Volatility FixedLocalVolSurface::localVolImpl(Time t, Real strike) const { t = std::min(times_.back(), std::max(t, times_.front())); const Size idx = std::distance(times_.begin(), std::lower_bound(times_.begin(), times_.end(), t)); if (close_enough(t, times_[idx])) { if (strikes_[idx]->front() < strikes_[idx]->back()) return localVolInterpol_[idx](strike, true); else return (*localVolMatrix_)[localVolMatrix_->rows()/2][idx]; } else { Real earlierStrike = strike, laterStrike = strike; if (lowerExtrapolation_ == ConstantExtrapolation) { if (strike < strikes_[idx-1]->front()) earlierStrike = strikes_[idx-1]->front(); if (strike < strikes_[idx]->front()) laterStrike = strikes_[idx]->front(); } if (upperExtrapolation_ == ConstantExtrapolation) { if (strike > strikes_[idx-1]->back()) earlierStrike = strikes_[idx-1]->back(); if (strike > strikes_[idx]->back()) laterStrike = strikes_[idx]->back(); } const Real earlyVol = (strikes_[idx-1]->front() < strikes_[idx-1]->back()) ? localVolInterpol_[idx-1](earlierStrike, true) : (*localVolMatrix_)[localVolMatrix_->rows()/2][idx-1]; const Real laterVol = localVolInterpol_[idx](laterStrike, true); return earlyVol + (laterVol-earlyVol)/(times_[idx]-times_[idx-1]) *(t-times_[idx-1]); } }
Size TimeGrid::index(Time t) const { Size i = closestIndex(t); if (close_enough(t,times_[i])) { return i; } else { if (t < times_.front()) { QL_FAIL("using inadequate time grid: all nodes " "are later than the required time t = " << std::setprecision(12) << t << " (earliest node is t1 = " << std::setprecision(12) << times_.front() << ")"); } else if (t > times_.back()) { QL_FAIL("using inadequate time grid: all nodes " "are earlier than the required time t = " << std::setprecision(12) << t << " (latest node is t1 = " << std::setprecision(12) << times_.back() << ")"); } else { Size j, k; if (t > times_[i]) { j = i; k = i+1; } else { j = i-1; k = i; } QL_FAIL("using inadequate time grid: the nodes closest " "to the required time t = " << std::setprecision(12) << t << " are t1 = " << std::setprecision(12) << times_[j] << " and t2 = " << std::setprecision(12) << times_[k]); } } }
static inline GLuint save_vertex(glb_data *d, const GLfloat * v) { int i; /* Inefficient, but we only do this a few times. Check to see if there's * an existing vertex which is `close enough' to this one. */ for (i = 0; i < d->nr_vertices; ++i) if (close_enough(v, d->vertices[i])) return i; if (d->nr_vertices_allocated <= d->nr_vertices) { if (d->vertices == 0) { d->vertices = (vertex *) malloc(INCR(d->nr_vertices_allocated) * sizeof (vertex)); } else { INCR_ALLOCATION(d->vertices, d->nr_vertices_allocated, vertex); } } d->vertices[d->nr_vertices][0] = v[0]; d->vertices[d->nr_vertices][1] = v[1]; d->vertices[d->nr_vertices][2] = v[2]; return d->nr_vertices++; }
Real GoldsteinLineSearch::operator()(Problem& P, EndCriteria::Type& ecType, const EndCriteria& endCriteria, const Real t_ini) { Constraint& constraint = P.constraint(); succeed_=true; bool maxIter = false; Real /*qtold,*/ t = t_ini; // see below, this is never used ? Size loopNumber = 0; Real q0 = P.functionValue(); Real qp0 = P.gradientNormValue(); Real tl = 0.0; Real tr = 0.0; qt_ = q0; qpt_ = (gradient_.empty()) ? qp0 : -DotProduct(gradient_,searchDirection_); // Initialize gradient gradient_ = Array(P.currentValue().size()); // Compute new point xtd_ = P.currentValue(); t = update(xtd_, searchDirection_, t, constraint); // Compute function value at the new point qt_ = P.value (xtd_); while ((qt_ - q0) < -beta_*t*qpt_ || (qt_ - q0) > -alpha_*t*qpt_) { if ((qt_ - q0) > -alpha_*t*qpt_) tr = t; else tl = t; ++loopNumber; // calculate the new step if (close_enough(tr, 0.0)) t *= extrapolation_; else t = (tl + tr) / 2.0; // Store old value of the function // qtold = qt_; // this is never used ? // New point value xtd_ = P.currentValue(); t = update(xtd_, searchDirection_, t, constraint); // Compute function value at the new point qt_ = P.value (xtd_); P.gradient (gradient_, xtd_); // and it squared norm maxIter = endCriteria.checkMaxIterations(loopNumber, ecType); if (maxIter) break; } if (maxIter) succeed_ = false; // Compute new gradient P.gradient(gradient_, xtd_); // and it squared norm qpt_ = DotProduct(gradient_, gradient_); // Return new step value return t; }
int main() { static_assert(close_enough(3,3), "..."); static_assert(!close_enough(3.1,3.0), "..."); static_assert(close_enough(3.000000000001,3.0), "..."); }
inline bool close_enough(Real x, Real y) { return close_enough(x,y,42); }
int main() { static_assert(sizeof(double *) == sizeof(std::unique_ptr<double>), "..."); static_assert(close_enough(3, 3), "..."); static_assert(!close_enough(3.1, 3.0), "..."); static_assert(close_enough(3.000000000001, 3.0), "..."); }
constexpr bool close_enough(T a, T b) { return close_enough(a, b, std::conditional_t< std::is_floating_point<T>::value, floating_point, exact >{}); }
/** * Function ConvertOutlineToPolygon * build a polygon (with holes) from a DRAWSEGMENT list, which is expected to be * a outline, therefore a closed main outline with perhaps closed inner outlines. * These closed inner outlines are considered as holes in the main outline * @param aSegList the initial list of drawsegments (only lines, circles and arcs). * @param aPolygons will contain the complex polygon. * @param aTolerance is the max distance between points that is still accepted as connected (internal units) * @param aErrorText is a wxString to return error message. * @param aErrorLocation is the optional position of the error in the outline */ bool ConvertOutlineToPolygon( std::vector<DRAWSEGMENT*>& aSegList, SHAPE_POLY_SET& aPolygons, wxString* aErrorText, unsigned int aTolerance, wxPoint* aErrorLocation ) { if( aSegList.size() == 0 ) return true; wxString msg; // Make a working copy of aSegList, because the list is modified during calculations std::vector< DRAWSEGMENT* > segList = aSegList; DRAWSEGMENT* graphic; wxPoint prevPt; // Find edge point with minimum x, this should be in the outer polygon // which will define the perimeter Edge.Cuts polygon. wxPoint xmin = wxPoint( INT_MAX, 0 ); int xmini = 0; for( size_t i = 0; i < segList.size(); i++ ) { graphic = (DRAWSEGMENT*) segList[i]; switch( graphic->GetShape() ) { case S_SEGMENT: { if( graphic->GetStart().x < xmin.x ) { xmin = graphic->GetStart(); xmini = i; } if( graphic->GetEnd().x < xmin.x ) { xmin = graphic->GetEnd(); xmini = i; } } break; case S_ARC: // Freerouter does not yet understand arcs, so approximate // an arc with a series of short lines and put those // line segments into the !same! PATH. { wxPoint pstart = graphic->GetArcStart(); wxPoint center = graphic->GetCenter(); double angle = -graphic->GetAngle(); double radius = graphic->GetRadius(); int steps = GetArcToSegmentCount( radius, ARC_LOW_DEF, angle / 10.0 ); wxPoint pt; for( int step = 1; step<=steps; ++step ) { double rotation = ( angle * step ) / steps; pt = pstart; RotatePoint( &pt, center, rotation ); if( pt.x < xmin.x ) { xmin = pt; xmini = i; } } } break; case S_CIRCLE: { wxPoint pt = graphic->GetCenter(); // pt has minimum x point pt.x -= graphic->GetRadius(); // when the radius <= 0, this is a mal-formed circle. Skip it if( graphic->GetRadius() > 0 && pt.x < xmin.x ) { xmin = pt; xmini = i; } } break; case S_CURVE: { graphic->RebuildBezierToSegmentsPointsList( graphic->GetWidth() ); for( unsigned int jj = 0; jj < graphic->GetBezierPoints().size(); jj++ ) { wxPoint pt = graphic->GetBezierPoints()[jj]; if( pt.x < xmin.x ) { xmin = pt; xmini = i; } } } break; case S_POLYGON: { const auto poly = graphic->GetPolyShape(); MODULE* module = aSegList[0]->GetParentModule(); double orientation = module ? module->GetOrientation() : 0.0; VECTOR2I offset = module ? module->GetPosition() : VECTOR2I( 0, 0 ); for( auto iter = poly.CIterate(); iter; iter++ ) { auto pt = *iter; RotatePoint( pt, orientation ); pt += offset; if( pt.x < xmin.x ) { xmin.x = pt.x; xmin.y = pt.y; xmini = i; } } } break; default: break; } } // Grab the left most point, assume its on the board's perimeter, and see if we // can put enough graphics together by matching endpoints to formulate a cohesive // polygon. graphic = (DRAWSEGMENT*) segList[xmini]; // The first DRAWSEGMENT is in 'graphic', ok to remove it from 'items' segList.erase( segList.begin() + xmini ); // Output the Edge.Cuts perimeter as circle or polygon. if( graphic->GetShape() == S_CIRCLE ) { int steps = GetArcToSegmentCount( graphic->GetRadius(), ARC_LOW_DEF, 360.0 ); TransformCircleToPolygon( aPolygons, graphic->GetCenter(), graphic->GetRadius(), steps ); } else if( graphic->GetShape() == S_POLYGON ) { MODULE* module = graphic->GetParentModule(); // NULL for items not in footprints double orientation = module ? module->GetOrientation() : 0.0; VECTOR2I offset = module ? module->GetPosition() : VECTOR2I( 0, 0 ); aPolygons.NewOutline(); for( auto it = graphic->GetPolyShape().CIterate( 0 ); it; it++ ) { auto pt = *it; RotatePoint( pt, orientation ); pt += offset; aPolygons.Append( pt ); } } else { // Polygon start point. Arbitrarily chosen end of the // segment and build the poly from here. wxPoint startPt = wxPoint( graphic->GetEnd() ); prevPt = graphic->GetEnd(); aPolygons.NewOutline(); aPolygons.Append( prevPt ); // Do not append the other end point yet of this 'graphic', this first // 'graphic' might be an arc or a curve. for(;;) { switch( graphic->GetShape() ) { case S_SEGMENT: { wxPoint nextPt; // Use the line segment end point furthest away from // prevPt as we assume the other end to be ON prevPt or // very close to it. if( close_st( prevPt, graphic->GetStart(), graphic->GetEnd() ) ) nextPt = graphic->GetEnd(); else nextPt = graphic->GetStart(); aPolygons.Append( nextPt ); prevPt = nextPt; } break; case S_ARC: // We do not support arcs in polygons, so approximate // an arc with a series of short lines and put those // line segments into the !same! PATH. { wxPoint pstart = graphic->GetArcStart(); wxPoint pend = graphic->GetArcEnd(); wxPoint pcenter = graphic->GetCenter(); double angle = -graphic->GetAngle(); double radius = graphic->GetRadius(); int steps = GetArcToSegmentCount( radius, ARC_LOW_DEF, angle / 10.0 ); if( !close_enough( prevPt, pstart, aTolerance ) ) { wxASSERT( close_enough( prevPt, graphic->GetArcEnd(), aTolerance ) ); angle = -angle; std::swap( pstart, pend ); } wxPoint nextPt; for( int step = 1; step<=steps; ++step ) { double rotation = ( angle * step ) / steps; nextPt = pstart; RotatePoint( &nextPt, pcenter, rotation ); aPolygons.Append( nextPt ); } prevPt = nextPt; } break; case S_CURVE: // We do not support Bezier curves in polygons, so approximate // with a series of short lines and put those // line segments into the !same! PATH. { wxPoint nextPt; bool reverse = false; // Use the end point furthest away from // prevPt as we assume the other end to be ON prevPt or // very close to it. if( close_st( prevPt, graphic->GetStart(), graphic->GetEnd() ) ) nextPt = graphic->GetEnd(); else { nextPt = graphic->GetStart(); reverse = true; } if( reverse ) { for( int jj = graphic->GetBezierPoints().size()-1; jj >= 0; jj-- ) aPolygons.Append( graphic->GetBezierPoints()[jj] ); } else { for( size_t jj = 0; jj < graphic->GetBezierPoints().size(); jj++ ) aPolygons.Append( graphic->GetBezierPoints()[jj] ); } prevPt = nextPt; } break; default: if( aErrorText ) { msg.Printf( "Unsupported DRAWSEGMENT type %s.", BOARD_ITEM::ShowShape( graphic->GetShape() ) ); *aErrorText << msg << "\n"; } if( aErrorLocation ) *aErrorLocation = graphic->GetPosition(); return false; } // Get next closest segment. graphic = findPoint( prevPt, segList, aTolerance ); // If there are no more close segments, check if the board // outline polygon can be closed. if( !graphic ) { if( close_enough( startPt, prevPt, aTolerance ) ) { // Close the polygon back to start point // aPolygons.Append( startPt ); // not needed } else { if( aErrorText ) { msg.Printf( _( "Unable to find segment with an endpoint of (%s, %s)." ), StringFromValue( MILLIMETRES, prevPt.x, true ), StringFromValue( MILLIMETRES, prevPt.y, true ) ); *aErrorText << msg << "\n"; } if( aErrorLocation ) *aErrorLocation = prevPt; return false; } break; } } } while( segList.size() ) { // emit a signal layers keepout for every interior polygon left... int hole = aPolygons.NewHole(); graphic = (DRAWSEGMENT*) segList[0]; segList.erase( segList.begin() ); // Both circles and polygons on the edge cuts layer are closed items that // do not connect to other elements, so we process them independently if( graphic->GetShape() == S_POLYGON ) { MODULE* module = graphic->GetParentModule(); // NULL for items not in footprints double orientation = module ? module->GetOrientation() : 0.0; VECTOR2I offset = module ? module->GetPosition() : VECTOR2I( 0, 0 ); for( auto it = graphic->GetPolyShape().CIterate(); it; it++ ) { auto val = *it; RotatePoint( val, orientation ); val += offset; aPolygons.Append( val, -1, hole ); } } else if( graphic->GetShape() == S_CIRCLE ) { // make a circle by segments; wxPoint center = graphic->GetCenter(); double angle = 3600.0; wxPoint start = center; int radius = graphic->GetRadius(); int steps = GetArcToSegmentCount( radius, ARC_LOW_DEF, 360.0 ); wxPoint nextPt; start.x += radius; for( int step = 0; step < steps; ++step ) { double rotation = ( angle * step ) / steps; nextPt = start; RotatePoint( &nextPt.x, &nextPt.y, center.x, center.y, rotation ); aPolygons.Append( nextPt, -1, hole ); } } else { // Polygon start point. Arbitrarily chosen end of the // segment and build the poly from here. wxPoint startPt( graphic->GetEnd() ); prevPt = graphic->GetEnd(); aPolygons.Append( prevPt, -1, hole ); // do not append the other end point yet, this first 'graphic' might be an arc for(;;) { switch( graphic->GetShape() ) { case S_SEGMENT: { wxPoint nextPt; // Use the line segment end point furthest away from // prevPt as we assume the other end to be ON prevPt or // very close to it. if( close_st( prevPt, graphic->GetStart(), graphic->GetEnd() ) ) { nextPt = graphic->GetEnd(); } else { nextPt = graphic->GetStart(); } prevPt = nextPt; aPolygons.Append( prevPt, -1, hole ); } break; case S_ARC: // Freerouter does not yet understand arcs, so approximate // an arc with a series of short lines and put those // line segments into the !same! PATH. { wxPoint pstart = graphic->GetArcStart(); wxPoint pend = graphic->GetArcEnd(); wxPoint pcenter = graphic->GetCenter(); double angle = -graphic->GetAngle(); int radius = graphic->GetRadius(); int steps = GetArcToSegmentCount( radius, ARC_LOW_DEF, angle / 10.0 ); if( !close_enough( prevPt, pstart, aTolerance ) ) { wxASSERT( close_enough( prevPt, graphic->GetArcEnd(), aTolerance ) ); angle = -angle; std::swap( pstart, pend ); } wxPoint nextPt; for( int step = 1; step <= steps; ++step ) { double rotation = ( angle * step ) / steps; nextPt = pstart; RotatePoint( &nextPt, pcenter, rotation ); aPolygons.Append( nextPt, -1, hole ); } prevPt = nextPt; } break; case S_CURVE: // We do not support Bezier curves in polygons, so approximate // with a series of short lines and put those // line segments into the !same! PATH. { wxPoint nextPt; bool reverse = false; // Use the end point furthest away from // prevPt as we assume the other end to be ON prevPt or // very close to it. if( close_st( prevPt, graphic->GetStart(), graphic->GetEnd() ) ) nextPt = graphic->GetEnd(); else { nextPt = graphic->GetStart(); reverse = true; } if( reverse ) { for( int jj = graphic->GetBezierPoints().size()-1; jj >= 0; jj-- ) aPolygons.Append( graphic->GetBezierPoints()[jj], -1, hole ); } else { for( size_t jj = 0; jj < graphic->GetBezierPoints().size(); jj++ ) aPolygons.Append( graphic->GetBezierPoints()[jj], -1, hole ); } prevPt = nextPt; } break; default: if( aErrorText ) { msg.Printf( "Unsupported DRAWSEGMENT type %s.", BOARD_ITEM::ShowShape( graphic->GetShape() ) ); *aErrorText << msg << "\n"; } if( aErrorLocation ) *aErrorLocation = graphic->GetPosition(); return false; } // Get next closest segment. graphic = findPoint( prevPt, segList, aTolerance ); // If there are no more close segments, check if polygon // can be closed. if( !graphic ) { if( close_enough( startPt, prevPt, aTolerance ) ) { // Close the polygon back to start point // aPolygons.Append( startPt, -1, hole ); // not needed } else { if( aErrorText ) { msg.Printf( _( "Unable to find segment with an endpoint of (%s, %s)." ), StringFromValue( MILLIMETRES, prevPt.x, true ), StringFromValue( MILLIMETRES, prevPt.y, true ) ); *aErrorText << msg << "\n"; } if( aErrorLocation ) *aErrorLocation = prevPt; return false; } break; } } } } return true; }
inline bool DiscretizedAsset::isOnTime(Time t) const { const TimeGrid& grid = method()->timeGrid(); return close_enough(grid[grid.index(t)],time()); }
inline void DiscretizedAsset::postAdjustValues() { if (!close_enough(time(),latestPostAdjustment_)) { postAdjustValuesImpl(); latestPostAdjustment_ = time(); } }