u_int32_t bmac_mbo_read(struct device *dev) { struct bmac_softc *sc = (void *)dev; return bmac_read_reg(sc, MIFCSR); }
int bmac_intr(void *v) { struct bmac_softc *sc = v; struct ifnet *ifp = &sc->arpcom.ac_if; int stat; #ifdef BMAC_DEBUG printf("bmac_intr called\n"); #endif stat = bmac_read_reg(sc, STATUS); if (stat == 0) return (0); #ifdef BMAC_DEBUG printf("bmac_intr status = 0x%x\n", stat); #endif if (stat & IntFrameSent) { ifp->if_flags &= ~IFF_OACTIVE; ifp->if_timer = 0; ifp->if_opackets++; bmac_start(ifp); } /* XXX should do more! */ return (1); }
/* * Set up the logical address filter. */ void bmac_setladrf(struct bmac_softc *sc) { struct arpcom *ac = &sc->arpcom; struct ifnet *ifp = &sc->arpcom.ac_if; struct ether_multi *enm; struct ether_multistep step; u_int32_t crc; u_int16_t hash[4]; int x; /* * Set up multicast address filter by passing all multicast addresses * through a crc generator, and then using the high order 6 bits as an * index into the 64 bit logical address filter. The high order bit * selects the word, while the rest of the bits select the bit within * the word. */ if (ifp->if_flags & IFF_PROMISC) { bmac_set_bits(sc, RXCFG, RxPromiscEnable); return; } if (ac->ac_multirangecnt > 0) ifp->if_flags |= IFF_ALLMULTI; if (ifp->if_flags & IFF_ALLMULTI) { hash[3] = hash[2] = hash[1] = hash[0] = 0xffff; goto chipit; } hash[3] = hash[2] = hash[1] = hash[0] = 0; ETHER_FIRST_MULTI(step, ac, enm); while (enm != NULL) { crc = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN); /* Just want the 6 most significant bits. */ crc >>= 26; /* Set the corresponding bit in the filter. */ hash[crc >> 4] |= 1 << (crc & 0xf); ETHER_NEXT_MULTI(step, enm); } ifp->if_flags &= ~IFF_ALLMULTI; chipit: bmac_write_reg(sc, HASH0, hash[0]); bmac_write_reg(sc, HASH1, hash[1]); bmac_write_reg(sc, HASH2, hash[2]); bmac_write_reg(sc, HASH3, hash[3]); x = bmac_read_reg(sc, RXCFG); x &= ~RxPromiscEnable; x |= RxHashFilterEnable; bmac_write_reg(sc, RXCFG, x); }
void bmac_mii_statchg(struct device *dev) { struct bmac_softc *sc = (void *)dev; int x; /* Update duplex mode in TX configuration */ x = bmac_read_reg(sc, TXCFG); if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0) x |= TxFullDuplex; else x &= ~TxFullDuplex; bmac_write_reg(sc, TXCFG, x); #ifdef BMAC_DEBUG printf("bmac_mii_statchg 0x%x\n", IFM_OPTIONS(sc->sc_mii.mii_media_active)); #endif }
/* * Set up the logical address filter. */ void bmac_setladrf(struct bmac_softc *sc) { struct ifnet *ifp = &sc->arpcom.ac_if; struct ether_multi *enm; struct ether_multistep step; u_int32_t crc; u_int16_t hash[4]; int x; /* * Set up multicast address filter by passing all multicast addresses * through a crc generator, and then using the high order 6 bits as an * index into the 64 bit logical address filter. The high order bit * selects the word, while the rest of the bits select the bit within * the word. */ if (ifp->if_flags & IFF_PROMISC) { bmac_set_bits(sc, RXCFG, RxPromiscEnable); return; } if (ifp->if_flags & IFF_ALLMULTI) { hash[3] = hash[2] = hash[1] = hash[0] = 0xffff; goto chipit; } hash[3] = hash[2] = hash[1] = hash[0] = 0; ETHER_FIRST_MULTI(step, &sc->arpcom, enm); while (enm != NULL) { if (bcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) { /* * We must listen to a range of multicast addresses. * For now, just accept all multicasts, rather than * trying to set only those filter bits needed to match * the range. (At this time, the only use of address * ranges is for IP multicast routing, for which the * range is big enough to require all bits set.) */ hash[3] = hash[2] = hash[1] = hash[0] = 0xffff; ifp->if_flags |= IFF_ALLMULTI; goto chipit; } crc = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN); /* Just want the 6 most significant bits. */ crc >>= 26; /* Set the corresponding bit in the filter. */ hash[crc >> 4] |= 1 << (crc & 0xf); ETHER_NEXT_MULTI(step, enm); } ifp->if_flags &= ~IFF_ALLMULTI; chipit: bmac_write_reg(sc, HASH0, hash[0]); bmac_write_reg(sc, HASH1, hash[1]); bmac_write_reg(sc, HASH2, hash[2]); bmac_write_reg(sc, HASH3, hash[3]); x = bmac_read_reg(sc, RXCFG); x &= ~RxPromiscEnable; x |= RxHashFilterEnable; bmac_write_reg(sc, RXCFG, x); }
void bmac_init(struct bmac_softc *sc) { struct ifnet *ifp = &sc->arpcom.ac_if; struct ether_header *eh; caddr_t data; int tb; int i, bmcr; u_short *p; bmac_reset_chip(sc); /* XXX */ bmcr = bmac_mii_readreg((struct device *)sc, 0, MII_BMCR); bmcr &= ~BMCR_ISO; bmac_mii_writereg((struct device *)sc, 0, MII_BMCR, bmcr); bmac_write_reg(sc, RXRST, RxResetValue); bmac_write_reg(sc, TXRST, TxResetBit); /* Wait for reset completion. */ for (i = 1000; i > 0; i -= 10) { if ((bmac_read_reg(sc, TXRST) & TxResetBit) == 0) break; delay(10); } if (i <= 0) printf("%s: reset timeout\n", ifp->if_xname); if (! (sc->sc_flags & BMAC_BMACPLUS)) bmac_set_bits(sc, XCVRIF, ClkBit|SerialMode|COLActiveLow); tb = ppc_mftbl(); bmac_write_reg(sc, RSEED, tb); bmac_set_bits(sc, XIFC, TxOutputEnable); bmac_read_reg(sc, PAREG); /* Reset various counters. */ bmac_write_reg(sc, NCCNT, 0); bmac_write_reg(sc, NTCNT, 0); bmac_write_reg(sc, EXCNT, 0); bmac_write_reg(sc, LTCNT, 0); bmac_write_reg(sc, FRCNT, 0); bmac_write_reg(sc, LECNT, 0); bmac_write_reg(sc, AECNT, 0); bmac_write_reg(sc, FECNT, 0); bmac_write_reg(sc, RXCV, 0); /* Set tx fifo information. */ bmac_write_reg(sc, TXTH, 4); /* 4 octets before tx starts */ bmac_write_reg(sc, TXFIFOCSR, 0); bmac_write_reg(sc, TXFIFOCSR, TxFIFOEnable); /* Set rx fifo information. */ bmac_write_reg(sc, RXFIFOCSR, 0); bmac_write_reg(sc, RXFIFOCSR, RxFIFOEnable); /* Clear status register. */ bmac_read_reg(sc, STATUS); bmac_write_reg(sc, HASH3, 0); bmac_write_reg(sc, HASH2, 0); bmac_write_reg(sc, HASH1, 0); bmac_write_reg(sc, HASH0, 0); /* Set MAC address. */ p = (u_short *)sc->arpcom.ac_enaddr; bmac_write_reg(sc, MADD0, *p++); bmac_write_reg(sc, MADD1, *p++); bmac_write_reg(sc, MADD2, *p); bmac_write_reg(sc, RXCFG, RxCRCEnable | RxHashFilterEnable | RxRejectOwnPackets); if (ifp->if_flags & IFF_PROMISC) bmac_set_bits(sc, RXCFG, RxPromiscEnable); bmac_init_dma(sc); /* Configure Media. */ mii_mediachg(&sc->sc_mii); /* Enable TX/RX */ bmac_set_bits(sc, RXCFG, RxMACEnable); bmac_set_bits(sc, TXCFG, TxMACEnable); bmac_write_reg(sc, INTDISABLE, NormalIntEvents); ifp->if_flags |= IFF_RUNNING; ifp->if_flags &= ~IFF_OACTIVE; ifp->if_timer = 0; data = sc->sc_txbuf; eh = (struct ether_header *)data; bzero(data, sizeof(*eh) + ETHERMIN); bcopy(sc->arpcom.ac_enaddr, eh->ether_dhost, ETHER_ADDR_LEN); bcopy(sc->arpcom.ac_enaddr, eh->ether_shost, ETHER_ADDR_LEN); bmac_transmit_packet(sc, sc->sc_txbuf_pa, sizeof(*eh) + ETHERMIN); bmac_start(ifp); timeout_add_sec(&sc->sc_tick_ch, 1); }
void bmac_reset_bits(struct bmac_softc *sc, int off, int val) { bmac_write_reg(sc, off, bmac_read_reg(sc, off) & ~val); }
void bmac_set_bits(struct bmac_softc *sc, int off, int val) { val |= bmac_read_reg(sc, off); bmac_write_reg(sc, off, val); }
static inline void bmac_reset_bits(struct bmac_softc *sc, bus_size_t off, uint16_t val) { bmac_write_reg(sc, off, bmac_read_reg(sc, off) & ~val); }