int main () {
  //  FILE *f = fopen(INP, "r");
    FILE *f = stdin;
    fscanf(f,"%d",&T);
    for(int i = 1; i <= T; i++){
            for(int j = 1; j <= 4; j++){
                    fscanf(f,"%d%d",&P[j].x,&P[j].y);
                    }
            //process
            Result = 6;
            memset(Used,false,sizeof Used);
            Used[1] = true;
            for(int j = 2; j <= 4; j++){
                    if(Result != 6) break;
                    Used[j] = true;
                    pair <int, int> line (0,0);
                    for(int k = 2; k <= 4; k++){
                            if(!Used[k]){
                                         if(line.first == 0) line.first = k;
                                         else line.second = k;
                                         }
                            }
                    if(!checkParallel(P[1],P[j],P[line.first],P[line.second])) {Used[j] = false; continue;}
                    else{
                         Result = 5;
                         if(checkParallel(P[1],P[line.first],P[j],P[line.second])){
                                Result = 4;
                                whatIsIt(P[1],P[line.first],P[j],P[line.second]);                                      
                                }
                         else{
                              if(checkParallel(P[1],P[line.second],P[j],P[line.first])){
                                                           Result = 4;
                                                           whatIsIt(P[1],P[line.second],P[j],P[line.first]);  
                                                           }
                              else break;
                              }
                         }
                    
                    
                    Used[j] = false;
                    }
            //output
            printf("Case %d: %s\n",i,Shape[Result]);
            }
 //   getchar();
    return 0;
    }
Example #2
0
/* returns
   -1 if overlaps
    0 if no overlap cw
    1 if no overlap ccw
*/
static int quadHullsOverlap(skiatest::Reporter* reporter, const SkDQuad& quad1,
        const SkDQuad& quad2) {
    SkDVector sweep[2], tweep[2];
    setQuadHullSweep(quad1, sweep);
    setQuadHullSweep(quad2, tweep);
    double s0xs1 = sweep[0].crossCheck(sweep[1]);
    double s0xt0 = sweep[0].crossCheck(tweep[0]);
    double s1xt0 = sweep[1].crossCheck(tweep[0]);
    bool tBetweenS = s0xs1 > 0 ? s0xt0 > 0 && s1xt0 < 0 : s0xt0 < 0 && s1xt0 > 0;
    double s0xt1 = sweep[0].crossCheck(tweep[1]);
    double s1xt1 = sweep[1].crossCheck(tweep[1]);
    tBetweenS |= s0xs1 > 0 ? s0xt1 > 0 && s1xt1 < 0 : s0xt1 < 0 && s1xt1 > 0;
    double t0xt1 = tweep[0].crossCheck(tweep[1]);
    if (tBetweenS) {
        return -1;
    }
    if ((s0xt0 == 0 && s1xt1 == 0) || (s1xt0 == 0 && s0xt1 == 0)) {  // s0 to s1 equals t0 to t1
        return -1;
    }
    bool sBetweenT = t0xt1 > 0 ? s0xt0 < 0 && s0xt1 > 0 : s0xt0 > 0 && s0xt1 < 0;
    sBetweenT |= t0xt1 > 0 ? s1xt0 < 0 && s1xt1 > 0 : s1xt0 > 0 && s1xt1 < 0;
    if (sBetweenT) {
        return -1;
    }
    // if all of the sweeps are in the same half plane, then the order of any pair is enough
    if (s0xt0 >= 0 && s0xt1 >= 0 && s1xt0 >= 0 && s1xt1 >= 0) {
        return 0;
    }
    if (s0xt0 <= 0 && s0xt1 <= 0 && s1xt0 <= 0 && s1xt1 <= 0) {
        return 1;
    }
    // if the outside sweeps are greater than 180 degress:
        // first assume the inital tangents are the ordering
        // if the midpoint direction matches the inital order, that is enough
    SkDVector m0 = quad1.ptAtT(0.5) - quad1[0];
    SkDVector m1 = quad2.ptAtT(0.5) - quad2[0];
    double m0xm1 = m0.crossCheck(m1);
    if (s0xt0 > 0 && m0xm1 > 0) {
        return 0;
    }
    if (s0xt0 < 0 && m0xm1 < 0) {
        return 1;
    }
    REPORTER_ASSERT(reporter, s0xt0 != 0);
    return checkParallel(reporter, quad1, quad2);
}
Example #3
0
bool SkOpAngle::endsIntersect(const SkOpAngle& rh) const {
    SkPath::Verb lVerb = fSegment->verb();
    SkPath::Verb rVerb = rh.fSegment->verb();
    int lPts = SkPathOpsVerbToPoints(lVerb);
    int rPts = SkPathOpsVerbToPoints(rVerb);
    SkDLine rays[] = {{{fCurvePart[0], rh.fCurvePart[rPts]}},
            {{fCurvePart[0], fCurvePart[lPts]}}};
    if (rays[0][1] == rays[1][1]) {
        return checkParallel(rh);
    }
    double smallTs[2] = {-1, -1};
    bool limited[2] = {false, false};
    for (int index = 0; index < 2; ++index) {
        const SkOpSegment& segment = index ? *rh.fSegment : *fSegment;
        SkIntersections i;
        (*CurveIntersectRay[index ? rPts : lPts])(segment.pts(), rays[index], &i);
//      SkASSERT(i.used() >= 1);
//        if (i.used() <= 1) {
//            continue;
//        }
        double tStart = segment.t(index ? rh.fStart : fStart);
        double tEnd = segment.t(index ? rh.fComputedEnd : fComputedEnd);
        bool testAscends = index ? rh.fStart < rh.fComputedEnd : fStart < fComputedEnd;
        double t = testAscends ? 0 : 1;
        for (int idx2 = 0; idx2 < i.used(); ++idx2) {
            double testT = i[0][idx2];
            if (!approximately_between_orderable(tStart, testT, tEnd)) {
                continue;
            }
            if (approximately_equal_orderable(tStart, testT)) {
                continue;
            }
            smallTs[index] = t = testAscends ? SkTMax(t, testT) : SkTMin(t, testT);
            limited[index] = approximately_equal_orderable(t, tEnd);
        }
    }
#if 0
    if (smallTs[0] < 0 && smallTs[1] < 0) {  // if neither ray intersects, do endpoint sort
        double m0xm1 = 0;
        if (lVerb == SkPath::kLine_Verb) {
            SkASSERT(rVerb != SkPath::kLine_Verb);
            SkDVector m0 = rays[1][1] - fCurvePart[0];
            SkDPoint endPt;
            endPt.set(rh.fSegment->pts()[rh.fStart < rh.fEnd ? rPts : 0]);
            SkDVector m1 = endPt - fCurvePart[0];
            m0xm1 = m0.crossCheck(m1);
        }
        if (rVerb == SkPath::kLine_Verb) {
            SkDPoint endPt;
            endPt.set(fSegment->pts()[fStart < fEnd ? lPts : 0]);
            SkDVector m0 = endPt - fCurvePart[0];
            SkDVector m1 = rays[0][1] - fCurvePart[0];
            m0xm1 = m0.crossCheck(m1);
        }
        if (m0xm1 != 0) {
            return m0xm1 < 0;
        }
    }
#endif
    bool sRayLonger = false;
    SkDVector sCept = {0, 0};
    double sCeptT = -1;
    int sIndex = -1;
    bool useIntersect = false;
    for (int index = 0; index < 2; ++index) {
        if (smallTs[index] < 0) {
            continue;
        }
        const SkOpSegment& segment = index ? *rh.fSegment : *fSegment;
        const SkDPoint& dPt = segment.dPtAtT(smallTs[index]);
        SkDVector cept = dPt - rays[index][0];
        // If this point is on the curve, it should have been detected earlier by ordinary
        // curve intersection. This may be hard to determine in general, but for lines,
        // the point could be close to or equal to its end, but shouldn't be near the start.
        if ((index ? lPts : rPts) == 1) {
            SkDVector total = rays[index][1] - rays[index][0];
            if (cept.lengthSquared() * 2 < total.lengthSquared()) {
                continue;
            }
        }
        SkDVector end = rays[index][1] - rays[index][0];
        if (cept.fX * end.fX < 0 || cept.fY * end.fY < 0) {
            continue;
        }
        double rayDist = cept.length();
        double endDist = end.length();
        bool rayLonger = rayDist > endDist;
        if (limited[0] && limited[1] && rayLonger) {
            useIntersect = true;
            sRayLonger = rayLonger;
            sCept = cept;
            sCeptT = smallTs[index];
            sIndex = index;
            break;
        }
        double delta = fabs(rayDist - endDist);
        double minX, minY, maxX, maxY;
        minX = minY = SK_ScalarInfinity;
        maxX = maxY = -SK_ScalarInfinity;
        const SkDCubic& curve = index ? rh.fCurvePart : fCurvePart;
        int ptCount = index ? rPts : lPts;
        for (int idx2 = 0; idx2 <= ptCount; ++idx2) {
            minX = SkTMin(minX, curve[idx2].fX);
            minY = SkTMin(minY, curve[idx2].fY);
            maxX = SkTMax(maxX, curve[idx2].fX);
            maxY = SkTMax(maxY, curve[idx2].fY);
        }
        double maxWidth = SkTMax(maxX - minX, maxY - minY);
        delta /= maxWidth;
        if (delta > 1e-4 && (useIntersect ^= true)) {  // FIXME: move this magic number
            sRayLonger = rayLonger;
            sCept = cept;
            sCeptT = smallTs[index];
            sIndex = index;
        }
    }
    if (useIntersect) {
        const SkDCubic& curve = sIndex ? rh.fCurvePart : fCurvePart;
        const SkOpSegment& segment = sIndex ? *rh.fSegment : *fSegment;
        double tStart = segment.t(sIndex ? rh.fStart : fStart);
        SkDVector mid = segment.dPtAtT(tStart + (sCeptT - tStart) / 2) - curve[0];
        double septDir = mid.crossCheck(sCept);
        if (!septDir) {
            return checkParallel(rh);
        }
        return sRayLonger ^ (sIndex == 0) ^ (septDir < 0);
    } else {
        return checkParallel(rh);
    }
}
Example #4
0
static void testQuadAngles(skiatest::Reporter* reporter, const SkDQuad& quad1, const SkDQuad& quad2,
        int testNo, SkChunkAlloc* allocator) {
    SkPoint shortQuads[2][3];

    SkOpContour contour;
    SkOpGlobalState state(NULL  PATH_OPS_DEBUG_PARAMS(&contour));
    contour.init(&state, false, false);
    makeSegment(&contour, quad1, shortQuads[0], allocator);
    makeSegment(&contour, quad1, shortQuads[1], allocator);
    SkOpSegment* seg1 = contour.first();
    seg1->debugAddAngle(0, 1, allocator);
    SkOpSegment* seg2 = seg1->next();
    seg2->debugAddAngle(0, 1, allocator);
    int realOverlap = PathOpsAngleTester::ConvexHullOverlaps(*seg1->debugLastAngle(),
            *seg2->debugLastAngle());
    const SkDPoint& origin = quad1[0];
    REPORTER_ASSERT(reporter, origin == quad2[0]);
    double a1s = atan2(origin.fY - quad1[1].fY, quad1[1].fX - origin.fX);
    double a1e = atan2(origin.fY - quad1[2].fY, quad1[2].fX - origin.fX);
    double a2s = atan2(origin.fY - quad2[1].fY, quad2[1].fX - origin.fX);
    double a2e = atan2(origin.fY - quad2[2].fY, quad2[2].fX - origin.fX);
    bool oldSchoolOverlap = radianBetween(a1s, a2s, a1e)
        || radianBetween(a1s, a2e, a1e) || radianBetween(a2s, a1s, a2e)
        || radianBetween(a2s, a1e, a2e);
    int overlap = quadHullsOverlap(reporter, quad1, quad2);
    bool realMatchesOverlap = realOverlap == overlap || SK_ScalarPI - fabs(a2s - a1s) < 0.002;
    if (realOverlap != overlap) {
        SkDebugf("\nSK_ScalarPI - fabs(a2s - a1s) = %1.9g\n", SK_ScalarPI - fabs(a2s - a1s));
    }
    if (!realMatchesOverlap) {
        DumpQ(quad1, quad2, testNo);
    }
    REPORTER_ASSERT(reporter, realMatchesOverlap);
    if (oldSchoolOverlap != (overlap < 0)) {
        overlap = quadHullsOverlap(reporter, quad1, quad2);  // set a breakpoint and debug if assert fires
        REPORTER_ASSERT(reporter, oldSchoolOverlap == (overlap < 0));
    }
    SkDVector v1s = quad1[1] - quad1[0];
    SkDVector v1e = quad1[2] - quad1[0];
    SkDVector v2s = quad2[1] - quad2[0];
    SkDVector v2e = quad2[2] - quad2[0];
    double vDir[2] = { v1s.cross(v1e), v2s.cross(v2e) };
    bool ray1In2 = v1s.cross(v2s) * vDir[1] <= 0 && v1s.cross(v2e) * vDir[1] >= 0;
    bool ray2In1 = v2s.cross(v1s) * vDir[0] <= 0 && v2s.cross(v1e) * vDir[0] >= 0;
    if (overlap >= 0) {
        // verify that hulls really don't overlap
        REPORTER_ASSERT(reporter, !ray1In2);
        REPORTER_ASSERT(reporter, !ray2In1);
        bool ctrl1In2 = v1e.cross(v2s) * vDir[1] <= 0 && v1e.cross(v2e) * vDir[1] >= 0;
        REPORTER_ASSERT(reporter, !ctrl1In2);
        bool ctrl2In1 = v2e.cross(v1s) * vDir[0] <= 0 && v2e.cross(v1e) * vDir[0] >= 0;
        REPORTER_ASSERT(reporter, !ctrl2In1);
        // check answer against reference
        bruteForce(reporter, quad1, quad2, overlap > 0);
    }
    // continue end point rays and see if they intersect the opposite curve
    SkDLine rays[] = {{{origin, quad2[2]}}, {{origin, quad1[2]}}};
    const SkDQuad* quads[] = {&quad1, &quad2};
    SkDVector midSpokes[2];
    SkIntersections intersect[2];
    double minX, minY, maxX, maxY;
    minX = minY = SK_ScalarInfinity;
    maxX = maxY = -SK_ScalarInfinity;
    double maxWidth = 0;
    bool useIntersect = false;
    double smallestTs[] = {1, 1};
    for (unsigned index = 0; index < SK_ARRAY_COUNT(quads); ++index) {
        const SkDQuad& q = *quads[index];
        midSpokes[index] = q.ptAtT(0.5) - origin;
        minX = SkTMin(SkTMin(SkTMin(minX, origin.fX), q[1].fX), q[2].fX);
        minY = SkTMin(SkTMin(SkTMin(minY, origin.fY), q[1].fY), q[2].fY);
        maxX = SkTMax(SkTMax(SkTMax(maxX, origin.fX), q[1].fX), q[2].fX);
        maxY = SkTMax(SkTMax(SkTMax(maxY, origin.fY), q[1].fY), q[2].fY);
        maxWidth = SkTMax(maxWidth, SkTMax(maxX - minX, maxY - minY));
        intersect[index].intersectRay(q, rays[index]);
        const SkIntersections& i = intersect[index];
        REPORTER_ASSERT(reporter, i.used() >= 1);
        bool foundZero = false;
        double smallT = 1;
        for (int idx2 = 0; idx2 < i.used(); ++idx2) {
            double t = i[0][idx2];
            if (t == 0) {
                foundZero = true;
                continue;
            }
            if (smallT > t) {
                smallT = t;
            }
        }
        REPORTER_ASSERT(reporter, foundZero == true);
        if (smallT == 1) {
            continue;
        }
        SkDVector ray = q.ptAtT(smallT) - origin;
        SkDVector end = rays[index][1] - origin;
        if (ray.fX * end.fX < 0 || ray.fY * end.fY < 0) {
            continue;
        }
        double rayDist = ray.length();
        double endDist = end.length();
        double delta = fabs(rayDist - endDist) / maxWidth;
        if (delta > 1e-4) {
            useIntersect ^= true;
        }
        smallestTs[index] = smallT;
    }
    bool firstInside;
    if (useIntersect) {
        int sIndex = (int) (smallestTs[1] < 1);
        REPORTER_ASSERT(reporter, smallestTs[sIndex ^ 1] == 1);
        double t = smallestTs[sIndex];
        const SkDQuad& q = *quads[sIndex];
        SkDVector ray = q.ptAtT(t) - origin;
        SkDVector end = rays[sIndex][1] - origin;
        double rayDist = ray.length();
        double endDist = end.length();
        SkDVector mid = q.ptAtT(t / 2) - origin;
        double midXray = mid.crossCheck(ray);
        if (gPathOpsAngleIdeasVerbose) {
            SkDebugf("rayDist>endDist:%d sIndex==0:%d vDir[sIndex]<0:%d midXray<0:%d\n",
                    rayDist > endDist, sIndex == 0, vDir[sIndex] < 0, midXray < 0);
        }
        SkASSERT(SkScalarSignAsInt(SkDoubleToScalar(midXray))
            == SkScalarSignAsInt(SkDoubleToScalar(vDir[sIndex])));
        firstInside = (rayDist > endDist) ^ (sIndex == 0) ^ (vDir[sIndex] < 0);
    } else if (overlap >= 0) {
        return;  // answer has already been determined
    } else {
        firstInside = checkParallel(reporter, quad1, quad2);
    }
    if (overlap < 0) {
        SkDEBUGCODE(int realEnds =)
                PathOpsAngleTester::EndsIntersect(*seg1->debugLastAngle(),
                *seg2->debugLastAngle());
        SkASSERT(realEnds == (firstInside ? 1 : 0));
    }