &BLIS_ONE, &z ); bli_subv( &z, &v ); bli_normfv( &v, &norm ); bli_getsc( &norm, resid, &junk ); bli_obj_free( &t ); bli_obj_free( &v ); bli_obj_free( &w1 ); bli_obj_free( &w2 ); bli_obj_free( &z ); }
void libblis_test_her_check( obj_t* alpha, obj_t* x, obj_t* a, obj_t* a_orig, double* resid ) { num_t dt = bli_obj_datatype( *a ); num_t dt_real = bli_obj_datatype_proj_to_real( *a ); dim_t m_a = bli_obj_length( *a ); obj_t xh, t, v, w; obj_t tau, rho, norm; double junk; // // Pre-conditions: // - x is randomized. // - a is randomized and Hermitian. // Note: // - alpha must be real-valued. // // Under these conditions, we assume that the implementation for // // A := A_orig + alpha * conjx(x) * conjx(x)^H // // is functioning correctly if // // normf( v - w ) // // is negligible, where // // v = A * t // w = ( A_orig + alpha * conjx(x) * conjx(x)^H ) * t // = A_orig * t + alpha * conjx(x) * conjx(x)^H * t // = A_orig * t + alpha * conjx(x) * rho // = A_orig * t + w // bli_mkherm( a ); bli_mkherm( a_orig ); bli_obj_set_struc( BLIS_GENERAL, *a ); bli_obj_set_struc( BLIS_GENERAL, *a_orig ); bli_obj_set_uplo( BLIS_DENSE, *a ); bli_obj_set_uplo( BLIS_DENSE, *a_orig ); bli_obj_scalar_init_detached( dt, &tau ); bli_obj_scalar_init_detached( dt, &rho ); bli_obj_scalar_init_detached( dt_real, &norm ); bli_obj_create( dt, m_a, 1, 0, 0, &t ); bli_obj_create( dt, m_a, 1, 0, 0, &v ); bli_obj_create( dt, m_a, 1, 0, 0, &w ); bli_obj_alias_with_conj( BLIS_CONJUGATE, *x, xh ); bli_setsc( 1.0/( double )m_a, -1.0/( double )m_a, &tau ); bli_setv( &tau, &t ); bli_gemv( &BLIS_ONE, a, &t, &BLIS_ZERO, &v ); bli_dotv( &xh, &t, &rho ); bli_mulsc( alpha, &rho ); bli_scal2v( &rho, x, &w ); bli_gemv( &BLIS_ONE, a_orig, &t, &BLIS_ONE, &w ); bli_subv( &w, &v ); bli_normfv( &v, &norm ); bli_getsc( &norm, resid, &junk ); bli_obj_free( &t ); bli_obj_free( &v ); bli_obj_free( &w ); }
void libblis_test_trsm_check ( test_params_t* params, side_t side, obj_t* alpha, obj_t* a, obj_t* b, obj_t* b_orig, double* resid ) { num_t dt = bli_obj_datatype( *b ); num_t dt_real = bli_obj_datatype_proj_to_real( *b ); dim_t m = bli_obj_length( *b ); dim_t n = bli_obj_width( *b ); obj_t norm; obj_t t, v, w, z; double junk; // // Pre-conditions: // - a is randomized and triangular. // - b_orig is randomized. // Note: // - alpha should have a non-zero imaginary component in the // complex cases in order to more fully exercise the implementation. // // Under these conditions, we assume that the implementation for // // B := alpha * inv(transa(A)) * B_orig (side = left) // B := alpha * B_orig * inv(transa(A)) (side = right) // // is functioning correctly if // // normf( v - z ) // // is negligible, where // // v = B * t // // z = ( alpha * inv(transa(A)) * B ) * t (side = left) // = alpha * inv(transa(A)) * B * t // = alpha * inv(transa(A)) * w // // z = ( alpha * B * inv(transa(A)) ) * t (side = right) // = alpha * B * tinv(ransa(A)) * t // = alpha * B * w bli_obj_scalar_init_detached( dt_real, &norm ); if ( bli_is_left( side ) ) { bli_obj_create( dt, n, 1, 0, 0, &t ); bli_obj_create( dt, m, 1, 0, 0, &v ); bli_obj_create( dt, m, 1, 0, 0, &w ); bli_obj_create( dt, m, 1, 0, 0, &z ); } else // else if ( bli_is_left( side ) ) { bli_obj_create( dt, n, 1, 0, 0, &t ); bli_obj_create( dt, m, 1, 0, 0, &v ); bli_obj_create( dt, n, 1, 0, 0, &w ); bli_obj_create( dt, m, 1, 0, 0, &z ); } libblis_test_vobj_randomize( params, TRUE, &t ); bli_gemv( &BLIS_ONE, b, &t, &BLIS_ZERO, &v ); if ( bli_is_left( side ) ) { bli_gemv( alpha, b_orig, &t, &BLIS_ZERO, &w ); bli_trsv( &BLIS_ONE, a, &w ); bli_copyv( &w, &z ); } else { bli_copyv( &t, &w ); bli_trsv( &BLIS_ONE, a, &w ); bli_gemv( alpha, b_orig, &w, &BLIS_ZERO, &z ); } bli_subv( &z, &v ); bli_normfv( &v, &norm ); bli_getsc( &norm, resid, &junk ); bli_obj_free( &t ); bli_obj_free( &v ); bli_obj_free( &w ); bli_obj_free( &z ); }
void libblis_test_gemm_md_check ( test_params_t* params, obj_t* alpha, obj_t* a, obj_t* b, obj_t* beta, obj_t* c, obj_t* c_orig, double* resid ) { num_t dt_real = bli_obj_dt_proj_to_real( c ); num_t dt_comp = bli_obj_dt_proj_to_complex( c ); num_t dt; dim_t m = bli_obj_length( c ); dim_t n = bli_obj_width( c ); dim_t k = bli_obj_width_after_trans( a ); obj_t norm; obj_t t, v, w, z; double junk; // Compute our reference checksum in the real domain if all operands // are real, and in the complex domain otherwise. Also implicit in this // is that we use the storage precision of C to determine the precision // in which we perform the reference checksum. if ( bli_obj_is_real( a ) && bli_obj_is_real( b ) && bli_obj_is_real( c ) ) dt = dt_real; else dt = dt_comp; // This function works in a manner similar to that of the function // libblis_test_gemm_check(), except that we project a, b, and c into // the complex domain (regardless of their storage datatype), and then // proceed with the checking accordingly. obj_t a2, b2, c2, c0; bli_obj_scalar_init_detached( dt_real, &norm ); bli_obj_create( dt, n, 1, 0, 0, &t ); bli_obj_create( dt, m, 1, 0, 0, &v ); bli_obj_create( dt, k, 1, 0, 0, &w ); bli_obj_create( dt, m, 1, 0, 0, &z ); libblis_test_vobj_randomize( params, TRUE, &t ); // We need to zero out the imaginary part of t in order for our // checks to work in all cases. Otherwise, the imaginary parts // could affect intermediate products, depending on the order that // they are executed. bli_setiv( &BLIS_ZERO, &t ); // Create complex equivalents of a, b, c_orig, and c. bli_obj_create( dt, m, k, 0, 0, &a2 ); bli_obj_create( dt, k, n, 0, 0, &b2 ); bli_obj_create( dt, m, n, 0, 0, &c2 ); bli_obj_create( dt, m, n, 0, 0, &c0 ); // Cast a, b, c_orig, and c into the datatype of our temporary objects. bli_castm( a, &a2 ); bli_castm( b, &b2 ); bli_castm( c_orig, &c2 ); bli_castm( c, &c0 ); bli_gemv( &BLIS_ONE, &c0, &t, &BLIS_ZERO, &v ); #if 0 if ( bli_obj_is_scomplex( c ) && bli_obj_is_float( a ) && bli_obj_is_float( b ) ) { bli_printm( "test_gemm.c: a", a, "%7.3f", "" ); bli_printm( "test_gemm.c: b", b, "%7.3f", "" ); bli_printm( "test_gemm.c: c orig", c_orig, "%7.3f", "" ); bli_printm( "test_gemm.c: c computed", c, "%7.3f", "" ); } #endif #if 0 bli_gemm( alpha, &a2, &b2, beta, &c2 ); bli_gemv( &BLIS_ONE, &c2, &t, &BLIS_ZERO, &z ); if ( bli_obj_is_real( c ) ) bli_setiv( &BLIS_ZERO, &z ); #else bli_gemv( &BLIS_ONE, &b2, &t, &BLIS_ZERO, &w ); bli_gemv( alpha, &a2, &w, &BLIS_ZERO, &z ); bli_gemv( beta, &c2, &t, &BLIS_ONE, &z ); if ( bli_obj_is_real( c ) ) bli_setiv( &BLIS_ZERO, &z ); #endif bli_subv( &z, &v ); bli_normfv( &v, &norm ); bli_getsc( &norm, resid, &junk ); bli_obj_free( &t ); bli_obj_free( &v ); bli_obj_free( &w ); bli_obj_free( &z ); bli_obj_free( &a2 ); bli_obj_free( &b2 ); bli_obj_free( &c2 ); bli_obj_free( &c0 ); }
void libblis_test_syr2k_check( obj_t* alpha, obj_t* a, obj_t* b, obj_t* beta, obj_t* c, obj_t* c_orig, double* resid ) { num_t dt = bli_obj_datatype( *c ); num_t dt_real = bli_obj_datatype_proj_to_real( *c ); dim_t m = bli_obj_length( *c ); dim_t k = bli_obj_width_after_trans( *a ); obj_t at, bt; obj_t kappa, norm; obj_t t, v, w1, w2, z; double junk; // // Pre-conditions: // - a is randomized. // - b is randomized. // - c_orig is randomized and symmetric. // Note: // - alpha and beta should have non-zero imaginary components in the // complex cases in order to more fully exercise the implementation. // // Under these conditions, we assume that the implementation for // // C := beta * C_orig + alpha * transa(A) * transb(B)^T + alpha * transb(B) * transa(A)^T // // is functioning correctly if // // normf( v - z ) // // is negligible, where // // v = C * t // z = ( beta * C_orig + alpha * transa(A) * transb(B)^T + alpha * transb(B) * transa(A)^T ) * t // = beta * C_orig * t + alpha * transa(A) * transb(B)^T * t + alpha * transb(B) * transa(A)^T * t // = beta * C_orig * t + alpha * transa(A) * transb(B)^T * t + alpha * transb(B) * w2 // = beta * C_orig * t + alpha * transa(A) * w1 + alpha * transb(B) * w2 // = beta * C_orig * t + alpha * transa(A) * w1 + z // = beta * C_orig * t + z // bli_obj_alias_with_trans( BLIS_TRANSPOSE, *a, at ); bli_obj_alias_with_trans( BLIS_TRANSPOSE, *b, bt ); bli_obj_scalar_init_detached( dt, &kappa ); bli_obj_scalar_init_detached( dt_real, &norm ); bli_obj_create( dt, m, 1, 0, 0, &t ); bli_obj_create( dt, m, 1, 0, 0, &v ); bli_obj_create( dt, k, 1, 0, 0, &w1 ); bli_obj_create( dt, k, 1, 0, 0, &w2 ); bli_obj_create( dt, m, 1, 0, 0, &z ); bli_randv( &t ); bli_setsc( 1.0/( double )m, 0.0, &kappa ); bli_scalv( &kappa, &t ); bli_symv( &BLIS_ONE, c, &t, &BLIS_ZERO, &v ); bli_gemv( &BLIS_ONE, &at, &t, &BLIS_ZERO, &w2 ); bli_gemv( &BLIS_ONE, &bt, &t, &BLIS_ZERO, &w1 ); bli_gemv( alpha, a, &w1, &BLIS_ZERO, &z ); bli_gemv( alpha, b, &w2, &BLIS_ONE, &z ); bli_symv( beta, c_orig, &t, &BLIS_ONE, &z ); bli_subv( &z, &v ); bli_normfv( &v, &norm ); bli_getsc( &norm, resid, &junk ); bli_obj_free( &t ); bli_obj_free( &v ); bli_obj_free( &w1 ); bli_obj_free( &w2 ); bli_obj_free( &z ); }
void libblis_test_ger_check ( test_params_t* params, obj_t* alpha, obj_t* x, obj_t* y, obj_t* a, obj_t* a_orig, double* resid ) { num_t dt = bli_obj_dt( a ); num_t dt_real = bli_obj_dt_proj_to_real( a ); dim_t m_a = bli_obj_length( a ); dim_t n_a = bli_obj_width( a ); obj_t t, v, w; obj_t rho, norm; double junk; // // Pre-conditions: // - x is randomized. // - y is randomized. // - a is identity. // Note: // - alpha should have a non-zero imaginary component in the // complex cases in order to more fully exercise the implementation. // // Under these conditions, we assume that the implementation for // // A := A_orig + alpha * conjx(x) * conjy(y) // // is functioning correctly if // // normf( v - w ) // // is negligible, where // // v = A * t // w = ( A_orig + alpha * conjx(x) * conjy(y)^T ) * t // = A_orig * t + alpha * conjx(x) * conjy(y)^T * t // = A_orig * t + alpha * conjx(x) * rho // = A_orig * t + w // bli_obj_scalar_init_detached( dt, &rho ); bli_obj_scalar_init_detached( dt_real, &norm ); bli_obj_create( dt, n_a, 1, 0, 0, &t ); bli_obj_create( dt, m_a, 1, 0, 0, &v ); bli_obj_create( dt, m_a, 1, 0, 0, &w ); libblis_test_vobj_randomize( params, TRUE, &t ); bli_gemv( &BLIS_ONE, a, &t, &BLIS_ZERO, &v ); bli_dotv( y, &t, &rho ); bli_mulsc( alpha, &rho ); bli_scal2v( &rho, x, &w ); bli_gemv( &BLIS_ONE, a_orig, &t, &BLIS_ONE, &w ); bli_subv( &w, &v ); bli_normfv( &v, &norm ); bli_getsc( &norm, resid, &junk ); bli_obj_free( &t ); bli_obj_free( &v ); bli_obj_free( &w ); }
void libblis_test_dotxaxpyf_check ( test_params_t* params, obj_t* alpha, obj_t* at, obj_t* a, obj_t* w, obj_t* x, obj_t* beta, obj_t* y, obj_t* z, obj_t* y_orig, obj_t* z_orig, double* resid ) { num_t dt = bli_obj_datatype( *y ); num_t dt_real = bli_obj_datatype_proj_to_real( *y ); dim_t m = bli_obj_vector_dim( *z ); dim_t b_n = bli_obj_vector_dim( *y ); dim_t i; obj_t a1, chi1, psi1, v, q; obj_t alpha_chi1; obj_t norm; double resid1, resid2; double junk; // // Pre-conditions: // - a is randomized. // - w is randomized. // - x is randomized. // - y is randomized. // - z is randomized. // - at is an alias to a. // Note: // - alpha and beta should have a non-zero imaginary component in the // complex cases in order to more fully exercise the implementation. // // Under these conditions, we assume that the implementation for // // y := beta * y_orig + alpha * conjat(A^T) * conjw(w) // z := z_orig + alpha * conja(A) * conjx(x) // // is functioning correctly if // // normf( y - v ) // // and // // normf( z - q ) // // are negligible, where v and q contain y and z as computed by repeated // calls to dotxv and axpyv, respectively. // bli_obj_scalar_init_detached( dt_real, &norm ); bli_obj_scalar_init_detached( dt, &alpha_chi1 ); bli_obj_create( dt, b_n, 1, 0, 0, &v ); bli_obj_create( dt, m, 1, 0, 0, &q ); bli_copyv( y_orig, &v ); bli_copyv( z_orig, &q ); // v := beta * v + alpha * conjat(at) * conjw(w) for ( i = 0; i < b_n; ++i ) { bli_acquire_mpart_l2r( BLIS_SUBPART1, i, 1, at, &a1 ); bli_acquire_vpart_f2b( BLIS_SUBPART1, i, 1, &v, &psi1 ); bli_dotxv( alpha, &a1, w, beta, &psi1 ); } // q := q + alpha * conja(a) * conjx(x) for ( i = 0; i < b_n; ++i ) { bli_acquire_mpart_l2r( BLIS_SUBPART1, i, 1, a, &a1 ); bli_acquire_vpart_f2b( BLIS_SUBPART1, i, 1, x, &chi1 ); bli_copysc( &chi1, &alpha_chi1 ); bli_mulsc( alpha, &alpha_chi1 ); bli_axpyv( &alpha_chi1, &a1, &q ); } bli_subv( y, &v ); bli_normfv( &v, &norm ); bli_getsc( &norm, &resid1, &junk ); bli_subv( z, &q ); bli_normfv( &q, &norm ); bli_getsc( &norm, &resid2, &junk ); *resid = bli_fmaxabs( resid1, resid2 ); bli_obj_free( &v ); bli_obj_free( &q ); }
void libblis_test_axpyf_check( obj_t* alpha, obj_t* a, obj_t* x, obj_t* y, obj_t* y_orig, double* resid ) { num_t dt = bli_obj_datatype( *y ); num_t dt_real = bli_obj_datatype_proj_to_real( *y ); dim_t m = bli_obj_vector_dim( *y ); dim_t b_n = bli_obj_width( *a ); dim_t i; obj_t a1, chi1, v; obj_t alpha_chi1; obj_t norm; double junk; // // Pre-conditions: // - a is randomized. // - x is randomized. // - y is randomized. // Note: // - alpha should have a non-zero imaginary component in the complex // cases in order to more fully exercise the implementation. // // Under these conditions, we assume that the implementation for // // y := y_orig + alpha * conja(A) * conjx(x) // // is functioning correctly if // // normf( y - v ) // // is negligible, where v contains y as computed by repeated calls to // axpyv. // bli_obj_scalar_init_detached( dt_real, &norm ); bli_obj_scalar_init_detached( dt, &alpha_chi1 ); bli_obj_create( dt, m, 1, 0, 0, &v ); bli_copyv( y_orig, &v ); for ( i = 0; i < b_n; ++i ) { bli_acquire_mpart_l2r( BLIS_SUBPART1, i, 1, a, &a1 ); bli_acquire_vpart_f2b( BLIS_SUBPART1, i, 1, x, &chi1 ); bli_copysc( &chi1, &alpha_chi1 ); bli_mulsc( alpha, &alpha_chi1 ); bli_axpyv( &alpha_chi1, &a1, &v ); } bli_subv( y, &v ); bli_normfv( &v, &norm ); bli_getsc( &norm, resid, &junk ); bli_obj_free( &v ); }
void libblis_test_gemm_check ( test_params_t* params, obj_t* alpha, obj_t* a, obj_t* b, obj_t* beta, obj_t* c, obj_t* c_orig, double* resid ) { num_t dt = bli_obj_dt( c ); num_t dt_real = bli_obj_dt_proj_to_real( c ); dim_t m = bli_obj_length( c ); dim_t n = bli_obj_width( c ); dim_t k = bli_obj_width_after_trans( a ); obj_t norm; obj_t t, v, w, z; double junk; // // Pre-conditions: // - a is randomized. // - b is randomized. // - c_orig is randomized. // Note: // - alpha and beta should have non-zero imaginary components in the // complex cases in order to more fully exercise the implementation. // // Under these conditions, we assume that the implementation for // // C := beta * C_orig + alpha * transa(A) * transb(B) // // is functioning correctly if // // normf( v - z ) // // is negligible, where // // v = C * t // z = ( beta * C_orig + alpha * transa(A) * transb(B) ) * t // = beta * C_orig * t + alpha * transa(A) * transb(B) * t // = beta * C_orig * t + alpha * transa(A) * w // = beta * C_orig * t + z // bli_obj_scalar_init_detached( dt_real, &norm ); bli_obj_create( dt, n, 1, 0, 0, &t ); bli_obj_create( dt, m, 1, 0, 0, &v ); bli_obj_create( dt, k, 1, 0, 0, &w ); bli_obj_create( dt, m, 1, 0, 0, &z ); libblis_test_vobj_randomize( params, TRUE, &t ); bli_gemv( &BLIS_ONE, c, &t, &BLIS_ZERO, &v ); bli_gemv( &BLIS_ONE, b, &t, &BLIS_ZERO, &w ); bli_gemv( alpha, a, &w, &BLIS_ZERO, &z ); bli_gemv( beta, c_orig, &t, &BLIS_ONE, &z ); bli_subv( &z, &v ); bli_normfv( &v, &norm ); bli_getsc( &norm, resid, &junk ); bli_obj_free( &t ); bli_obj_free( &v ); bli_obj_free( &w ); bli_obj_free( &z ); }
void libblis_test_axpy2v_check( obj_t* alpha1, obj_t* alpha2, obj_t* x, obj_t* y, obj_t* z, obj_t* z_orig, double* resid ) { num_t dt = bli_obj_datatype( *z ); num_t dt_real = bli_obj_datatype_proj_to_real( *z ); dim_t m = bli_obj_vector_dim( *z ); obj_t x_temp, y_temp, z_temp; obj_t norm; double junk; // // Pre-conditions: // - x is randomized. // - y is randomized. // - z_orig is randomized. // Note: // - alpha1, alpha2 should have a non-zero imaginary component in the // complex cases in order to more fully exercise the implementation. // // Under these conditions, we assume that the implementation for // // z := z_orig + alpha1 * conjx(x) + alpha2 * conjy(y) // // is functioning correctly if // // normf( z - v ) // // is negligible, where v contains z as computed by two calls to axpyv. // bli_obj_scalar_init_detached( dt_real, &norm ); bli_obj_create( dt, m, 1, 0, 0, &x_temp ); bli_obj_create( dt, m, 1, 0, 0, &y_temp ); bli_obj_create( dt, m, 1, 0, 0, &z_temp ); bli_copyv( x, &x_temp ); bli_copyv( y, &y_temp ); bli_copyv( z_orig, &z_temp ); bli_scalv( alpha1, &x_temp ); bli_scalv( alpha2, &y_temp ); bli_addv( &x_temp, &z_temp ); bli_addv( &y_temp, &z_temp ); bli_subv( &z_temp, z ); bli_normfv( z, &norm ); bli_getsc( &norm, resid, &junk ); bli_obj_free( &x_temp ); bli_obj_free( &y_temp ); bli_obj_free( &z_temp ); }
void libblis_test_trmv_check( obj_t* alpha, obj_t* a, obj_t* x, obj_t* x_orig, double* resid ) { num_t dt = bli_obj_datatype( *x ); num_t dt_real = bli_obj_datatype_proj_to_real( *x ); dim_t m = bli_obj_vector_dim( *x ); uplo_t uploa = bli_obj_uplo( *a ); trans_t transa = bli_obj_conjtrans_status( *a ); obj_t a_local, y; obj_t norm; double junk; // // Pre-conditions: // - a is randomized and triangular. // - x is randomized. // Note: // - alpha should have a non-zero imaginary component in the // complex cases in order to more fully exercise the implementation. // // Under these conditions, we assume that the implementation for // // x := alpha * transa(A) * x_orig // // is functioning correctly if // // fnorm( y - x ) // // is negligible, where // // y = alpha * conja(A_dense) * x_orig // bli_obj_init_scalar( dt_real, &norm ); bli_obj_create( dt, m, 1, 0, 0, &y ); bli_obj_create( dt, m, m, 0, 0, &a_local ); bli_obj_set_struc( BLIS_TRIANGULAR, a_local ); bli_obj_set_uplo( uploa, a_local ); bli_obj_toggle_uplo_if_trans( transa, a_local ); bli_copym( a, &a_local ); bli_mktrim( &a_local ); bli_obj_set_struc( BLIS_GENERAL, a_local ); bli_obj_set_uplo( BLIS_DENSE, a_local ); bli_gemv( alpha, &a_local, x_orig, &BLIS_ZERO, &y ); bli_subv( x, &y ); bli_fnormv( &y, &norm ); bli_getsc( &norm, resid, &junk ); bli_obj_free( &y ); bli_obj_free( &a_local ); }
void libblis_test_trmm3_check( side_t side, obj_t* alpha, obj_t* a, obj_t* b, obj_t* beta, obj_t* c, obj_t* c_orig, double* resid ) { num_t dt = bli_obj_datatype( *c ); num_t dt_real = bli_obj_datatype_proj_to_real( *c ); dim_t m = bli_obj_length( *c ); dim_t n = bli_obj_width( *c ); obj_t kappa, norm; obj_t t, v, w, z; double junk; // // Pre-conditions: // - a is randomized and triangular. // - b is randomized. // - c_orig is randomized. // Note: // - alpha and beta should have non-zero imaginary components in the // complex cases in order to more fully exercise the implementation. // // Under these conditions, we assume that the implementation for // // C := beta * C_orig + alpha * transa(A) * transb(B) (side = left) // C := beta * C_orig + alpha * transb(B) * transa(A) (side = right) // // is functioning correctly if // // fnorm( v - z ) // // is negligible, where // // v = C * t // // z = ( beta * C_orig + alpha * transa(A) * transb(B) ) * t (side = left) // = beta * C_orig * t + alpha * transa(A) * transb(B) * t // = beta * C_orig * t + alpha * transa(A) * w // = beta * C_orig * t + z // // z = ( beta * C_orig + alpha * transb(B) * transa(A) ) * t (side = right) // = beta * C_orig * t + alpha * transb(B) * transa(A) * t // = beta * C_orig * t + alpha * transb(B) * w // = beta * C_orig * t + z bli_obj_scalar_init_detached( dt, &kappa ); bli_obj_scalar_init_detached( dt_real, &norm ); if ( bli_is_left( side ) ) { bli_obj_create( dt, n, 1, 0, 0, &t ); bli_obj_create( dt, m, 1, 0, 0, &v ); bli_obj_create( dt, m, 1, 0, 0, &w ); bli_obj_create( dt, m, 1, 0, 0, &z ); } else // else if ( bli_is_left( side ) ) { bli_obj_create( dt, n, 1, 0, 0, &t ); bli_obj_create( dt, m, 1, 0, 0, &v ); bli_obj_create( dt, n, 1, 0, 0, &w ); bli_obj_create( dt, m, 1, 0, 0, &z ); } bli_randv( &t ); bli_setsc( 1.0/( double )n, 0.0, &kappa ); bli_scalv( &kappa, &t ); bli_gemv( &BLIS_ONE, c, &t, &BLIS_ZERO, &v ); if ( bli_is_left( side ) ) { bli_gemv( &BLIS_ONE, b, &t, &BLIS_ZERO, &w ); bli_trmv( alpha, a, &w ); bli_copyv( &w, &z ); } else { bli_copyv( &t, &w ); bli_trmv( &BLIS_ONE, a, &w ); bli_gemv( alpha, b, &w, &BLIS_ZERO, &z ); } bli_gemv( beta, c_orig, &t, &BLIS_ONE, &z ); bli_subv( &z, &v ); bli_fnormv( &v, &norm ); bli_getsc( &norm, resid, &junk ); bli_obj_free( &t ); bli_obj_free( &v ); bli_obj_free( &w ); bli_obj_free( &z ); }