Example #1
0
IC	bool  dcTriListCollider::cylinderCrossesLine(const dReal* p,const dReal* R,dReal hlz,
						 const dReal* v0,const dReal* v1,const dReal* l,dVector3 pos){
	dReal _cos=dDOT14(l,R);

	if(!(dFabs(_cos)<1.f)) return false;
	
	dReal sin2=1.f-_cos*_cos;

	dVector3 vp={v0[0]-p[0],v0[1]-p[1],v0[2]-p[2]};
    dReal c1=dDOT(vp,l);
	dReal c2=dDOT14(vp,R);

	dReal t=(c2*_cos-c1)/sin2;
	dReal q=(c2-c1*_cos)/sin2;

	if(dFabs(q)>hlz) return false;

	dVector3 v01={v1[0]-v0[0],v1[1]-v0[1],v1[2]-v0[2]};
	dReal sidelength2=dDOT(v01,v01);

	if(t*t>sidelength2) return false;
	
	pos[0]=v0[0]+l[0]*t;
	pos[1]=v0[1]+l[1]*t;
	pos[2]=v0[2]+l[2]*t;

	return true;
	
}
Example #2
0
void GetBoxExtensions(dGeomID box,const dReal* axis,
					  const dReal	*pos,	const dReal	*rot,
					  float center_prg,dReal* lo_ext,dReal* hi_ext)
{
	R_ASSERT2(dGeomGetClass(box)==dBoxClass,"is not a box");
	dVector3 length;
	dGeomBoxGetLengths(box,length);
	dReal dif=dDOT(pos,axis)-center_prg;
	dReal ful_ext=dFabs(dDOT14(axis,rot+0))*length[0]
	+dFabs(dDOT14(axis,rot+1))*length[1]
	+dFabs(dDOT14(axis,rot+2))*length[2];
	ful_ext/=2.f;
	*lo_ext=-ful_ext+dif;
	*hi_ext=ful_ext+dif;
}
int dCollideCapsulePlane (dxGeom *o1, dxGeom *o2, int flags,
			    dContactGeom *contact, int skip)
{
  dIASSERT (skip >= (int)sizeof(dContactGeom));
  dIASSERT (o1->type == dCapsuleClass);
  dIASSERT (o2->type == dPlaneClass);
  dIASSERT ((flags & NUMC_MASK) >= 1);

  dxCapsule *ccyl = (dxCapsule*) o1;
  dxPlane *plane = (dxPlane*) o2;

  // collide the deepest capping sphere with the plane
  dReal sign = (dDOT14 (plane->p,o1->final_posr->R+2) > 0) ? REAL(-1.0) : REAL(1.0);
  dVector3 p;
  p[0] = o1->final_posr->pos[0] + o1->final_posr->R[2]  * ccyl->lz * REAL(0.5) * sign;
  p[1] = o1->final_posr->pos[1] + o1->final_posr->R[6]  * ccyl->lz * REAL(0.5) * sign;
  p[2] = o1->final_posr->pos[2] + o1->final_posr->R[10] * ccyl->lz * REAL(0.5) * sign;

  dReal k = dDOT (p,plane->p);
  dReal depth = plane->p[3] - k + ccyl->radius;
  if (depth < 0) return 0;
  contact->normal[0] = plane->p[0];
  contact->normal[1] = plane->p[1];
  contact->normal[2] = plane->p[2];
  contact->pos[0] = p[0] - plane->p[0] * ccyl->radius;
  contact->pos[1] = p[1] - plane->p[1] * ccyl->radius;
  contact->pos[2] = p[2] - plane->p[2] * ccyl->radius;
  contact->depth = depth;

  int ncontacts = 1;
  if ((flags & NUMC_MASK) >= 2) {
    // collide the other capping sphere with the plane
    p[0] = o1->final_posr->pos[0] - o1->final_posr->R[2]  * ccyl->lz * REAL(0.5) * sign;
    p[1] = o1->final_posr->pos[1] - o1->final_posr->R[6]  * ccyl->lz * REAL(0.5) * sign;
    p[2] = o1->final_posr->pos[2] - o1->final_posr->R[10] * ccyl->lz * REAL(0.5) * sign;

    k = dDOT (p,plane->p);
    depth = plane->p[3] - k + ccyl->radius;
    if (depth >= 0) {
      dContactGeom *c2 = CONTACT(contact,skip);
      c2->normal[0] = plane->p[0];
      c2->normal[1] = plane->p[1];
      c2->normal[2] = plane->p[2];
      c2->pos[0] = p[0] - plane->p[0] * ccyl->radius;
      c2->pos[1] = p[1] - plane->p[1] * ccyl->radius;
      c2->pos[2] = p[2] - plane->p[2] * ccyl->radius;
      c2->depth = depth;
      ncontacts = 2;
    }
  }

  for (int i=0; i < ncontacts; i++) {
    dContactGeom *currContact = CONTACT(contact,i*skip);
    currContact->g1 = o1;
    currContact->g2 = o2;
	currContact->side1 = -1;
    currContact->side2 = -1;
  }
  return ncontacts;
}
Example #4
0
int dCollideRayPlane (dxGeom *o1, dxGeom *o2, int flags,
		      dContactGeom *contact, int skip)
{
  dIASSERT (skip >= (int)sizeof(dContactGeom));
  dIASSERT (o1->type == dRayClass);
  dIASSERT (o2->type == dPlaneClass);
  dIASSERT ((flags & NUMC_MASK) >= 1);

  dxRay *ray = (dxRay*) o1;
  dxPlane *plane = (dxPlane*) o2;

  dReal alpha = plane->p[3] - dDOT (plane->p,ray->final_posr->pos);
  // note: if alpha > 0 the starting point is below the plane
  dReal nsign = (alpha > 0) ? REAL(-1.0) : REAL(1.0);
  dReal k = dDOT14(plane->p,ray->final_posr->R+2);
  if (k==0) return 0;		// ray parallel to plane
  alpha /= k;
  if (alpha < 0 || alpha > ray->length) return 0;
  contact->pos[0] = ray->final_posr->pos[0] + alpha*ray->final_posr->R[0*4+2];
  contact->pos[1] = ray->final_posr->pos[1] + alpha*ray->final_posr->R[1*4+2];
  contact->pos[2] = ray->final_posr->pos[2] + alpha*ray->final_posr->R[2*4+2];
  contact->normal[0] = nsign*plane->p[0];
  contact->normal[1] = nsign*plane->p[1];
  contact->normal[2] = nsign*plane->p[2];
  contact->depth = alpha;
  contact->g1 = ray;
  contact->g2 = plane;
  contact->side1 = -1;
  contact->side2 = -1;
  return 1;
}
Example #5
0
void GetCylinderExtensions(dGeomID cyl,const dReal* axis,
						   const dReal	*pos,	const dReal	*rot,
						   float center_prg,dReal* lo_ext,dReal* hi_ext)
{
	R_ASSERT2(dGeomGetClass(cyl)==dCylinderClassUser,"is not a cylinder");
	dReal radius,length;
	dGeomCylinderGetParams(cyl,&radius,&length);
	dReal dif=dDOT(pos,axis)-center_prg;
	dReal _cos=dFabs(dDOT14(axis,rot+1));
	dReal cos1=dDOT14(axis,rot+0);
	dReal cos3=dDOT14(axis,rot+2);
	dReal _sin=_sqrt(cos1*cos1+cos3*cos3);
	length/=2.f;
	dReal ful_ext=_cos*length+_sin*radius;
	*lo_ext=-ful_ext+dif;
	*hi_ext=ful_ext+dif;
}
Example #6
0
int dCollideCapsulePlane (dxGeom *o1, dxGeom *o2, int flags,
			    dContactGeom *contact, int skip)
{
  dxCapsule *ccyl = (dxCapsule*) o1;
  dxPlane *plane = (dxPlane*) o2;

  // collide the deepest capping sphere with the plane
  dReal sign = (dDOT14 (plane->p,o1->final_posr->R+2) > 0) ? REAL(-1.0) : REAL(1.0);
  dVector3 p;
  p[0] = o1->final_posr->pos[0] + dMUL(o1->final_posr->R[2],dMUL(ccyl->lz,dMUL(REAL(0.5),sign)));
  p[1] = o1->final_posr->pos[1] + dMUL(o1->final_posr->R[6],dMUL(ccyl->lz,dMUL(REAL(0.5),sign)));
  p[2] = o1->final_posr->pos[2] + dMUL(o1->final_posr->R[10],dMUL(ccyl->lz,dMUL(REAL(0.5),sign)));

  dReal k = dDOT (p,plane->p);
  dReal depth = plane->p[3] - k + ccyl->radius;
  if (depth < 0) return 0;
  contact->normal[0] = plane->p[0];
  contact->normal[1] = plane->p[1];
  contact->normal[2] = plane->p[2];
  contact->pos[0] = p[0] - dMUL(plane->p[0],ccyl->radius);
  contact->pos[1] = p[1] - dMUL(plane->p[1],ccyl->radius);
  contact->pos[2] = p[2] - dMUL(plane->p[2],ccyl->radius);
  contact->depth = depth;

  int ncontacts = 1;
  if ((flags & NUMC_MASK) >= 2) {
    // collide the other capping sphere with the plane
    p[0] = o1->final_posr->pos[0] - dMUL(o1->final_posr->R[2],dMUL(ccyl->lz,dMUL(REAL(0.5),sign)));
    p[1] = o1->final_posr->pos[1] - dMUL(o1->final_posr->R[6],dMUL(ccyl->lz,dMUL(REAL(0.5),sign)));
    p[2] = o1->final_posr->pos[2] - dMUL(o1->final_posr->R[10],dMUL(ccyl->lz,dMUL(REAL(0.5),sign)));

    k = dDOT (p,plane->p);
    depth = plane->p[3] - k + ccyl->radius;
    if (depth >= 0) {
      dContactGeom *c2 = CONTACT(contact,skip);
      c2->normal[0] = plane->p[0];
      c2->normal[1] = plane->p[1];
      c2->normal[2] = plane->p[2];
      c2->pos[0] = p[0] - dMUL(plane->p[0],ccyl->radius);
      c2->pos[1] = p[1] - dMUL(plane->p[1],ccyl->radius);
      c2->pos[2] = p[2] - dMUL(plane->p[2],ccyl->radius);
      c2->depth = depth;
      ncontacts = 2;
    }
  }

  for (int i=0; i < ncontacts; i++) {
    CONTACT(contact,i*skip)->g1 = o1;
    CONTACT(contact,i*skip)->g2 = o2;
  }
  return ncontacts;
}
Example #7
0
EXPORT_C dReal dGeomCapsulePointDepth (dGeomID g, dReal x, dReal y, dReal z)
{
  g->recomputePosr();
  dxCapsule *c = (dxCapsule*) g;

  const dReal* R = g->final_posr->R;
  const dReal* pos = g->final_posr->pos;
  
  dVector3 a;
  a[0] = x - pos[0];
  a[1] = y - pos[1];
  a[2] = z - pos[2];
  dReal beta = dDOT14(a,R+2);
  dReal lz2 = dMUL(c->lz,REAL(0.5));
  if (beta < -lz2) beta = -lz2;
  else if (beta > lz2) beta = lz2;
  a[0] = c->final_posr->pos[0] + dMUL(beta,R[0*4+2]);
  a[1] = c->final_posr->pos[1] + dMUL(beta,R[1*4+2]);
  a[2] = c->final_posr->pos[2] + dMUL(beta,R[2*4+2]);
  return c->radius -
    dSqrt (dMUL((x-a[0]),(x-a[0])) + dMUL((y-a[1]),(y-a[1])) + dMUL((z-a[2]),(z-a[2])));
}
Example #8
0
dReal dGeomCapsulePointDepth (dGeomID g, dReal x, dReal y, dReal z)
{
  dUASSERT (g && g->type == dCapsuleClass,"argument not a ccylinder");
  g->recomputePosr();
  dxCapsule *c = (dxCapsule*) g;

  const dReal* R = g->final_posr->R;
  const dReal* pos = g->final_posr->pos;
  
  dVector3 a;
  a[0] = x - pos[0];
  a[1] = y - pos[1];
  a[2] = z - pos[2];
  dReal beta = dDOT14(a,R+2);
  dReal lz2 = c->lz*REAL(0.5);
  if (beta < -lz2) beta = -lz2;
  else if (beta > lz2) beta = lz2;
  a[0] = c->final_posr->pos[0] + beta*R[0*4+2];
  a[1] = c->final_posr->pos[1] + beta*R[1*4+2];
  a[2] = c->final_posr->pos[2] + beta*R[2*4+2];
  return c->radius -
    dSqrt ((x-a[0])*(x-a[0]) + (y-a[1])*(y-a[1]) + (z-a[2])*(z-a[2]));
}
Example #9
0
static int ray_sphere_helper (dxRay *ray, dVector3 sphere_pos, dReal radius,
			      dContactGeom *contact, int mode)
{
  dVector3 q;
  q[0] = ray->final_posr->pos[0] - sphere_pos[0];
  q[1] = ray->final_posr->pos[1] - sphere_pos[1];
  q[2] = ray->final_posr->pos[2] - sphere_pos[2];
  dReal B = dDOT14(q,ray->final_posr->R+2);
  dReal C = dDOT(q,q) - radius*radius;
  // note: if C <= 0 then the start of the ray is inside the sphere
  dReal k = B*B - C;
  if (k < 0) return 0;
  k = dSqrt(k);
  dReal alpha;
  if (mode && C >= 0) {
    alpha = -B + k;
    if (alpha < 0) return 0;
  }
  else {
    alpha = -B - k;
    if (alpha < 0) {
      alpha = -B + k;
      if (alpha < 0) return 0;
    }
  }
  if (alpha > ray->length) return 0;
  contact->pos[0] = ray->final_posr->pos[0] + alpha*ray->final_posr->R[0*4+2];
  contact->pos[1] = ray->final_posr->pos[1] + alpha*ray->final_posr->R[1*4+2];
  contact->pos[2] = ray->final_posr->pos[2] + alpha*ray->final_posr->R[2*4+2];
  dReal nsign = (C < 0 || mode) ? REAL(-1.0) : REAL(1.0);
  contact->normal[0] = nsign*(contact->pos[0] - sphere_pos[0]);
  contact->normal[1] = nsign*(contact->pos[1] - sphere_pos[1]);
  contact->normal[2] = nsign*(contact->pos[2] - sphere_pos[2]);
  dNormalize3 (contact->normal);
  contact->depth = alpha;
  return 1;
}
Example #10
0
EXPORT_C int dBoxBox (const dVector3 p1, const dMatrix3 R1,
	     const dVector3 side1, const dVector3 p2,
	     const dMatrix3 R2, const dVector3 side2,
	     dVector3 normal, dReal *depth, int *return_code,
	     int maxc, dContactGeom *contact, int skip)
{
  const dReal fudge_factor = REAL(1.05);
  dVector3 p,pp,normalC;
  const dReal *normalR = 0;
  dReal A[3],B[3],R11,R12,R13,R21,R22,R23,R31,R32,R33,
    Q11,Q12,Q13,Q21,Q22,Q23,Q31,Q32,Q33,s,s2,l;
  int i,j,invert_normal,code;

  // get vector from centers of box 1 to box 2, relative to box 1
  p[0] = p2[0] - p1[0];
  p[1] = p2[1] - p1[1];
  p[2] = p2[2] - p1[2];
  dMULTIPLY1_331 (pp,R1,p);		// get pp = p relative to body 1

  // get side lengths / 2
  A[0] = dMUL(side1[0],REAL(0.5));
  A[1] = dMUL(side1[1],REAL(0.5));
  A[2] = dMUL(side1[2],REAL(0.5));
  B[0] = dMUL(side2[0],REAL(0.5));
  B[1] = dMUL(side2[1],REAL(0.5));
  B[2] = dMUL(side2[2],REAL(0.5));

  // Rij is R1'*R2, i.e. the relative rotation between R1 and R2
  R11 = dDOT44(R1+0,R2+0); R12 = dDOT44(R1+0,R2+1); R13 = dDOT44(R1+0,R2+2);
  R21 = dDOT44(R1+1,R2+0); R22 = dDOT44(R1+1,R2+1); R23 = dDOT44(R1+1,R2+2);
  R31 = dDOT44(R1+2,R2+0); R32 = dDOT44(R1+2,R2+1); R33 = dDOT44(R1+2,R2+2);

  Q11 = dFabs(R11); Q12 = dFabs(R12); Q13 = dFabs(R13);
  Q21 = dFabs(R21); Q22 = dFabs(R22); Q23 = dFabs(R23);
  Q31 = dFabs(R31); Q32 = dFabs(R32); Q33 = dFabs(R33);

  // for all 15 possible separating axes:
  //   * see if the axis separates the boxes. if so, return 0.
  //   * find the depth of the penetration along the separating axis (s2)
  //   * if this is the largest depth so far, record it.
  // the normal vector will be set to the separating axis with the smallest
  // depth. note: normalR is set to point to a column of R1 or R2 if that is
  // the smallest depth normal so far. otherwise normalR is 0 and normalC is
  // set to a vector relative to body 1. invert_normal is 1 if the sign of
  // the normal should be flipped.

#define TST(expr1,expr2,norm,cc) \
  s2 = dFabs(expr1) - (expr2); \
  if (s2 > 0) return 0; \
  if (s2 > s) { \
    s = s2; \
    normalR = norm; \
    invert_normal = ((expr1) < 0); \
    code = (cc); \
  }

  s = -dInfinity;
  invert_normal = 0;
  code = 0;

  // separating axis = u1,u2,u3
  TST (pp[0],(A[0] + dMUL(B[0],Q11) + dMUL(B[1],Q12) + dMUL(B[2],Q13)),R1+0,1);
  TST (pp[1],(A[1] + dMUL(B[0],Q21) + dMUL(B[1],Q22) + dMUL(B[2],Q23)),R1+1,2);
  TST (pp[2],(A[2] + dMUL(B[0],Q31) + dMUL(B[1],Q32) + dMUL(B[2],Q33)),R1+2,3);

  // separating axis = v1,v2,v3
  TST (dDOT41(R2+0,p),(dMUL(A[0],Q11) + dMUL(A[1],Q21) + dMUL(A[2],Q31) + B[0]),R2+0,4);
  TST (dDOT41(R2+1,p),(dMUL(A[0],Q12) + dMUL(A[1],Q22) + dMUL(A[2],Q32) + B[1]),R2+1,5);
  TST (dDOT41(R2+2,p),(dMUL(A[0],Q13) + dMUL(A[1],Q23) + dMUL(A[2],Q33) + B[2]),R2+2,6);

  // note: cross product axes need to be scaled when s is computed.
  // normal (n1,n2,n3) is relative to box 1.
#undef TST
#define TST(expr1,expr2,n1,n2,n3,cc) \
  s2 = dFabs(expr1) - (expr2); \
  if (s2 > 0) return 0; \
  l = dSqrt (dMUL((n1),(n1)) + dMUL((n2),(n2)) + dMUL((n3),(n3))); \
  if (l > 0) { \
    s2 = dDIV(s2,l); \
    if (dMUL(s2,fudge_factor) > s) { \
      s = s2; \
      normalR = 0; \
      normalC[0] = dDIV((n1),l); normalC[1] = dDIV((n2),l); normalC[2] = dDIV((n3),l); \
      invert_normal = ((expr1) < 0); \
      code = (cc); \
    } \
  }

  // separating axis = u1 x (v1,v2,v3)
  TST((dMUL(pp[2],R21)-dMUL(pp[1],R31)),(dMUL(A[1],Q31)+dMUL(A[2],Q21)+dMUL(B[1],Q13)+dMUL(B[2],Q12)),0,-R31,R21,7);
  TST((dMUL(pp[2],R22)-dMUL(pp[1],R32)),(dMUL(A[1],Q32)+dMUL(A[2],Q22)+dMUL(B[0],Q13)+dMUL(B[2],Q11)),0,-R32,R22,8);
  TST((dMUL(pp[2],R23)-dMUL(pp[1],R33)),(dMUL(A[1],Q33)+dMUL(A[2],Q23)+dMUL(B[0],Q12)+dMUL(B[1],Q11)),0,-R33,R23,9);

  // separating axis = u2 x (v1,v2,v3)
  TST((dMUL(pp[0],R31)-dMUL(pp[2],R11)),(dMUL(A[0],Q31)+dMUL(A[2],Q11)+dMUL(B[1],Q23)+dMUL(B[2],Q22)),R31,0,-R11,10);
  TST((dMUL(pp[0],R32)-dMUL(pp[2],R12)),(dMUL(A[0],Q32)+dMUL(A[2],Q12)+dMUL(B[0],Q23)+dMUL(B[2],Q21)),R32,0,-R12,11);
  TST((dMUL(pp[0],R33)-dMUL(pp[2],R13)),(dMUL(A[0],Q33)+dMUL(A[2],Q13)+dMUL(B[0],Q22)+dMUL(B[1],Q21)),R33,0,-R13,12);

  // separating axis = u3 x (v1,v2,v3)
  TST((dMUL(pp[1],R11)-dMUL(pp[0],R21)),(dMUL(A[0],Q21)+dMUL(A[1],Q11)+dMUL(B[1],Q33)+dMUL(B[2],Q32)),-R21,R11,0,13);
  TST((dMUL(pp[1],R12)-dMUL(pp[0],R22)),(dMUL(A[0],Q22)+dMUL(A[1],Q12)+dMUL(B[0],Q33)+dMUL(B[2],Q31)),-R22,R12,0,14);
  TST((dMUL(pp[1],R13)-dMUL(pp[0],R23)),(dMUL(A[0],Q23)+dMUL(A[1],Q13)+dMUL(B[0],Q32)+dMUL(B[1],Q31)),-R23,R13,0,15);

#undef TST

  if (!code) return 0;

  // if we get to this point, the boxes interpenetrate. compute the normal
  // in global coordinates.
  if (normalR) {
    normal[0] = normalR[0];
    normal[1] = normalR[4];
    normal[2] = normalR[8];
  }
  else {
    dMULTIPLY0_331 (normal,R1,normalC);
  }
  if (invert_normal) {
    normal[0] = -normal[0];
    normal[1] = -normal[1];
    normal[2] = -normal[2];
  }
  *depth = -s;

  // compute contact point(s)

  if (code > 6) {
    // an edge from box 1 touches an edge from box 2.
    // find a point pa on the intersecting edge of box 1
    dVector3 pa;
    dReal sign;
    for (i=0; i<3; i++) pa[i] = p1[i];
    for (j=0; j<3; j++) {
      sign = (dDOT14(normal,R1+j) > 0) ? REAL(1.0) : REAL(-1.0);
      for (i=0; i<3; i++) pa[i] += dMUL(sign,dMUL(A[j],R1[i*4+j]));
    }

    // find a point pb on the intersecting edge of box 2
    dVector3 pb;
    for (i=0; i<3; i++) pb[i] = p2[i];
    for (j=0; j<3; j++) {
      sign = (dDOT14(normal,R2+j) > 0) ? REAL(-1.0) : REAL(1.0);
      for (i=0; i<3; i++) pb[i] += dMUL(sign,dMUL(B[j],R2[i*4+j]));
    }

    dReal alpha,beta;
    dVector3 ua,ub;
    for (i=0; i<3; i++) ua[i] = R1[((code)-7)/3 + i*4];
    for (i=0; i<3; i++) ub[i] = R2[((code)-7)%3 + i*4];

    dLineClosestApproach (pa,ua,pb,ub,&alpha,&beta);
    for (i=0; i<3; i++) pa[i] += dMUL(ua[i],alpha);
    for (i=0; i<3; i++) pb[i] += dMUL(ub[i],beta);

    for (i=0; i<3; i++) contact[0].pos[i] = dMUL(REAL(0.5),(pa[i]+pb[i]));
    contact[0].depth = *depth;
    *return_code = code;
    return 1;
  }

  // okay, we have a face-something intersection (because the separating
  // axis is perpendicular to a face). define face 'a' to be the reference
  // face (i.e. the normal vector is perpendicular to this) and face 'b' to be
  // the incident face (the closest face of the other box).

  const dReal *Ra,*Rb,*pa,*pb,*Sa,*Sb;
  if (code <= 3) {
    Ra = R1;
    Rb = R2;
    pa = p1;
    pb = p2;
    Sa = A;
    Sb = B;
  }
  else {
    Ra = R2;
    Rb = R1;
    pa = p2;
    pb = p1;
    Sa = B;
    Sb = A;
  }

  // nr = normal vector of reference face dotted with axes of incident box.
  // anr = absolute values of nr.
  dVector3 normal2,nr,anr;
  if (code <= 3) {
    normal2[0] = normal[0];
    normal2[1] = normal[1];
    normal2[2] = normal[2];
  }
  else {
    normal2[0] = -normal[0];
    normal2[1] = -normal[1];
    normal2[2] = -normal[2];
  }
  dMULTIPLY1_331 (nr,Rb,normal2);
  anr[0] = dFabs (nr[0]);
  anr[1] = dFabs (nr[1]);
  anr[2] = dFabs (nr[2]);

  // find the largest compontent of anr: this corresponds to the normal
  // for the indident face. the other axis numbers of the indicent face
  // are stored in a1,a2.
  int lanr,a1,a2;
  if (anr[1] > anr[0]) {
    if (anr[1] > anr[2]) {
      a1 = 0;
      lanr = 1;
      a2 = 2;
    }
    else {
      a1 = 0;
      a2 = 1;
      lanr = 2;
    }
  }
  else {
    if (anr[0] > anr[2]) {
      lanr = 0;
      a1 = 1;
      a2 = 2;
    }
    else {
      a1 = 0;
      a2 = 1;
      lanr = 2;
    }
  }

  // compute center point of incident face, in reference-face coordinates
  dVector3 center;
  if (nr[lanr] < 0) {
    for (i=0; i<3; i++) center[i] = pb[i] - pa[i] + dMUL(Sb[lanr],Rb[i*4+lanr]);
  }
  else {
    for (i=0; i<3; i++) center[i] = pb[i] - pa[i] - dMUL(Sb[lanr],Rb[i*4+lanr]);
  }

  // find the normal and non-normal axis numbers of the reference box
  int codeN,code1,code2;
  if (code <= 3) codeN = code-1; else codeN = code-4;
  if (codeN==0) {
    code1 = 1;
    code2 = 2;
  }
  else if (codeN==1) {
    code1 = 0;
    code2 = 2;
  }
  else {
    code1 = 0;
    code2 = 1;
  }

  // find the four corners of the incident face, in reference-face coordinates
  dReal quad[8];	// 2D coordinate of incident face (x,y pairs)
  dReal c1,c2,m11,m12,m21,m22;
  c1 = dDOT14 (center,Ra+code1);
  c2 = dDOT14 (center,Ra+code2);
  // optimize this? - we have already computed this data above, but it is not
  // stored in an easy-to-index format. for now it's quicker just to recompute
  // the four dot products.
  m11 = dDOT44 (Ra+code1,Rb+a1);
  m12 = dDOT44 (Ra+code1,Rb+a2);
  m21 = dDOT44 (Ra+code2,Rb+a1);
  m22 = dDOT44 (Ra+code2,Rb+a2);
  {
    dReal k1 = dMUL(m11,Sb[a1]);
    dReal k2 = dMUL(m21,Sb[a1]);
    dReal k3 = dMUL(m12,Sb[a2]);
    dReal k4 = dMUL(m22,Sb[a2]);
    quad[0] = c1 - k1 - k3;
    quad[1] = c2 - k2 - k4;
    quad[2] = c1 - k1 + k3;
    quad[3] = c2 - k2 + k4;
    quad[4] = c1 + k1 + k3;
    quad[5] = c2 + k2 + k4;
    quad[6] = c1 + k1 - k3;
    quad[7] = c2 + k2 - k4;
  }

  // find the size of the reference face
  dReal rect[2];
  rect[0] = Sa[code1];
  rect[1] = Sa[code2];

  // intersect the incident and reference faces
  dReal ret[16];
  int n = intersectRectQuad (rect,quad,ret);
  if (n < 1) return 0;		// this should never happen

  // convert the intersection points into reference-face coordinates,
  // and compute the contact position and depth for each point. only keep
  // those points that have a positive (penetrating) depth. delete points in
  // the 'ret' array as necessary so that 'point' and 'ret' correspond.
  dReal point[3*8];		// penetrating contact points
  dReal dep[8];			// depths for those points
  dReal det1 = dRecip(dMUL(m11,m22) - dMUL(m12,m21));
  m11 = dMUL(m11,det1);
  m12 = dMUL(m12,det1);
  m21 = dMUL(m21,det1);
  m22 = dMUL(m22,det1);
  int cnum = 0;			// number of penetrating contact points found
  for (j=0; j < n; j++) {
    dReal k1 =  dMUL(m22,(ret[j*2]-c1)) - dMUL(m12,(ret[j*2+1]-c2));
    dReal k2 = -dMUL(m21,(ret[j*2]-c1)) + dMUL(m11,(ret[j*2+1]-c2));
    for (i=0; i<3; i++) point[cnum*3+i] =
			  center[i] + dMUL(k1,Rb[i*4+a1]) + dMUL(k2,Rb[i*4+a2]);
    dep[cnum] = Sa[codeN] - dDOT(normal2,point+cnum*3);
    if (dep[cnum] >= 0) {
      ret[cnum*2] = ret[j*2];
      ret[cnum*2+1] = ret[j*2+1];
      cnum++;
    }
  }
  if (cnum < 1) return 0;	// this should never happen

  // we can't generate more contacts than we actually have
  if (maxc > cnum) maxc = cnum;
  if (maxc < 1) maxc = 1;

  if (cnum <= maxc) {
    // we have less contacts than we need, so we use them all
    for (j=0; j < cnum; j++) {
      dContactGeom *con = CONTACT(contact,skip*j);
      for (i=0; i<3; i++) con->pos[i] = point[j*3+i] + pa[i];
      con->depth = dep[j];
    }
  }
  else {
    // we have more contacts than are wanted, some of them must be culled.
    // find the deepest point, it is always the first contact.
    int i1 = 0;
    dReal maxdepth = dep[0];
    for (i=1; i<cnum; i++) {
      if (dep[i] > maxdepth) {
	maxdepth = dep[i];
	i1 = i;
      }
    }

    int iret[8];
    cullPoints (cnum,ret,maxc,i1,iret);

    for (j=0; j < maxc; j++) {
      dContactGeom *con = CONTACT(contact,skip*j);
      for (i=0; i<3; i++) con->pos[i] = point[iret[j]*3+i] + pa[i];
      con->depth = dep[iret[j]];
    }
    cnum = maxc;
  }

  *return_code = code;
  return cnum;
}
Example #11
0
int dCollideBoxPlane (dxGeom *o1, dxGeom *o2,
		      int flags, dContactGeom *contact, int skip)
{
  dxBox *box = (dxBox*) o1;
  dxPlane *plane = (dxPlane*) o2;

  contact->g1 = o1;
  contact->g2 = o2;
  int ret = 0;

  //@@@ problem: using 4-vector (plane->p) as 3-vector (normal).
  const dReal *R = o1->final_posr->R;		// rotation of box
  const dReal *n = plane->p;		// normal vector

  // project sides lengths along normal vector, get absolute values
  dReal Q1 = dDOT14(n,R+0);
  dReal Q2 = dDOT14(n,R+1);
  dReal Q3 = dDOT14(n,R+2);
  dReal A1 = dMUL(box->side[0],Q1);
  dReal A2 = dMUL(box->side[1],Q2);
  dReal A3 = dMUL(box->side[2],Q3);
  dReal B1 = dFabs(A1);
  dReal B2 = dFabs(A2);
  dReal B3 = dFabs(A3);

  // early exit test
  dReal depth = plane->p[3] + dMUL(REAL(0.5),(B1+B2+B3)) - dDOT(n,o1->final_posr->pos);
  if (depth < 0) return 0;

  // find number of contacts requested
  int maxc = flags & NUMC_MASK;
  if (maxc < 1) maxc = 1;
  if (maxc > 3) maxc = 3;	// no more than 3 contacts per box allowed

  // find deepest point
  dVector3 p;
  p[0] = o1->final_posr->pos[0];
  p[1] = o1->final_posr->pos[1];
  p[2] = o1->final_posr->pos[2];
#define FOO(i,op) \
  p[0] op dMUL(REAL(0.5),dMUL(box->side[i],R[0+i])); \
  p[1] op dMUL(REAL(0.5),dMUL(box->side[i],R[4+i])); \
  p[2] op dMUL(REAL(0.5),dMUL(box->side[i],R[8+i]));
#define BAR(i,iinc) if (A ## iinc > 0) { FOO(i,-=) } else { FOO(i,+=) }
  BAR(0,1);
  BAR(1,2);
  BAR(2,3);
#undef FOO
#undef BAR

  // the deepest point is the first contact point
  contact->pos[0] = p[0];
  contact->pos[1] = p[1];
  contact->pos[2] = p[2];
  contact->normal[0] = n[0];
  contact->normal[1] = n[1];
  contact->normal[2] = n[2];
  contact->depth = depth;
  ret = 1;		// ret is number of contact points found so far
  if (maxc == 1) goto done;

  // get the second and third contact points by starting from `p' and going
  // along the two sides with the smallest projected length.

#define FOO(i,j,op) \
  CONTACT(contact,i*skip)->pos[0] = p[0] op dMUL(box->side[j],R[0+j]); \
  CONTACT(contact,i*skip)->pos[1] = p[1] op dMUL(box->side[j],R[4+j]); \
  CONTACT(contact,i*skip)->pos[2] = p[2] op dMUL(box->side[j],R[8+j]);
#define BAR(ctact,side,sideinc) \
  depth -= B ## sideinc; \
  if (depth < 0) goto done; \
  if (A ## sideinc > 0) { FOO(ctact,side,+) } else { FOO(ctact,side,-) } \
  CONTACT(contact,ctact*skip)->depth = depth; \
  ret++;

  CONTACT(contact,skip)->normal[0] = n[0];
  CONTACT(contact,skip)->normal[1] = n[1];
  CONTACT(contact,skip)->normal[2] = n[2];
  if (maxc == 3) {
    CONTACT(contact,2*skip)->normal[0] = n[0];
    CONTACT(contact,2*skip)->normal[1] = n[1];
    CONTACT(contact,2*skip)->normal[2] = n[2];
  }

  if (B1 < B2) {
    if (B3 < B1) goto use_side_3; else {
      BAR(1,0,1);	// use side 1
      if (maxc == 2) goto done;
      if (B2 < B3) goto contact2_2; else goto contact2_3;
    }
  }
  else {
    if (B3 < B2) {
      use_side_3:	// use side 3
      BAR(1,2,3);
      if (maxc == 2) goto done;
      if (B1 < B2) goto contact2_1; else goto contact2_2;
    }
    else {
      BAR(1,1,2);	// use side 2
      if (maxc == 2) goto done;
      if (B1 < B3) goto contact2_1; else goto contact2_3;
    }
  }

  contact2_1: BAR(2,0,1); goto done;
  contact2_2: BAR(2,1,2); goto done;
  contact2_3: BAR(2,2,3); goto done;
#undef FOO
#undef BAR

 done:
  for (int i=0; i<ret; i++) {
    CONTACT(contact,i*skip)->g1 = o1;
    CONTACT(contact,i*skip)->g2 = o2;
  }
  return ret;
}
Example #12
0
// Ray - Cylinder collider by David Walters (June 2006)
int dCollideRayCylinder( dxGeom *o1, dxGeom *o2, int flags, dContactGeom *contact, int skip )
{
	dIASSERT( skip >= (int)sizeof( dContactGeom ) );
	dIASSERT( o1->type == dRayClass );
	dIASSERT( o2->type == dCylinderClass );
	dIASSERT( (flags & NUMC_MASK) >= 1 );

	dxRay* ray = (dxRay*)( o1 );
	dxCylinder* cyl = (dxCylinder*)( o2 );

	// Fill in contact information.
	contact->g1 = ray;
	contact->g2 = cyl;
	contact->side1 = -1;
	contact->side2 = -1;

	const dReal half_length = cyl->lz * REAL( 0.5 );

	//
	// Compute some useful info
	//

	dVector3 q, r;
	dReal d, C, k;

	// Vector 'r', line segment from C to R (ray start) ( r = R - C )
	r[ 0 ] = ray->final_posr->pos[0] - cyl->final_posr->pos[0];
	r[ 1 ] = ray->final_posr->pos[1] - cyl->final_posr->pos[1];
	r[ 2 ] = ray->final_posr->pos[2] - cyl->final_posr->pos[2];

	// Distance that ray start is along cyl axis ( Z-axis direction )
	d = dDOT41( cyl->final_posr->R + 2, r );

	//
	// Compute vector 'q' representing the shortest line from R to the cylinder z-axis (Cz).
	//
	// Point on axis ( in world space ):	cp = ( d * Cz ) + C
	//
	// Line 'q' from R to cp:				q = cp - R
	//										q = ( d * Cz ) + C - R
	//										q = ( d * Cz ) - ( R - C )

	q[ 0 ] = ( d * cyl->final_posr->R[0*4+2] ) - r[ 0 ];
	q[ 1 ] = ( d * cyl->final_posr->R[1*4+2] ) - r[ 1 ];
	q[ 2 ] = ( d * cyl->final_posr->R[2*4+2] ) - r[ 2 ];


	// Compute square length of 'q'. Subtract from radius squared to
	// get square distance 'C' between the line q and the radius.

	// if C < 0 then ray start position is within infinite extension of cylinder

	C = dDOT( q, q ) - ( cyl->radius * cyl->radius );

	// Compute the projection of ray direction normal onto cylinder direction normal.
	dReal uv = dDOT44( cyl->final_posr->R+2, ray->final_posr->R+2 );



	//
	// Find ray collision with infinite cylinder
	//

	// Compute vector from end of ray direction normal to projection on cylinder direction normal.
	r[ 0 ] = ( uv * cyl->final_posr->R[0*4+2] ) - ray->final_posr->R[0*4+2];
	r[ 1 ] = ( uv * cyl->final_posr->R[1*4+2] ) - ray->final_posr->R[1*4+2];
	r[ 2 ] = ( uv * cyl->final_posr->R[2*4+2] ) - ray->final_posr->R[2*4+2];


	// Quadratic Formula Magic
	// Compute discriminant 'k':

	// k < 0 : No intersection
	// k = 0 : Tangent
	// k > 0 : Intersection

	dReal A = dDOT( r, r );
	dReal B = 2 * dDOT( q, r );

	k = B*B - 4*A*C;




	//
	// Collision with Flat Caps ?
	//

	// No collision with cylinder edge. ( Use epsilon here or we miss some obvious cases )
	if ( k < dEpsilon && C <= 0 )
	{
		// The ray does not intersect the edge of the infinite cylinder,
		// but the ray start is inside and so must run parallel to the axis.
		// It may yet intersect an end cap. The following cases are valid:

		//        -ve-cap , -half              centre               +half , +ve-cap
		//  <<================|-------------------|------------->>>---|================>>
		//                    |                                       |
		//                    |                              d------------------->    1.
		//   2.    d------------------>                               |
		//   3.    <------------------d                               |
		//                    |                              <-------------------d    4.
		//                    |                                       |
		//  <<================|-------------------|------------->>>---|===============>>

		// Negative if the ray and cylinder axes point in opposite directions.
		const dReal uvsign = ( uv < 0 ) ? REAL( -1.0 ) : REAL( 1.0 );

		// Negative if the ray start is inside the cylinder
		const dReal internal = ( d >= -half_length && d <= +half_length ) ? REAL( -1.0 ) : REAL( 1.0 );

		// Ray and Cylinder axes run in the same direction ( cases 1, 2 )
		// Ray and Cylinder axes run in opposite directions ( cases 3, 4 )
		if ( ( ( uv > 0 ) && ( d + ( uvsign * ray->length ) < half_length * internal ) ) ||
		     ( ( uv < 0 ) && ( d + ( uvsign * ray->length ) > half_length * internal ) ) )
		{
			return 0; // No intersection with caps or curved surface.
		}

		// Compute depth (distance from ray to cylinder)
		contact->depth = ( ( -uvsign * d ) - ( internal * half_length ) );

		// Compute contact point.
		contact->pos[0] = ray->final_posr->pos[0] + ( contact->depth * ray->final_posr->R[0*4+2] );
		contact->pos[1] = ray->final_posr->pos[1] + ( contact->depth * ray->final_posr->R[1*4+2] );
		contact->pos[2] = ray->final_posr->pos[2] + ( contact->depth * ray->final_posr->R[2*4+2] );

		// Compute reflected contact normal.
		contact->normal[0] = uvsign * ( cyl->final_posr->R[0*4+2] );
		contact->normal[1] = uvsign * ( cyl->final_posr->R[1*4+2] );
		contact->normal[2] = uvsign * ( cyl->final_posr->R[2*4+2] );

		// Contact!
		return 1;
	}



	//
	// Collision with Curved Edge ?
	//

	if ( k > 0 )
	{
		// Finish off quadratic formula to get intersection co-efficient
		k = dSqrt( k );
		A = dRecip( 2 * A );

		// Compute distance along line to contact point.
		dReal alpha = ( -B - k ) * A;
		if ( alpha < 0 )
		{
			// Flip in the other direction.
			alpha = ( -B + k ) * A;
		}

		// Intersection point is within ray length?
		if ( alpha >= 0 && alpha <= ray->length )
		{
			// The ray intersects the infinite cylinder!

			// Compute contact point.
			contact->pos[0] = ray->final_posr->pos[0] + ( alpha * ray->final_posr->R[0*4+2] );
			contact->pos[1] = ray->final_posr->pos[1] + ( alpha * ray->final_posr->R[1*4+2] );
			contact->pos[2] = ray->final_posr->pos[2] + ( alpha * ray->final_posr->R[2*4+2] );

			// q is the vector from the cylinder centre to the contact point.
			q[0] = contact->pos[0] - cyl->final_posr->pos[0];
			q[1] = contact->pos[1] - cyl->final_posr->pos[1];
			q[2] = contact->pos[2] - cyl->final_posr->pos[2];

			// Compute the distance along the cylinder axis of this contact point.
			d = dDOT14( q, cyl->final_posr->R+2 );

			// Check to see if the intersection point is between the flat end caps
			if ( d >= -half_length && d <= +half_length )
			{
				// Flip the normal if the start point is inside the cylinder.
				const dReal nsign = ( C < 0 ) ? REAL( -1.0 ) : REAL( 1.0 );

				// Compute contact normal.
				contact->normal[0] = nsign * (contact->pos[0] - (cyl->final_posr->pos[0] + d*cyl->final_posr->R[0*4+2]));
				contact->normal[1] = nsign * (contact->pos[1] - (cyl->final_posr->pos[1] + d*cyl->final_posr->R[1*4+2]));
				contact->normal[2] = nsign * (contact->pos[2] - (cyl->final_posr->pos[2] + d*cyl->final_posr->R[2*4+2]));
				dNormalize3( contact->normal );

				// Store depth.
				contact->depth = alpha;

				// Contact!
				return 1;
			}
		}
	}

	// No contact with anything.
	return 0;
}
Example #13
0
int dCollideSphereBox (dxGeom *o1, dxGeom *o2, int flags,
		       dContactGeom *contact, int skip)
{
  dIASSERT (skip >= (int)sizeof(dContactGeom));
  dIASSERT (o1->type == dSphereClass);
  dIASSERT (o2->type == dBoxClass);
  dIASSERT ((flags & NUMC_MASK) >= 1);
  
  // this is easy. get the sphere center `p' relative to the box, and then clip
  // that to the boundary of the box (call that point `q'). if q is on the
  // boundary of the box and |p-q| is <= sphere radius, they touch.
  // if q is inside the box, the sphere is inside the box, so set a contact
  // normal to push the sphere to the closest box face.

  dVector3 l,t,p,q,r;
  dReal depth;
  int onborder = 0;

  dxSphere *sphere = (dxSphere*) o1;
  dxBox *box = (dxBox*) o2;

  contact->g1 = o1;
  contact->g2 = o2;

  p[0] = o1->final_posr->pos[0] - o2->final_posr->pos[0];
  p[1] = o1->final_posr->pos[1] - o2->final_posr->pos[1];
  p[2] = o1->final_posr->pos[2] - o2->final_posr->pos[2];

  l[0] = box->side[0]*REAL(0.5);
  t[0] = dDOT14(p,o2->final_posr->R);
  if (t[0] < -l[0]) { t[0] = -l[0]; onborder = 1; }
  if (t[0] >  l[0]) { t[0] =  l[0]; onborder = 1; }

  l[1] = box->side[1]*REAL(0.5);
  t[1] = dDOT14(p,o2->final_posr->R+1);
  if (t[1] < -l[1]) { t[1] = -l[1]; onborder = 1; }
  if (t[1] >  l[1]) { t[1] =  l[1]; onborder = 1; }

  t[2] = dDOT14(p,o2->final_posr->R+2);
  l[2] = box->side[2]*REAL(0.5);
  if (t[2] < -l[2]) { t[2] = -l[2]; onborder = 1; }
  if (t[2] >  l[2]) { t[2] =  l[2]; onborder = 1; }

  if (!onborder) {
    // sphere center inside box. find closest face to `t'
    dReal min_distance = l[0] - dFabs(t[0]);
    int mini = 0;
    for (int i=1; i<3; i++) {
      dReal face_distance = l[i] - dFabs(t[i]);
      if (face_distance < min_distance) {
	min_distance = face_distance;
	mini = i;
      }
    }
    // contact position = sphere center
    contact->pos[0] = o1->final_posr->pos[0];
    contact->pos[1] = o1->final_posr->pos[1];
    contact->pos[2] = o1->final_posr->pos[2];
    // contact normal points to closest face
    dVector3 tmp;
    tmp[0] = 0;
    tmp[1] = 0;
    tmp[2] = 0;
    tmp[mini] = (t[mini] > 0) ? REAL(1.0) : REAL(-1.0);
    dMULTIPLY0_331 (contact->normal,o2->final_posr->R,tmp);
    // contact depth = distance to wall along normal plus radius
    contact->depth = min_distance + sphere->radius;
    return 1;
  }

  t[3] = 0;			//@@@ hmmm
  dMULTIPLY0_331 (q,o2->final_posr->R,t);
  r[0] = p[0] - q[0];
  r[1] = p[1] - q[1];
  r[2] = p[2] - q[2];
  depth = sphere->radius - dSqrt(dDOT(r,r));
  if (depth < 0) return 0;
  contact->pos[0] = q[0] + o2->final_posr->pos[0];
  contact->pos[1] = q[1] + o2->final_posr->pos[1];
  contact->pos[2] = q[2] + o2->final_posr->pos[2];
  contact->normal[0] = r[0];
  contact->normal[1] = r[1];
  contact->normal[2] = r[2];
  dNormalize3 (contact->normal);
  contact->depth = depth;
  return 1;
}
Example #14
0
int dBoxBox2 (const btVector3 p1, const dMatrix3 R1,
		const btVector3 side1, const btVector3 p2,
		const dMatrix3 R2, const btVector3 side2,
		BoxBoxResults *results)
{
	const btScalar fudge_factor = 1.05;
	btVector3 p,pp,normalC;
	normalC[0] = 0.f;
	normalC[1] = 0.f;
	normalC[2] = 0.f;
	const btScalar *normalR = 0;
	btScalar A[3],B[3],R11,R12,R13,R21,R22,R23,R31,R32,R33,
			 Q11,Q12,Q13,Q21,Q22,Q23,Q31,Q32,Q33,s,s2,l,normal[3],depth;
	int i,j,invert_normal,code;

	// get vector from centers of box 1 to box 2, relative to box 1
	p[0] = p2[0] - p1[0];
	p[1] = p2[1] - p1[1];
	p[2] = p2[2] - p1[2];
	dMULTIPLY1_331 (pp,R1,p);		// get pp = p relative to body 1

	// get side lengths (already specified as half lengths)
	A[0] = side1[0];
	A[1] = side1[1];
	A[2] = side1[2];
	B[0] = side2[0];
	B[1] = side2[1];
	B[2] = side2[2];

	// Rij is R1'*R2, i.e. the relative rotation between R1 and R2
	R11 = dDOT44(R1+0,R2+0); R12 = dDOT44(R1+0,R2+1); R13 = dDOT44(R1+0,R2+2);
	R21 = dDOT44(R1+1,R2+0); R22 = dDOT44(R1+1,R2+1); R23 = dDOT44(R1+1,R2+2);
	R31 = dDOT44(R1+2,R2+0); R32 = dDOT44(R1+2,R2+1); R33 = dDOT44(R1+2,R2+2);

	Q11 = btFabs(R11); Q12 = btFabs(R12); Q13 = btFabs(R13);
	Q21 = btFabs(R21); Q22 = btFabs(R22); Q23 = btFabs(R23);
	Q31 = btFabs(R31); Q32 = btFabs(R32); Q33 = btFabs(R33);

	// for all 15 possible separating axes:
	//   * see if the axis separates the boxes. if so, return 0.
	//   * find the depth of the penetration along the separating axis (s2)
	//   * if this is the largest depth so far, record it.
	// the normal vector will be set to the separating axis with the smallest
	// depth. note: normalR is set to point to a column of R1 or R2 if that is
	// the smallest depth normal so far. otherwise normalR is 0 and normalC is
	// set to a vector relative to body 1. invert_normal is 1 if the sign of
	// the normal should be flipped.

#define TST(expr1,expr2,norm,cc) \
	s2 = btFabs(expr1) - (expr2); \
	if (s2 > 0) return 0; \
	if (s2 > s) { \
		s = s2; \
		normalR = norm; \
		invert_normal = ((expr1) < 0); \
		code = (cc); \
	}

	s = -dInfinity;
	invert_normal = 0;
	code = 0;

	// separating axis = u1,u2,u3
	TST (pp[0],(A[0] + B[0]*Q11 + B[1]*Q12 + B[2]*Q13),R1+0,1);
	TST (pp[1],(A[1] + B[0]*Q21 + B[1]*Q22 + B[2]*Q23),R1+1,2);
	TST (pp[2],(A[2] + B[0]*Q31 + B[1]*Q32 + B[2]*Q33),R1+2,3);

	// separating axis = v1,v2,v3
	TST (dDOT41(R2+0,p),(A[0]*Q11 + A[1]*Q21 + A[2]*Q31 + B[0]),R2+0,4);
	TST (dDOT41(R2+1,p),(A[0]*Q12 + A[1]*Q22 + A[2]*Q32 + B[1]),R2+1,5);
	TST (dDOT41(R2+2,p),(A[0]*Q13 + A[1]*Q23 + A[2]*Q33 + B[2]),R2+2,6);

	// note: cross product axes need to be scaled when s is computed.
	// normal (n1,n2,n3) is relative to box 1.
#undef TST
#define TST(expr1,expr2,n1,n2,n3,cc) \
	s2 = btFabs(expr1) - (expr2); \
	if (s2 > SIMD_EPSILON) return 0; \
	l = btSqrt((n1)*(n1) + (n2)*(n2) + (n3)*(n3)); \
	if (l > SIMD_EPSILON) { \
		s2 /= l; \
		if (s2*fudge_factor > s) { \
			s = s2; \
			normalR = 0; \
			normalC[0] = (n1)/l; normalC[1] = (n2)/l; normalC[2] = (n3)/l; \
			invert_normal = ((expr1) < 0); \
			code = (cc); \
		} \
	}

	btScalar fudge2 = 1.0e-5f;

	Q11 += fudge2;
	Q12 += fudge2;
	Q13 += fudge2;

	Q21 += fudge2;
	Q22 += fudge2;
	Q23 += fudge2;

	Q31 += fudge2;
	Q32 += fudge2;
	Q33 += fudge2;

	// separating axis = u1 x (v1,v2,v3)
	TST(pp[2]*R21-pp[1]*R31,(A[1]*Q31+A[2]*Q21+B[1]*Q13+B[2]*Q12),0,-R31,R21,7);
	TST(pp[2]*R22-pp[1]*R32,(A[1]*Q32+A[2]*Q22+B[0]*Q13+B[2]*Q11),0,-R32,R22,8);
	TST(pp[2]*R23-pp[1]*R33,(A[1]*Q33+A[2]*Q23+B[0]*Q12+B[1]*Q11),0,-R33,R23,9);

	// separating axis = u2 x (v1,v2,v3)
	TST(pp[0]*R31-pp[2]*R11,(A[0]*Q31+A[2]*Q11+B[1]*Q23+B[2]*Q22),R31,0,-R11,10);
	TST(pp[0]*R32-pp[2]*R12,(A[0]*Q32+A[2]*Q12+B[0]*Q23+B[2]*Q21),R32,0,-R12,11);
	TST(pp[0]*R33-pp[2]*R13,(A[0]*Q33+A[2]*Q13+B[0]*Q22+B[1]*Q21),R33,0,-R13,12);

	// separating axis = u3 x (v1,v2,v3)
	TST(pp[1]*R11-pp[0]*R21,(A[0]*Q21+A[1]*Q11+B[1]*Q33+B[2]*Q32),-R21,R11,0,13);
	TST(pp[1]*R12-pp[0]*R22,(A[0]*Q22+A[1]*Q12+B[0]*Q33+B[2]*Q31),-R22,R12,0,14);
	TST(pp[1]*R13-pp[0]*R23,(A[0]*Q23+A[1]*Q13+B[0]*Q32+B[1]*Q31),-R23,R13,0,15);

#undef TST

	if (!code) return 0;
	results->code = code;

	// if we get to this point, the boxes interpenetrate. compute the normal
	// in global coordinates.
	if (normalR) {
		normal[0] = normalR[0];
		normal[1] = normalR[4];
		normal[2] = normalR[8];
	}
	else {
		dMULTIPLY0_331 (normal,R1,normalC);
	}
	if (invert_normal) {
		normal[0] = -normal[0];
		normal[1] = -normal[1];
		normal[2] = -normal[2];
	}
	depth = -s;

	// compute contact point(s)

	if (code > 6) {
		// an edge from box 1 touches an edge from box 2.
		// find a point pa on the intersecting edge of box 1
		btVector3 pa;
		btScalar sign;
		for (i=0; i<3; i++) pa[i] = p1[i];
		for (j=0; j<3; j++) {
			sign = (dDOT14(normal,R1+j) > 0) ? 1.0 : -1.0;
			for (i=0; i<3; i++) pa[i] += sign * A[j] * R1[i*4+j];
		}

		// find a point pb on the intersecting edge of box 2
		btVector3 pb;
		for (i=0; i<3; i++) pb[i] = p2[i];
		for (j=0; j<3; j++) {
			sign = (dDOT14(normal,R2+j) > 0) ? -1.0 : 1.0;
			for (i=0; i<3; i++) pb[i] += sign * B[j] * R2[i*4+j];
		}

		btScalar alpha,beta;
		btVector3 ua,ub;
		for (i=0; i<3; i++) ua[i] = R1[((code)-7)/3 + i*4];
		for (i=0; i<3; i++) ub[i] = R2[((code)-7)%3 + i*4];

		dLineClosestApproach (pa,ua,pb,ub,&alpha,&beta);
		for (i=0; i<3; i++) pa[i] += ua[i]*alpha;
		for (i=0; i<3; i++) pb[i] += ub[i]*beta;

		{
			btVector3 pointInWorld;
			addContactPoint(results,normal,pb,depth);
		}
		return 1;
	}

	// okay, we have a face-something intersection (because the separating
	// axis is perpendicular to a face). define face 'a' to be the reference
	// face (i.e. the normal vector is perpendicular to this) and face 'b' to be
	// the incident face (the closest face of the other box).

	const btScalar *Ra,*Rb,*pa,*pb,*Sa,*Sb;
	if (code <= 3) {
		Ra = R1;
		Rb = R2;
		pa = p1;
		pb = p2;
		Sa = A;
		Sb = B;
	}
	else {
		Ra = R2;
		Rb = R1;
		pa = p2;
		pb = p1;
		Sa = B;
		Sb = A;
	}

	// nr = normal vector of reference face dotted with axes of incident box.
	// anr = absolute values of nr.
	btVector3 normal2,nr,anr;
	if (code <= 3) {
		normal2[0] = normal[0];
		normal2[1] = normal[1];
		normal2[2] = normal[2];
	}
	else {
		normal2[0] = -normal[0];
		normal2[1] = -normal[1];
		normal2[2] = -normal[2];
	}
	dMULTIPLY1_331 (nr,Rb,normal2);
	anr[0] = btFabs (nr[0]);
	anr[1] = btFabs (nr[1]);
	anr[2] = btFabs (nr[2]);

	// find the largest compontent of anr: this corresponds to the normal
	// for the indident face. the other axis numbers of the indicent face
	// are stored in a1,a2.
	int lanr,a1,a2;
	if (anr[1] > anr[0]) {
		if (anr[1] > anr[2]) {
			a1 = 0;
			lanr = 1;
			a2 = 2;
		}
		else {
			a1 = 0;
			a2 = 1;
			lanr = 2;
		}
	}
	else {
		if (anr[0] > anr[2]) {
			lanr = 0;
			a1 = 1;
			a2 = 2;
		}
		else {
			a1 = 0;
			a2 = 1;
			lanr = 2;
		}
	}

	// compute center point of incident face, in reference-face coordinates
	btVector3 center;
	if (nr[lanr] < 0) {
		for (i=0; i<3; i++) center[i] = pb[i] - pa[i] + Sb[lanr] * Rb[i*4+lanr];
	}
	else {
		for (i=0; i<3; i++) center[i] = pb[i] - pa[i] - Sb[lanr] * Rb[i*4+lanr];
	}

	// find the normal and non-normal axis numbers of the reference box
	int codeN,code1,code2;
	if (code <= 3) codeN = code-1; else codeN = code-4;
	if (codeN==0) {
		code1 = 1;
		code2 = 2;
	}
	else if (codeN==1) {
		code1 = 0;
		code2 = 2;
	}
	else {
		code1 = 0;
		code2 = 1;
	}

	// find the four corners of the incident face, in reference-face coordinates
	btScalar quad[8];	// 2D coordinate of incident face (x,y pairs)
	btScalar c1,c2,m11,m12,m21,m22;
	c1 = dDOT14 (center,Ra+code1);
	c2 = dDOT14 (center,Ra+code2);
	// optimize this? - we have already computed this data above, but it is not
	// stored in an easy-to-index format. for now it's quicker just to recompute
	// the four dot products.
	m11 = dDOT44 (Ra+code1,Rb+a1);
	m12 = dDOT44 (Ra+code1,Rb+a2);
	m21 = dDOT44 (Ra+code2,Rb+a1);
	m22 = dDOT44 (Ra+code2,Rb+a2);
	{
		btScalar k1 = m11*Sb[a1];
		btScalar k2 = m21*Sb[a1];
		btScalar k3 = m12*Sb[a2];
		btScalar k4 = m22*Sb[a2];
		quad[0] = c1 - k1 - k3;
		quad[1] = c2 - k2 - k4;
		quad[2] = c1 - k1 + k3;
		quad[3] = c2 - k2 + k4;
		quad[4] = c1 + k1 + k3;
		quad[5] = c2 + k2 + k4;
		quad[6] = c1 + k1 - k3;
		quad[7] = c2 + k2 - k4;
	}

	// find the size of the reference face
	btScalar rect[2];
	rect[0] = Sa[code1];
	rect[1] = Sa[code2];

	// intersect the incident and reference faces
	btScalar ret[16];
	int n = intersectRectQuad2 (rect,quad,ret);
	if (n < 1) return 0;		// this should never happen

	// convert the intersection points into reference-face coordinates,
	// and compute the contact position and depth for each point. only keep
	// those points that have a positive (penetrating) depth. delete points in
	// the 'ret' array as necessary so that 'point' and 'ret' correspond.
	btScalar point[3*8];		// penetrating contact points
	btScalar dep[8];			// depths for those points
	btScalar det1 = 1.f/(m11*m22 - m12*m21);
	m11 *= det1;
	m12 *= det1;
	m21 *= det1;
	m22 *= det1;
	int cnum = 0;			// number of penetrating contact points found
	for (j=0; j < n; j++) {
		btScalar k1 =  m22*(ret[j*2]-c1) - m12*(ret[j*2+1]-c2);
		btScalar k2 = -m21*(ret[j*2]-c1) + m11*(ret[j*2+1]-c2);
		for (i=0; i<3; i++) point[cnum*3+i] =
			center[i] + k1*Rb[i*4+a1] + k2*Rb[i*4+a2];
		dep[cnum] = Sa[codeN] - dDOT(normal2,point+cnum*3);
		if (dep[cnum] >= 0) {
			ret[cnum*2] = ret[j*2];
			ret[cnum*2+1] = ret[j*2+1];
			cnum++;
		}
	}
	if (cnum < 1) return 0;	// this should never happen

	// we can't generate more contacts than we actually have
	int maxc = 4;
	if (maxc > cnum) maxc = cnum;
	if (maxc < 1) maxc = 1;

	if (cnum <= maxc)
	{
		if (code<4)
		{
			// we have less contacts than we need, so we use them all
			for (j=0; j < cnum; j++)
			{
				btVector3 pointInWorld;
				for (i=0; i<3; i++)
					pointInWorld[i] = point[j*3+i] + pa[i];
				addContactPoint(results,normal,pointInWorld,dep[j]);
			}
		}
		else
		{
			// we have less contacts than we need, so we use them all
			for (j=0; j < cnum; j++)
			{
				btVector3 pointInWorld;
				for (i=0; i<3; i++)
					pointInWorld[i] = point[j*3+i] + pa[i]-normal[i]*dep[j];
				addContactPoint(results,normal,pointInWorld,dep[j]);
			}
		}
	}
	else {
		// we have more contacts than are wanted, some of them must be culled.
		// find the deepest point, it is always the first contact.
		int i1 = 0;
		btScalar maxdepth = dep[0];
		for (i=1; i<cnum; i++)
		{
			if (dep[i] > maxdepth)
			{
				maxdepth = dep[i];
				i1 = i;
			}
		}

		int iret[8];
		cullPoints2 (cnum,ret,maxc,i1,iret);

		for (j=0; j < maxc; j++)
		{
			btVector3 posInWorld;
			for (i=0; i<3; i++)
				posInWorld[i] = point[iret[j]*3+i] + pa[i];
			if (code<4)
			{
				addContactPoint(results, normal,posInWorld,dep[iret[j]]);
			}
			else
			{
				posInWorld[0] -= normal[0]*dep[iret[j]];
				posInWorld[1] -= normal[1]*dep[iret[j]];
				posInWorld[2] -= normal[2]*dep[iret[j]];
				addContactPoint(results, normal,posInWorld,dep[iret[j]]);
			}
		}
		cnum = maxc;
	}
	return cnum;
}
Example #15
0
int dcTriListCollider::dTriCyl (
						const dReal* v0,const dReal* v1,const dReal* v2,
						Triangle* T,
						dxGeom *o1, dxGeom *o2,
						int flags, dContactGeom *contact, int skip
						)
{

 // VERIFY (skip >= (int)sizeof(dContactGeom));
  VERIFY (dGeomGetClass(o1)== dCylinderClassUser);
  

  
  
  const dReal *R = dGeomGetRotation(o1);
  const dReal* p=dGeomGetPosition(o1);
  dReal radius;
  dReal hlz;
  dGeomCylinderGetParams(o1,&radius,&hlz);
  hlz/=2.f;

    // find number of contacts requested
  int maxc = flags & NUMC_MASK;
  if (maxc < 1) maxc = 1;
  if (maxc > 3) maxc = 3;	// no more than 3 contacts per box allowed


  const dVector3 &triAx=T->norm;
  dVector3 triSideAx0={T->side0[0],T->side0[1],T->side0[2]}; //{v1[0]-v0[0],v1[1]-v0[1],v1[2]-v0[2]};
  dVector3 triSideAx1={T->side1[0],T->side1[1],T->side1[2]}; //{v2[0]-v1[0],v2[1]-v1[1],v2[2]-v1[2]};
  dVector3 triSideAx2={v0[0]-v2[0],v0[1]-v2[1],v0[2]-v2[2]};
  //dCROSS(triAx,=,triSideAx0,triSideAx1);
  int code=0;
  dReal signum, outDepth,cos0,cos1,cos2,sin1;
////////////////////////////////////////////////////////////////////////////
//sepparation along tri plane normal;///////////////////////////////////////
////////////////////////////////////////////////////////////////////////////
//accurate_normalize(triAx);

//cos0=dDOT14(triAx,R+0);
cos1=dFabs(dDOT14(triAx,R+1));
//cos2=dDOT14(triAx,R+2);

//sin1=_sqrt(cos0*cos0+cos2*cos2);

////////////////////////
//another way //////////
cos1=cos1<REAL(1.) ? cos1 : REAL(1.); //cos1 may slightly exeed 1.f
sin1=_sqrt(REAL(1.)-cos1*cos1);
//////////////////////////////

dReal sidePr=cos1*hlz+sin1*radius;

dReal dist=-T->dist; //dDOT(triAx,v0)-dDOT(triAx,p);
if(dist>0.f) RETURN0;
dReal depth=sidePr-dFabs(dist);
outDepth=depth;
signum=dist>0.f ? 1.f : -1.f;

code=0;
if(depth<0.f) RETURN0;

dReal depth0,depth1,depth2,dist0,dist1,dist2;
bool isPdist0,isPdist1,isPdist2;
bool testV0,testV1,testV2;
bool sideTestV00,sideTestV01,sideTestV02;
bool sideTestV10,sideTestV11,sideTestV12;
bool sideTestV20,sideTestV21,sideTestV22;


//////////////////////////////////////////////////////////////////////////////
//cylinder axis - one of the triangle vertexes touches cylinder's flat surface
//////////////////////////////////////////////////////////////////////////////
dist0=dDOT14(v0,R+1)-dDOT14(p,R+1);
dist1=dDOT14(v1,R+1)-dDOT14(p,R+1);
dist2=dDOT14(v2,R+1)-dDOT14(p,R+1);

isPdist0=dist0>0.f;
isPdist1=dist1>0.f;
isPdist2=dist2>0.f;

depth0=hlz-dFabs(dist0);
depth1=hlz-dFabs(dist1);
depth2=hlz-dFabs(dist2);

testV0=depth0>0.f;
testV1=depth1>0.f;
testV2=depth2>0.f;

if(isPdist0==isPdist1 && isPdist1== isPdist2) //(here and lower) check the tryangle is on one side of the cylinder
   
{
if(depth0>depth1) 
		if(depth0>depth2) 	
			if(testV0){
				if(depth0<outDepth) 
					{
					signum= isPdist0 ? 1.f : -1.f;
					outDepth=depth0;			
					code=1;
					}
				}
			else 
				RETURN0;
		else
			if(testV2){
				if(depth2<outDepth) 
					{
					outDepth=depth2;
					signum= isPdist2 ? 1.f : -1.f;
					code=3;
					}
			}
			else 
				RETURN0;
else
		if(depth1>depth2)
			if(testV1){
				if(depth1<outDepth) 
					{
					outDepth=depth1;
					signum= isPdist1 ? 1.f : -1.f;
					code=2;
					}
			}
			else 
				RETURN0;

		else
			if(testV2){
				if(depth2<outDepth) 
					{
					outDepth=depth2;
					signum= isPdist2 ? 1.f : -1.f;
					code=2;
					}
			}
			else RETURN0;
}


dVector3 axis,outAx;
dReal posProj;
dReal pointDepth=0.f;


#define TEST(vx,ox1,ox2,c)	\
	{\
	posProj=dDOT14(v##vx,R+1)-dDOT14(p,R+1);\
\
	axis[0]=v##vx[0]-p[0]-R[1]*posProj;\
	axis[1]=v##vx[1]-p[1]-R[5]*posProj;\
	axis[2]=v##vx[2]-p[2]-R[9]*posProj;\
\
	accurate_normalize(axis);\
\
\
	dist0=dDOT(v0,axis)-dDOT(p,axis);\
	dist1=dDOT(v1,axis)-dDOT(p,axis);\
	dist2=dDOT(v2,axis)-dDOT(p,axis);\
\
	isPdist0=dist0>0.f;\
	isPdist1=dist1>0.f;\
	isPdist2=dist2>0.f;\
\
	depth0=radius-dFabs(dist0);\
	depth1=radius-dFabs(dist1);\
	depth2=radius-dFabs(dist2);\
\
	sideTestV##vx##0=depth0>0.f;\
	sideTestV##vx##1=depth1>0.f;\
	sideTestV##vx##2=depth2>0.f;\
\
	if(isPdist0==isPdist1 && isPdist1== isPdist2)\
\
	{\
	if(sideTestV##vx##0||sideTestV##vx##1||sideTestV##vx##2){\
	if(!(depth##vx<depth##ox1 || depth##vx<depth##ox2))\
					{\
						if(depth##vx<outDepth && depth##vx > pointDepth)\
							{\
							pointDepth=depth##vx;\
							signum= isPdist##vx ? 1.f : -1.f;\
							outAx[0]=axis[0];\
							outAx[1]=axis[1];\
							outAx[2]=axis[2];\
							code=c;\
							}\
					}\
	}\
	else RETURN0;\
			\
\
\
	}\
}

if(testV0) TEST(0,1,2,4)
if(testV1 ) TEST(1,2,0,5)
//&& sideTestV01
if(testV2 ) TEST(2,0,1,6)
//&& sideTestV02 && sideTestV12
#undef TEST

dVector3 tpos,pos;
if(code>3) outDepth=pointDepth; //deepest vertex axis used if its depth less than outDepth
//else{
//bool outV0=!(testV0&&sideTestV00&&sideTestV10&&sideTestV20);
//bool outV1=!(testV1&&sideTestV01&&sideTestV11&&sideTestV21);
//bool outV2=!(testV2&&sideTestV02&&sideTestV12&&sideTestV22);
bool outV0=true;
bool outV1=true;
bool outV2=true;
/////////////////////////////////////////////////////////////////////////////
//////////////////////////////////////////////////////////////////////////////
///crosses between triangle sides and cylinder axis//////////////////////////
/////////////////////////////////////////////////////////////////////////////
#define TEST(ax,nx,ox,c)	if(cylinderCrossesLine(p,R+1,hlz,v##ax,v##nx,triSideAx##ax,tpos))	{\
	dCROSS114(axis,=,triSideAx##ax,R+1);\
	accurate_normalize(axis);\
	dist##ax=dDOT(v##ax,axis)-dDOT(p,axis);\
	dist##ox=dDOT(v##ox,axis)-dDOT(p,axis);\
\
	isPdist##ax=dist##ax>0.f;\
	isPdist##ox=dist##ox>0.f;\
\
	if(isPdist##ax == isPdist##ox)\
{\
depth##ax=radius-dFabs(dist##ax);\
depth##ox=radius-dFabs(dist##ox);\
	\
			if(depth##ax>0.f){\
				if(depth##ax<=outDepth && depth##ax>=depth##ox) \
					{\
						outDepth=depth##ax;\
						signum= isPdist##ax ? 1.f : -1.f;\
						outAx[0]=axis[0];\
						outAx[1]=axis[1];\
						outAx[2]=axis[2];\
						pos[0]=tpos[0];\
						pos[1]=tpos[1];\
						pos[2]=tpos[2];\
						code=c;\
					}\
				}\
			else if(depth##ox<0.f) RETURN0;\
\
}\
}

accurate_normalize(triSideAx0);
if(outV0&&outV1) 
TEST(0,1,2,7)

accurate_normalize(triSideAx1);
if(outV1&&outV2) 
TEST(1,2,0,8)

accurate_normalize(triSideAx2);
if(outV2&&outV0) 
TEST(2,0,1,9)
#undef TEST

////////////////////////////////////
//test cylinder rings on triangle sides////
////////////////////////////////////

dVector3 tAx,cen;
dReal sign;
bool cs;

#define TEST(ax,nx,ox,c)	\
{\
posProj=dDOT(p,triSideAx##ax)-dDOT(v##ax,triSideAx##ax);\
axis[0]=p[0]-v0[0]-triSideAx##ax[0]*posProj;\
axis[1]=p[1]-v0[1]-triSideAx##ax[1]*posProj;\
axis[2]=p[2]-v0[2]-triSideAx##ax[2]*posProj;\
	\
sign=dDOT14(axis,R+1)>0.f ? 1.f :-1.f;\
cen[0]=p[0]-sign*R[1]*hlz;\
cen[1]=p[1]-sign*R[5]*hlz;\
cen[2]=p[2]-sign*R[9]*hlz;\
\
cs=circleLineIntersection(R+1,cen,radius,triSideAx##ax,v##ax,-sign,tpos);\
\
axis[0]=tpos[0]-cen[0];\
axis[1]=tpos[1]-cen[1];\
axis[2]=tpos[2]-cen[2];\
\
if(cs){ \
\
cos0=dDOT14(axis,R+0);\
cos2=dDOT14(axis,R+2);\
tAx[0]=R[2]*cos0-R[0]*cos2;\
tAx[1]=R[6]*cos0-R[4]*cos2;\
tAx[2]=R[10]*cos0-R[8]*cos2;\
\
dCROSS(axis,=,triSideAx##ax,tAx);\
\
}\
accurate_normalize(axis);\
dist##ax=dDOT(v##ax,axis)-dDOT(p,axis);\
if(dist##ax*dDOT(axis,triSideAx##nx)>0.f){\
\
cos0=dDOT14(axis,R+0);\
cos1=dFabs(dDOT14(axis,R+1));\
cos2=dDOT14(axis,R+2);\
\
\
sin1=_sqrt(cos0*cos0+cos2*cos2);\
\
sidePr=cos1*hlz+sin1*radius;\
\
\
	dist##ox=dDOT(v##ox,axis)-dDOT(p,axis);\
\
	isPdist##ax=dist##ax>0.f;\
	isPdist##ox=dist##ox>0.f;\
\
	if(isPdist##ax == isPdist##ox) \
\
{\
depth##ax=sidePr-dFabs(dist##ax);\
depth##ox=sidePr-dFabs(dist##ox);\
	\
			if(depth##ax>0.f){\
				if(depth##ax<outDepth) \
					{\
						outDepth=depth##ax;\
						signum= isPdist##ax ? 1.f : -1.f;\
						outAx[0]=axis[0];\
						outAx[1]=axis[1];\
						outAx[2]=axis[2];\
						pos[0]=tpos[0];\
						pos[1]=tpos[1];\
						pos[2]=tpos[2];\
						code=c;\
					}\
				}\
			else if(depth##ox<0.f) RETURN0;\
\
\
}\
}\
}

if(7!=code)
	TEST(0,1,2,10)

if(8!=code)
	TEST(1,2,0,11)

if(9!=code)
	TEST(2,0,1,12)

#undef TEST

//}
//////////////////////////////////////////////////////////////////////
///if we get to this poit tri touches cylinder///////////////////////
/////////////////////////////////////////////////////////////////////
//VERIFY( g_pGameLevel );
CDB::TRI*       T_array      = inl_ph_world().ObjectSpace().GetStaticTris();
dVector3 norm;
unsigned int ret;
flags8& gl_state=gl_cl_tries_state[I-B];
if(code==0){
	norm[0]=triAx[0]*signum;
	norm[1]=triAx[1]*signum;
	norm[2]=triAx[2]*signum;


  dReal Q1 = dDOT14(norm,R+0);
  dReal Q2 = dDOT14(norm,R+1);
  dReal Q3 = dDOT14(norm,R+2);
  dReal factor =_sqrt(Q1*Q1+Q3*Q3);
  dReal	C1,C3;
  dReal centerDepth;//depth in the cirle centre
  if(factor>0.f)
  {
  		C1=Q1/factor;
		C3=Q3/factor;
		
  }
  else
  {
		C1=1.f;
		C3=0.f;
	
  }
  
  dReal A1 = radius *		C1;//cosinus
  dReal A2 = hlz;//Q2
  dReal A3 = radius *		C3;//sinus 
	
  if(factor>0.f) centerDepth=outDepth-A1*Q1-A3*Q3; else centerDepth=outDepth;

  pos[0]=p[0];
  pos[1]=p[1];
  pos[2]=p[2];
 
  pos[0]+= Q2>0 ? hlz*R[1]:-hlz*R[1];
  pos[1]+= Q2>0 ? hlz*R[5]:-hlz*R[5];
  pos[2]+= Q2>0 ? hlz*R[9]:-hlz*R[9];

  
  
  
  ret=0;
  dVector3 cross0, cross1, cross2;
  dReal ds0,ds1,ds2;
  
  dCROSS(cross0,=,triAx,triSideAx0);
  ds0=dDOT(cross0,v0);

  dCROSS(cross1,=,triAx,triSideAx1);
  ds1=dDOT(cross1,v1);

  dCROSS(cross2,=,triAx,triSideAx2);
  ds2=dDOT(cross2,v2);

  contact->pos[0] = pos[0]+A1*R[0]+A3*R[2];
  contact->pos[1] = pos[1]+A1*R[4]+A3*R[6];
  contact->pos[2] = pos[2]+A1*R[8]+A3*R[10];

  if(dDOT(cross0,contact->pos)-ds0>0.f && 
	 dDOT(cross1,contact->pos)-ds1>0.f && 
	 dDOT(cross2,contact->pos)-ds2>0.f){
							   contact->depth = outDepth;
							   ret=1;
  }

if(dFabs(Q2)>M_SQRT1_2){

  A1=(-C1*M_COS_PI_3-C3*M_SIN_PI_3)*radius;
  A3=(-C3*M_COS_PI_3+C1*M_SIN_PI_3)*radius;
  CONTACT(contact,ret*skip)->pos[0]=pos[0]+A1*R[0]+A3*R[2];
  CONTACT(contact,ret*skip)->pos[1]=pos[1]+A1*R[4]+A3*R[6];
  CONTACT(contact,ret*skip)->pos[2]=pos[2]+A1*R[8]+A3*R[10];
  CONTACT(contact,ret*skip)->depth=centerDepth+Q1*A1+Q3*A3;

  if(CONTACT(contact,ret*skip)->depth>0.f)
    if(dDOT(cross0,CONTACT(contact,ret*skip)->pos)-ds0>0.f && 
	   dDOT(cross1,CONTACT(contact,ret*skip)->pos)-ds1>0.f && 
	   dDOT(cross2,CONTACT(contact,ret*skip)->pos)-ds2>0.f) ++ret;
  
  A1=(-C1*M_COS_PI_3+C3*M_SIN_PI_3)*radius;
  A3=(-C3*M_COS_PI_3-C1*M_SIN_PI_3)*radius;
  CONTACT(contact,ret*skip)->pos[0]=pos[0]+A1*R[0]+A3*R[2];
  CONTACT(contact,ret*skip)->pos[1]=pos[1]+A1*R[4]+A3*R[6];
  CONTACT(contact,ret*skip)->pos[2]=pos[2]+A1*R[8]+A3*R[10];
  CONTACT(contact,ret*skip)->depth=centerDepth+Q1*A1+Q3*A3;

  if(CONTACT(contact,ret*skip)->depth>0.f)
    if(dDOT(cross0,CONTACT(contact,ret*skip)->pos)-ds0>0.f && 
	   dDOT(cross1,CONTACT(contact,ret*skip)->pos)-ds1>0.f && 
	   dDOT(cross2,CONTACT(contact,ret*skip)->pos)-ds2>0.f) ++ret;
} else {

  CONTACT(contact,ret*skip)->pos[0]=contact->pos[0]-2.f*(Q2>0 ? hlz*R[1]:-hlz*R[1]);
  CONTACT(contact,ret*skip)->pos[1]=contact->pos[1]-2.f*(Q2>0 ? hlz*R[5]:-hlz*R[5]);
  CONTACT(contact,ret*skip)->pos[2]=contact->pos[2]-2.f*(Q2>0 ? hlz*R[9]:-hlz*R[9]);
  CONTACT(contact,ret*skip)->depth=outDepth-dFabs(Q2*2.f*A2);

  if(CONTACT(contact,ret*skip)->depth>0.f)
    if(dDOT(cross0,CONTACT(contact,ret*skip)->pos)-ds0>0.f && 
	   dDOT(cross1,CONTACT(contact,ret*skip)->pos)-ds1>0.f && 
	   dDOT(cross2,CONTACT(contact,ret*skip)->pos)-ds2>0.f) ++ret;
}
	}
Example #16
0
int dcTriListCollider::dSortedTriCyl (
				   const dReal* triSideAx0,const dReal* triSideAx1,
				   const dReal* triAx,
				   //const dReal* v0,
				   //const dReal* v1,
				   //const dReal* v2,
				   CDB::TRI* T,
				   dReal dist,
				   dxGeom *o1, dxGeom *o2,
				   int flags, dContactGeom *contact, int skip
				   )
{
	
	VERIFY (dGeomGetClass(o1)== dCylinderClassUser);

	const dReal *R = dGeomGetRotation(o1);
	const dReal* p=dGeomGetPosition(o1);
	dReal radius;
	dReal hlz;
	dGeomCylinderGetParams(o1,&radius,&hlz);
	hlz/=2.f;

	// find number of contacts requested
	int maxc = flags & NUMC_MASK;
	if (maxc < 1) maxc = 1;
	if (maxc > 3) maxc = 3;	// no more than 3 contacts per box allowed
	
	dReal signum, outDepth,cos1,sin1;
	////////////////////////////////////////////////////////////////////////////
	//sepparation along tri plane normal;///////////////////////////////////////
	////////////////////////////////////////////////////////////////////////////


	//cos0=dDOT14(triAx,R+0);
	cos1=dFabs(dDOT14(triAx,R+1));
	//cos2=dDOT14(triAx,R+2);

	//sin1=_sqrt(cos0*cos0+cos2*cos2);

	////////////////////////
	//another way //////////
	cos1=cos1<REAL(1.) ? cos1 : REAL(1.); //cos1 may slightly exeed 1.f
	sin1=_sqrt(REAL(1.)-cos1*cos1);
	//////////////////////////////

	dReal sidePr=cos1*hlz+sin1*radius;

	
	if(dist>0.f) 
			return 0;
	dReal depth=sidePr-dist;
	outDepth=depth;
	signum=-1.f;

	int code=0;
	if(depth<0.f) return 0;

	dVector3 norm;
	unsigned int ret=0;
	dVector3 pos;
	if(code==0){
		norm[0]=triAx[0]*signum;
		norm[1]=triAx[1]*signum;
		norm[2]=triAx[2]*signum;


		dReal Q1 = signum*dDOT14(triAx,R+0);
		dReal Q2 = signum*dDOT14(triAx,R+1);
		dReal Q3 = signum*dDOT14(triAx,R+2);
		dReal factor =_sqrt(Q1*Q1+Q3*Q3);
		dReal	C1,C3;
		dReal centerDepth;//depth in the cirle centre
		if(factor>0.f)
		{
			C1=Q1/factor;
			C3=Q3/factor;

		}
		else
		{
			C1=1.f;
			C3=0.f;

		}

		dReal A1 = radius *		C1;//cosinus
		dReal A2 = hlz*Q2;
		dReal A3 = radius *		C3;//sinus 

		if(factor>0.f) centerDepth=outDepth-A1*Q1-A3*Q3; else centerDepth=outDepth;

		pos[0]=p[0];
		pos[1]=p[1];
		pos[2]=p[2];

		pos[0]+= A2>0 ? hlz*R[1]:-hlz*R[1];
		pos[1]+= A2>0 ? hlz*R[5]:-hlz*R[5];
		pos[2]+= A2>0 ? hlz*R[9]:-hlz*R[9];




		ret=0;
		contact->pos[0] = pos[0]+A1*R[0]+A3*R[2];
		contact->pos[1] = pos[1]+A1*R[4]+A3*R[6];
		contact->pos[2] = pos[2]+A1*R[8]+A3*R[10];

			{
				contact->depth = outDepth;
				ret=1;
			}

			if(dFabs(Q2)>M_SQRT1_2){

				A1=(-C1*M_COS_PI_3-C3*M_SIN_PI_3)*radius;
				A3=(-C3*M_COS_PI_3+C1*M_SIN_PI_3)*radius;
				CONTACT(contact,ret*skip)->pos[0]=pos[0]+A1*R[0]+A3*R[2];
				CONTACT(contact,ret*skip)->pos[1]=pos[1]+A1*R[4]+A3*R[6];
				CONTACT(contact,ret*skip)->pos[2]=pos[2]+A1*R[8]+A3*R[10];
				CONTACT(contact,ret*skip)->depth=centerDepth+Q1*A1+Q3*A3;

				if(CONTACT(contact,ret*skip)->depth>0.f)++ret;

				A1=(-C1*M_COS_PI_3+C3*M_SIN_PI_3)*radius;
				A3=(-C3*M_COS_PI_3-C1*M_SIN_PI_3)*radius;
				CONTACT(contact,ret*skip)->pos[0]=pos[0]+A1*R[0]+A3*R[2];
				CONTACT(contact,ret*skip)->pos[1]=pos[1]+A1*R[4]+A3*R[6];
				CONTACT(contact,ret*skip)->pos[2]=pos[2]+A1*R[8]+A3*R[10];
				CONTACT(contact,ret*skip)->depth=centerDepth+Q1*A1+Q3*A3;

				if(CONTACT(contact,ret*skip)->depth>0.f)++ret;
			} else {

				CONTACT(contact,ret*skip)->pos[0]=contact->pos[0]-2.f*(A2>0 ? hlz*R[1]:-hlz*R[1]);
				CONTACT(contact,ret*skip)->pos[1]=contact->pos[1]-2.f*(A2>0 ? hlz*R[5]:-hlz*R[5]);
				CONTACT(contact,ret*skip)->pos[2]=contact->pos[2]-2.f*(A2>0 ? hlz*R[9]:-hlz*R[9]);
				CONTACT(contact,ret*skip)->depth=outDepth-Q2*2.f*A2;

				if(CONTACT(contact,ret*skip)->depth>0.f)++ret;
			}
	}

	if((int)ret>maxc) ret=(unsigned int)maxc;

	for (unsigned int i=0; i<ret; ++i) {
		CONTACT(contact,i*skip)->g1 = const_cast<dxGeom*> (o2);
		CONTACT(contact,i*skip)->g2 = const_cast<dxGeom*> (o1);
		CONTACT(contact,i*skip)->normal[0] = norm[0];
		CONTACT(contact,i*skip)->normal[1] = norm[1];
		CONTACT(contact,i*skip)->normal[2] = norm[2];
		SURFACE(contact,i*skip)->mode=T->material;
	}
	if(ret&&dGeomGetUserData(o1)->callback)dGeomGetUserData(o1)->callback(T,contact);
	return ret;  
}
Example #17
0
int dBoxBox (const dVector3 p1, const dMatrix3 R1,
	     const dVector3 side1, const dVector3 p2,
	     const dMatrix3 R2, const dVector3 side2,
	     dVector3 normal, dReal *depth, int *return_code,
	     int flags, dContactGeom *contact, int skip)
{
  const dReal fudge_factor = REAL(1.05);
  dVector3 p,pp,normalC={0,0,0};
  const dReal *normalR = 0;
  dReal A[3],B[3],R11,R12,R13,R21,R22,R23,R31,R32,R33,
    Q11,Q12,Q13,Q21,Q22,Q23,Q31,Q32,Q33,s,s2,l,expr1_val;
  int i,j,invert_normal,code;

  // get vector from centers of box 1 to box 2, relative to box 1
  p[0] = p2[0] - p1[0];
  p[1] = p2[1] - p1[1];
  p[2] = p2[2] - p1[2];
  dMULTIPLY1_331 (pp,R1,p);		// get pp = p relative to body 1

  // get side lengths / 2
  A[0] = side1[0]*REAL(0.5);
  A[1] = side1[1]*REAL(0.5);
  A[2] = side1[2]*REAL(0.5);
  B[0] = side2[0]*REAL(0.5);
  B[1] = side2[1]*REAL(0.5);
  B[2] = side2[2]*REAL(0.5);

  // Rij is R1'*R2, i.e. the relative rotation between R1 and R2
  R11 = dDOT44(R1+0,R2+0); R12 = dDOT44(R1+0,R2+1); R13 = dDOT44(R1+0,R2+2);
  R21 = dDOT44(R1+1,R2+0); R22 = dDOT44(R1+1,R2+1); R23 = dDOT44(R1+1,R2+2);
  R31 = dDOT44(R1+2,R2+0); R32 = dDOT44(R1+2,R2+1); R33 = dDOT44(R1+2,R2+2);

  Q11 = dFabs(R11); Q12 = dFabs(R12); Q13 = dFabs(R13);
  Q21 = dFabs(R21); Q22 = dFabs(R22); Q23 = dFabs(R23);
  Q31 = dFabs(R31); Q32 = dFabs(R32); Q33 = dFabs(R33);

  // for all 15 possible separating axes:
  //   * see if the axis separates the boxes. if so, return 0.
  //   * find the depth of the penetration along the separating axis (s2)
  //   * if this is the largest depth so far, record it.
  // the normal vector will be set to the separating axis with the smallest
  // depth. note: normalR is set to point to a column of R1 or R2 if that is
  // the smallest depth normal so far. otherwise normalR is 0 and normalC is
  // set to a vector relative to body 1. invert_normal is 1 if the sign of
  // the normal should be flipped.

  do {
#define TST(expr1,expr2,norm,cc) \
    expr1_val = (expr1); /* Avoid duplicate evaluation of expr1 */ \
    s2 = dFabs(expr1_val) - (expr2); \
    if (s2 > 0) return 0; \
    if (s2 > s) { \
      s = s2; \
      normalR = norm; \
      invert_normal = ((expr1_val) < 0); \
      code = (cc); \
	  if (flags & CONTACTS_UNIMPORTANT) break; \
	}

    s = -dInfinity;
    invert_normal = 0;
    code = 0;

    // separating axis = u1,u2,u3
    TST (pp[0],(A[0] + B[0]*Q11 + B[1]*Q12 + B[2]*Q13),R1+0,1);
    TST (pp[1],(A[1] + B[0]*Q21 + B[1]*Q22 + B[2]*Q23),R1+1,2);
    TST (pp[2],(A[2] + B[0]*Q31 + B[1]*Q32 + B[2]*Q33),R1+2,3);

    // separating axis = v1,v2,v3
    TST (dDOT41(R2+0,p),(A[0]*Q11 + A[1]*Q21 + A[2]*Q31 + B[0]),R2+0,4);
    TST (dDOT41(R2+1,p),(A[0]*Q12 + A[1]*Q22 + A[2]*Q32 + B[1]),R2+1,5);
    TST (dDOT41(R2+2,p),(A[0]*Q13 + A[1]*Q23 + A[2]*Q33 + B[2]),R2+2,6);

    // note: cross product axes need to be scaled when s is computed.
    // normal (n1,n2,n3) is relative to box 1.
#undef TST
#define TST(expr1,expr2,n1,n2,n3,cc) \
    expr1_val = (expr1); /* Avoid duplicate evaluation of expr1 */ \
    s2 = dFabs(expr1_val) - (expr2); \
    if (s2 > 0) return 0; \
    l = dSqrt ((n1)*(n1) + (n2)*(n2) + (n3)*(n3)); \
    if (l > 0) { \
      s2 /= l; \
      if (s2*fudge_factor > s) { \
        s = s2; \
        normalR = 0; \
        normalC[0] = (n1)/l; normalC[1] = (n2)/l; normalC[2] = (n3)/l; \
        invert_normal = ((expr1_val) < 0); \
        code = (cc); \
        if (flags & CONTACTS_UNIMPORTANT) break; \
	  } \
	}

    // We only need to check 3 edges per box 
    // since parallel edges are equivalent.

    // separating axis = u1 x (v1,v2,v3)
    TST(pp[2]*R21-pp[1]*R31,(A[1]*Q31+A[2]*Q21+B[1]*Q13+B[2]*Q12),0,-R31,R21,7);
    TST(pp[2]*R22-pp[1]*R32,(A[1]*Q32+A[2]*Q22+B[0]*Q13+B[2]*Q11),0,-R32,R22,8);
    TST(pp[2]*R23-pp[1]*R33,(A[1]*Q33+A[2]*Q23+B[0]*Q12+B[1]*Q11),0,-R33,R23,9);

    // separating axis = u2 x (v1,v2,v3)
    TST(pp[0]*R31-pp[2]*R11,(A[0]*Q31+A[2]*Q11+B[1]*Q23+B[2]*Q22),R31,0,-R11,10);
    TST(pp[0]*R32-pp[2]*R12,(A[0]*Q32+A[2]*Q12+B[0]*Q23+B[2]*Q21),R32,0,-R12,11);
    TST(pp[0]*R33-pp[2]*R13,(A[0]*Q33+A[2]*Q13+B[0]*Q22+B[1]*Q21),R33,0,-R13,12);

    // separating axis = u3 x (v1,v2,v3)
    TST(pp[1]*R11-pp[0]*R21,(A[0]*Q21+A[1]*Q11+B[1]*Q33+B[2]*Q32),-R21,R11,0,13);
    TST(pp[1]*R12-pp[0]*R22,(A[0]*Q22+A[1]*Q12+B[0]*Q33+B[2]*Q31),-R22,R12,0,14);
    TST(pp[1]*R13-pp[0]*R23,(A[0]*Q23+A[1]*Q13+B[0]*Q32+B[1]*Q31),-R23,R13,0,15);
#undef TST
  } while (0);

  if (!code) return 0;

  // if we get to this point, the boxes interpenetrate. compute the normal
  // in global coordinates.
  if (normalR) {
    normal[0] = normalR[0];
    normal[1] = normalR[4];
    normal[2] = normalR[8];
  }
  else {
    dMULTIPLY0_331 (normal,R1,normalC);
  }
  if (invert_normal) {
    normal[0] = -normal[0];
    normal[1] = -normal[1];
    normal[2] = -normal[2];
  }
  *depth = -s;

  // compute contact point(s)

  if (code > 6) {
    // An edge from box 1 touches an edge from box 2.
    // find a point pa on the intersecting edge of box 1
    dVector3 pa;
    dReal sign;
    // Copy p1 into pa
    for (i=0; i<3; i++) pa[i] = p1[i]; // why no memcpy?
    // Get world position of p2 into pa
    for (j=0; j<3; j++) {
      sign = (dDOT14(normal,R1+j) > 0) ? REAL(1.0) : REAL(-1.0);
      for (i=0; i<3; i++) pa[i] += sign * A[j] * R1[i*4+j];
    }

    // find a point pb on the intersecting edge of box 2
    dVector3 pb;
    // Copy p2 into pb
    for (i=0; i<3; i++) pb[i] = p2[i]; // why no memcpy?
    // Get world position of p2 into pb
    for (j=0; j<3; j++) {
      sign = (dDOT14(normal,R2+j) > 0) ? REAL(-1.0) : REAL(1.0);
      for (i=0; i<3; i++) pb[i] += sign * B[j] * R2[i*4+j];
    }
    
    dReal alpha,beta;
    dVector3 ua,ub;
    // Get direction of first edge
    for (i=0; i<3; i++) ua[i] = R1[((code)-7)/3 + i*4];
    // Get direction of second edge
    for (i=0; i<3; i++) ub[i] = R2[((code)-7)%3 + i*4];
    // Get closest points between edges (one at each)
    dLineClosestApproach (pa,ua,pb,ub,&alpha,&beta);    
    for (i=0; i<3; i++) pa[i] += ua[i]*alpha;
    for (i=0; i<3; i++) pb[i] += ub[i]*beta;
    // Set the contact point as halfway between the 2 closest points
    for (i=0; i<3; i++) contact[0].pos[i] = REAL(0.5)*(pa[i]+pb[i]);
    contact[0].depth = *depth;
    *return_code = code;
    return 1;
  }

  // okay, we have a face-something intersection (because the separating
  // axis is perpendicular to a face). define face 'a' to be the reference
  // face (i.e. the normal vector is perpendicular to this) and face 'b' to be
  // the incident face (the closest face of the other box).
  // Note: Unmodified parameter values are being used here
  const dReal *Ra,*Rb,*pa,*pb,*Sa,*Sb;
  if (code <= 3) { // One of the faces of box 1 is the reference face
    Ra = R1; // Rotation of 'a'
    Rb = R2; // Rotation of 'b'
    pa = p1; // Center (location) of 'a'
    pb = p2; // Center (location) of 'b'
    Sa = A;  // Side Lenght of 'a'
    Sb = B;  // Side Lenght of 'b'
  }
  else { // One of the faces of box 2 is the reference face
    Ra = R2; // Rotation of 'a'
    Rb = R1; // Rotation of 'b'
    pa = p2; // Center (location) of 'a'
    pb = p1; // Center (location) of 'b'
    Sa = B;  // Side Lenght of 'a'
    Sb = A;  // Side Lenght of 'b'
  }

  // nr = normal vector of reference face dotted with axes of incident box.
  // anr = absolute values of nr.
  /*
	The normal is flipped if necessary so it always points outward from box 'a',
	box 'b' is thus always the incident box
  */
  dVector3 normal2,nr,anr;
  if (code <= 3) {
    normal2[0] = normal[0];
    normal2[1] = normal[1];
    normal2[2] = normal[2];
  }
  else {
    normal2[0] = -normal[0];
    normal2[1] = -normal[1];
    normal2[2] = -normal[2];
  }
  // Rotate normal2 in incident box opposite direction
  dMULTIPLY1_331 (nr,Rb,normal2);
  anr[0] = dFabs (nr[0]);
  anr[1] = dFabs (nr[1]);
  anr[2] = dFabs (nr[2]);

  // find the largest compontent of anr: this corresponds to the normal
  // for the incident face. the other axis numbers of the incident face
  // are stored in a1,a2.
  int lanr,a1,a2;
  if (anr[1] > anr[0]) {
    if (anr[1] > anr[2]) {
      a1 = 0;
      lanr = 1;
      a2 = 2;
    }
    else {
      a1 = 0;
      a2 = 1;
      lanr = 2;
    }
  }
  else {
    if (anr[0] > anr[2]) {
      lanr = 0;
      a1 = 1;
      a2 = 2;
    }
    else {
      a1 = 0;
      a2 = 1;
      lanr = 2;
    }
  }

  // compute center point of incident face, in reference-face coordinates
  dVector3 center;
  if (nr[lanr] < 0) {
    for (i=0; i<3; i++) center[i] = pb[i] - pa[i] + Sb[lanr] * Rb[i*4+lanr];
  }
  else {
    for (i=0; i<3; i++) center[i] = pb[i] - pa[i] - Sb[lanr] * Rb[i*4+lanr];
  }

  // find the normal and non-normal axis numbers of the reference box
  int codeN,code1,code2;
  if (code <= 3) codeN = code-1; else codeN = code-4;
  if (codeN==0) {
    code1 = 1;
    code2 = 2;
  }
  else if (codeN==1) {
    code1 = 0;
    code2 = 2;
  }
  else {
    code1 = 0;
    code2 = 1;
  }

  // find the four corners of the incident face, in reference-face coordinates
  dReal quad[8];	// 2D coordinate of incident face (x,y pairs)
  dReal c1,c2,m11,m12,m21,m22;
  c1 = dDOT14 (center,Ra+code1);
  c2 = dDOT14 (center,Ra+code2);
  // optimize this? - we have already computed this data above, but it is not
  // stored in an easy-to-index format. for now it's quicker just to recompute
  // the four dot products.
  m11 = dDOT44 (Ra+code1,Rb+a1);
  m12 = dDOT44 (Ra+code1,Rb+a2);
  m21 = dDOT44 (Ra+code2,Rb+a1);
  m22 = dDOT44 (Ra+code2,Rb+a2);
  {
    dReal k1 = m11*Sb[a1];
    dReal k2 = m21*Sb[a1];
    dReal k3 = m12*Sb[a2];
    dReal k4 = m22*Sb[a2];
    quad[0] = c1 - k1 - k3;
    quad[1] = c2 - k2 - k4;
    quad[2] = c1 - k1 + k3;
    quad[3] = c2 - k2 + k4;
    quad[4] = c1 + k1 + k3;
    quad[5] = c2 + k2 + k4;
    quad[6] = c1 + k1 - k3;
    quad[7] = c2 + k2 - k4;
  }

  // find the size of the reference face
  dReal rect[2];
  rect[0] = Sa[code1];
  rect[1] = Sa[code2];

  // intersect the incident and reference faces
  dReal ret[16];
  int n = intersectRectQuad (rect,quad,ret);
  if (n < 1) return 0;		// this should never happen

  // convert the intersection points into reference-face coordinates,
  // and compute the contact position and depth for each point. only keep
  // those points that have a positive (penetrating) depth. delete points in
  // the 'ret' array as necessary so that 'point' and 'ret' correspond.
  dReal point[3*8];		// penetrating contact points
  dReal dep[8];			// depths for those points
  dReal det1 = dRecip(m11*m22 - m12*m21);
  m11 *= det1;
  m12 *= det1;
  m21 *= det1;
  m22 *= det1;
  int cnum = 0;			// number of penetrating contact points found
  for (j=0; j < n; j++) {
    dReal k1 =  m22*(ret[j*2]-c1) - m12*(ret[j*2+1]-c2);
    dReal k2 = -m21*(ret[j*2]-c1) + m11*(ret[j*2+1]-c2);
    for (i=0; i<3; i++) point[cnum*3+i] =
			  center[i] + k1*Rb[i*4+a1] + k2*Rb[i*4+a2];
    dep[cnum] = Sa[codeN] - dDOT(normal2,point+cnum*3);
    if (dep[cnum] >= 0) {
      ret[cnum*2] = ret[j*2];
      ret[cnum*2+1] = ret[j*2+1];
      cnum++;
	  if ((cnum | CONTACTS_UNIMPORTANT) == (flags & (NUMC_MASK | CONTACTS_UNIMPORTANT))) {
		  break;
	  }
    }
  }
  if (cnum < 1) { 
	  return 0;	// this should not happen, yet does at times (demo_plane2d single precision).
  }

  // we can't generate more contacts than we actually have
  int maxc = flags & NUMC_MASK;
  if (maxc > cnum) maxc = cnum;
  if (maxc < 1) maxc = 1;	// Even though max count must not be zero this check is kept for backward compatibility as this is a public function

  if (cnum <= maxc) {
    // we have less contacts than we need, so we use them all
    for (j=0; j < cnum; j++) {
      dContactGeom *con = CONTACT(contact,skip*j);
      for (i=0; i<3; i++) con->pos[i] = point[j*3+i] + pa[i];
      con->depth = dep[j];
    }
  }
  else {
    dIASSERT(!(flags & CONTACTS_UNIMPORTANT)); // cnum should be generated not greater than maxc so that "then" clause is executed
    // we have more contacts than are wanted, some of them must be culled.
    // find the deepest point, it is always the first contact.
    int i1 = 0;
    dReal maxdepth = dep[0];
    for (i=1; i<cnum; i++) {
      if (dep[i] > maxdepth) {
	maxdepth = dep[i];
	i1 = i;
      }
    }

    int iret[8];
    cullPoints (cnum,ret,maxc,i1,iret);

    for (j=0; j < maxc; j++) {
      dContactGeom *con = CONTACT(contact,skip*j);
      for (i=0; i<3; i++) con->pos[i] = point[iret[j]*3+i] + pa[i];
      con->depth = dep[iret[j]];
    }
    cnum = maxc;
  }

  *return_code = code;
  return cnum;
}
Example #18
0
int dCollideRayCapsule (dxGeom *o1, dxGeom *o2,
			  int flags, dContactGeom *contact, int skip)
{
  dIASSERT (skip >= (int)sizeof(dContactGeom));
  dIASSERT (o1->type == dRayClass);
  dIASSERT (o2->type == dCapsuleClass);
  dIASSERT ((flags & NUMC_MASK) >= 1);

  dxRay *ray = (dxRay*) o1;
  dxCapsule *ccyl = (dxCapsule*) o2;

  contact->g1 = ray;
  contact->g2 = ccyl;
  contact->side1 = -1;
  contact->side2 = -1;
  
  dReal lz2 = ccyl->lz * REAL(0.5);

  // compute some useful info
  dVector3 cs,q,r;
  dReal C,k;
  cs[0] = ray->final_posr->pos[0] - ccyl->final_posr->pos[0];
  cs[1] = ray->final_posr->pos[1] - ccyl->final_posr->pos[1];
  cs[2] = ray->final_posr->pos[2] - ccyl->final_posr->pos[2];
  k = dDOT41(ccyl->final_posr->R+2,cs);	// position of ray start along ccyl axis
  q[0] = k*ccyl->final_posr->R[0*4+2] - cs[0];
  q[1] = k*ccyl->final_posr->R[1*4+2] - cs[1];
  q[2] = k*ccyl->final_posr->R[2*4+2] - cs[2];
  C = dDOT(q,q) - ccyl->radius*ccyl->radius;
  // if C < 0 then ray start position within infinite extension of cylinder

  // see if ray start position is inside the capped cylinder
  int inside_ccyl = 0;
  if (C < 0) {
    if (k < -lz2) k = -lz2;
    else if (k > lz2) k = lz2;
    r[0] = ccyl->final_posr->pos[0] + k*ccyl->final_posr->R[0*4+2];
    r[1] = ccyl->final_posr->pos[1] + k*ccyl->final_posr->R[1*4+2];
    r[2] = ccyl->final_posr->pos[2] + k*ccyl->final_posr->R[2*4+2];
    if ((ray->final_posr->pos[0]-r[0])*(ray->final_posr->pos[0]-r[0]) +
	(ray->final_posr->pos[1]-r[1])*(ray->final_posr->pos[1]-r[1]) +
	(ray->final_posr->pos[2]-r[2])*(ray->final_posr->pos[2]-r[2]) < ccyl->radius*ccyl->radius) {
      inside_ccyl = 1;
    }
  }

  // compute ray collision with infinite cylinder, except for the case where
  // the ray is outside the capped cylinder but within the infinite cylinder
  // (it that case the ray can only hit endcaps)
  if (!inside_ccyl && C < 0) {
    // set k to cap position to check
    if (k < 0) k = -lz2; else k = lz2;
  }
  else {
    dReal uv = dDOT44(ccyl->final_posr->R+2,ray->final_posr->R+2);
    r[0] = uv*ccyl->final_posr->R[0*4+2] - ray->final_posr->R[0*4+2];
    r[1] = uv*ccyl->final_posr->R[1*4+2] - ray->final_posr->R[1*4+2];
    r[2] = uv*ccyl->final_posr->R[2*4+2] - ray->final_posr->R[2*4+2];
    dReal A = dDOT(r,r);
    dReal B = 2*dDOT(q,r);
    k = B*B-4*A*C;
    if (k < 0) {
      // the ray does not intersect the infinite cylinder, but if the ray is
      // inside and parallel to the cylinder axis it may intersect the end
      // caps. set k to cap position to check.
      if (!inside_ccyl) return 0;
      if (uv < 0) k = -lz2; else k = lz2;
    }
    else {
      k = dSqrt(k);
      A = dRecip (2*A);
      dReal alpha = (-B-k)*A;
      if (alpha < 0) {
	alpha = (-B+k)*A;
	if (alpha < 0) return 0;
      }
      if (alpha > ray->length) return 0;

      // the ray intersects the infinite cylinder. check to see if the
      // intersection point is between the caps
      contact->pos[0] = ray->final_posr->pos[0] + alpha*ray->final_posr->R[0*4+2];
      contact->pos[1] = ray->final_posr->pos[1] + alpha*ray->final_posr->R[1*4+2];
      contact->pos[2] = ray->final_posr->pos[2] + alpha*ray->final_posr->R[2*4+2];
      q[0] = contact->pos[0] - ccyl->final_posr->pos[0];
      q[1] = contact->pos[1] - ccyl->final_posr->pos[1];
      q[2] = contact->pos[2] - ccyl->final_posr->pos[2];
      k = dDOT14(q,ccyl->final_posr->R+2);
      dReal nsign = inside_ccyl ? REAL(-1.0) : REAL(1.0);
      if (k >= -lz2 && k <= lz2) {
	contact->normal[0] = nsign * (contact->pos[0] -
				      (ccyl->final_posr->pos[0] + k*ccyl->final_posr->R[0*4+2]));
	contact->normal[1] = nsign * (contact->pos[1] -
				      (ccyl->final_posr->pos[1] + k*ccyl->final_posr->R[1*4+2]));
	contact->normal[2] = nsign * (contact->pos[2] -
				      (ccyl->final_posr->pos[2] + k*ccyl->final_posr->R[2*4+2]));
	dNormalize3 (contact->normal);
	contact->depth = alpha;
	return 1;
      }

      // the infinite cylinder intersection point is not between the caps.
      // set k to cap position to check.
      if (k < 0) k = -lz2; else k = lz2;
    }
  }

  // check for ray intersection with the caps. k must indicate the cap
  // position to check
  q[0] = ccyl->final_posr->pos[0] + k*ccyl->final_posr->R[0*4+2];
  q[1] = ccyl->final_posr->pos[1] + k*ccyl->final_posr->R[1*4+2];
  q[2] = ccyl->final_posr->pos[2] + k*ccyl->final_posr->R[2*4+2];
  return ray_sphere_helper (ray,q,ccyl->radius,contact, inside_ccyl);
}