IC bool dcTriListCollider::cylinderCrossesLine(const dReal* p,const dReal* R,dReal hlz, const dReal* v0,const dReal* v1,const dReal* l,dVector3 pos){ dReal _cos=dDOT14(l,R); if(!(dFabs(_cos)<1.f)) return false; dReal sin2=1.f-_cos*_cos; dVector3 vp={v0[0]-p[0],v0[1]-p[1],v0[2]-p[2]}; dReal c1=dDOT(vp,l); dReal c2=dDOT14(vp,R); dReal t=(c2*_cos-c1)/sin2; dReal q=(c2-c1*_cos)/sin2; if(dFabs(q)>hlz) return false; dVector3 v01={v1[0]-v0[0],v1[1]-v0[1],v1[2]-v0[2]}; dReal sidelength2=dDOT(v01,v01); if(t*t>sidelength2) return false; pos[0]=v0[0]+l[0]*t; pos[1]=v0[1]+l[1]*t; pos[2]=v0[2]+l[2]*t; return true; }
void GetBoxExtensions(dGeomID box,const dReal* axis, const dReal *pos, const dReal *rot, float center_prg,dReal* lo_ext,dReal* hi_ext) { R_ASSERT2(dGeomGetClass(box)==dBoxClass,"is not a box"); dVector3 length; dGeomBoxGetLengths(box,length); dReal dif=dDOT(pos,axis)-center_prg; dReal ful_ext=dFabs(dDOT14(axis,rot+0))*length[0] +dFabs(dDOT14(axis,rot+1))*length[1] +dFabs(dDOT14(axis,rot+2))*length[2]; ful_ext/=2.f; *lo_ext=-ful_ext+dif; *hi_ext=ful_ext+dif; }
int dCollideCapsulePlane (dxGeom *o1, dxGeom *o2, int flags, dContactGeom *contact, int skip) { dIASSERT (skip >= (int)sizeof(dContactGeom)); dIASSERT (o1->type == dCapsuleClass); dIASSERT (o2->type == dPlaneClass); dIASSERT ((flags & NUMC_MASK) >= 1); dxCapsule *ccyl = (dxCapsule*) o1; dxPlane *plane = (dxPlane*) o2; // collide the deepest capping sphere with the plane dReal sign = (dDOT14 (plane->p,o1->final_posr->R+2) > 0) ? REAL(-1.0) : REAL(1.0); dVector3 p; p[0] = o1->final_posr->pos[0] + o1->final_posr->R[2] * ccyl->lz * REAL(0.5) * sign; p[1] = o1->final_posr->pos[1] + o1->final_posr->R[6] * ccyl->lz * REAL(0.5) * sign; p[2] = o1->final_posr->pos[2] + o1->final_posr->R[10] * ccyl->lz * REAL(0.5) * sign; dReal k = dDOT (p,plane->p); dReal depth = plane->p[3] - k + ccyl->radius; if (depth < 0) return 0; contact->normal[0] = plane->p[0]; contact->normal[1] = plane->p[1]; contact->normal[2] = plane->p[2]; contact->pos[0] = p[0] - plane->p[0] * ccyl->radius; contact->pos[1] = p[1] - plane->p[1] * ccyl->radius; contact->pos[2] = p[2] - plane->p[2] * ccyl->radius; contact->depth = depth; int ncontacts = 1; if ((flags & NUMC_MASK) >= 2) { // collide the other capping sphere with the plane p[0] = o1->final_posr->pos[0] - o1->final_posr->R[2] * ccyl->lz * REAL(0.5) * sign; p[1] = o1->final_posr->pos[1] - o1->final_posr->R[6] * ccyl->lz * REAL(0.5) * sign; p[2] = o1->final_posr->pos[2] - o1->final_posr->R[10] * ccyl->lz * REAL(0.5) * sign; k = dDOT (p,plane->p); depth = plane->p[3] - k + ccyl->radius; if (depth >= 0) { dContactGeom *c2 = CONTACT(contact,skip); c2->normal[0] = plane->p[0]; c2->normal[1] = plane->p[1]; c2->normal[2] = plane->p[2]; c2->pos[0] = p[0] - plane->p[0] * ccyl->radius; c2->pos[1] = p[1] - plane->p[1] * ccyl->radius; c2->pos[2] = p[2] - plane->p[2] * ccyl->radius; c2->depth = depth; ncontacts = 2; } } for (int i=0; i < ncontacts; i++) { dContactGeom *currContact = CONTACT(contact,i*skip); currContact->g1 = o1; currContact->g2 = o2; currContact->side1 = -1; currContact->side2 = -1; } return ncontacts; }
int dCollideRayPlane (dxGeom *o1, dxGeom *o2, int flags, dContactGeom *contact, int skip) { dIASSERT (skip >= (int)sizeof(dContactGeom)); dIASSERT (o1->type == dRayClass); dIASSERT (o2->type == dPlaneClass); dIASSERT ((flags & NUMC_MASK) >= 1); dxRay *ray = (dxRay*) o1; dxPlane *plane = (dxPlane*) o2; dReal alpha = plane->p[3] - dDOT (plane->p,ray->final_posr->pos); // note: if alpha > 0 the starting point is below the plane dReal nsign = (alpha > 0) ? REAL(-1.0) : REAL(1.0); dReal k = dDOT14(plane->p,ray->final_posr->R+2); if (k==0) return 0; // ray parallel to plane alpha /= k; if (alpha < 0 || alpha > ray->length) return 0; contact->pos[0] = ray->final_posr->pos[0] + alpha*ray->final_posr->R[0*4+2]; contact->pos[1] = ray->final_posr->pos[1] + alpha*ray->final_posr->R[1*4+2]; contact->pos[2] = ray->final_posr->pos[2] + alpha*ray->final_posr->R[2*4+2]; contact->normal[0] = nsign*plane->p[0]; contact->normal[1] = nsign*plane->p[1]; contact->normal[2] = nsign*plane->p[2]; contact->depth = alpha; contact->g1 = ray; contact->g2 = plane; contact->side1 = -1; contact->side2 = -1; return 1; }
void GetCylinderExtensions(dGeomID cyl,const dReal* axis, const dReal *pos, const dReal *rot, float center_prg,dReal* lo_ext,dReal* hi_ext) { R_ASSERT2(dGeomGetClass(cyl)==dCylinderClassUser,"is not a cylinder"); dReal radius,length; dGeomCylinderGetParams(cyl,&radius,&length); dReal dif=dDOT(pos,axis)-center_prg; dReal _cos=dFabs(dDOT14(axis,rot+1)); dReal cos1=dDOT14(axis,rot+0); dReal cos3=dDOT14(axis,rot+2); dReal _sin=_sqrt(cos1*cos1+cos3*cos3); length/=2.f; dReal ful_ext=_cos*length+_sin*radius; *lo_ext=-ful_ext+dif; *hi_ext=ful_ext+dif; }
int dCollideCapsulePlane (dxGeom *o1, dxGeom *o2, int flags, dContactGeom *contact, int skip) { dxCapsule *ccyl = (dxCapsule*) o1; dxPlane *plane = (dxPlane*) o2; // collide the deepest capping sphere with the plane dReal sign = (dDOT14 (plane->p,o1->final_posr->R+2) > 0) ? REAL(-1.0) : REAL(1.0); dVector3 p; p[0] = o1->final_posr->pos[0] + dMUL(o1->final_posr->R[2],dMUL(ccyl->lz,dMUL(REAL(0.5),sign))); p[1] = o1->final_posr->pos[1] + dMUL(o1->final_posr->R[6],dMUL(ccyl->lz,dMUL(REAL(0.5),sign))); p[2] = o1->final_posr->pos[2] + dMUL(o1->final_posr->R[10],dMUL(ccyl->lz,dMUL(REAL(0.5),sign))); dReal k = dDOT (p,plane->p); dReal depth = plane->p[3] - k + ccyl->radius; if (depth < 0) return 0; contact->normal[0] = plane->p[0]; contact->normal[1] = plane->p[1]; contact->normal[2] = plane->p[2]; contact->pos[0] = p[0] - dMUL(plane->p[0],ccyl->radius); contact->pos[1] = p[1] - dMUL(plane->p[1],ccyl->radius); contact->pos[2] = p[2] - dMUL(plane->p[2],ccyl->radius); contact->depth = depth; int ncontacts = 1; if ((flags & NUMC_MASK) >= 2) { // collide the other capping sphere with the plane p[0] = o1->final_posr->pos[0] - dMUL(o1->final_posr->R[2],dMUL(ccyl->lz,dMUL(REAL(0.5),sign))); p[1] = o1->final_posr->pos[1] - dMUL(o1->final_posr->R[6],dMUL(ccyl->lz,dMUL(REAL(0.5),sign))); p[2] = o1->final_posr->pos[2] - dMUL(o1->final_posr->R[10],dMUL(ccyl->lz,dMUL(REAL(0.5),sign))); k = dDOT (p,plane->p); depth = plane->p[3] - k + ccyl->radius; if (depth >= 0) { dContactGeom *c2 = CONTACT(contact,skip); c2->normal[0] = plane->p[0]; c2->normal[1] = plane->p[1]; c2->normal[2] = plane->p[2]; c2->pos[0] = p[0] - dMUL(plane->p[0],ccyl->radius); c2->pos[1] = p[1] - dMUL(plane->p[1],ccyl->radius); c2->pos[2] = p[2] - dMUL(plane->p[2],ccyl->radius); c2->depth = depth; ncontacts = 2; } } for (int i=0; i < ncontacts; i++) { CONTACT(contact,i*skip)->g1 = o1; CONTACT(contact,i*skip)->g2 = o2; } return ncontacts; }
EXPORT_C dReal dGeomCapsulePointDepth (dGeomID g, dReal x, dReal y, dReal z) { g->recomputePosr(); dxCapsule *c = (dxCapsule*) g; const dReal* R = g->final_posr->R; const dReal* pos = g->final_posr->pos; dVector3 a; a[0] = x - pos[0]; a[1] = y - pos[1]; a[2] = z - pos[2]; dReal beta = dDOT14(a,R+2); dReal lz2 = dMUL(c->lz,REAL(0.5)); if (beta < -lz2) beta = -lz2; else if (beta > lz2) beta = lz2; a[0] = c->final_posr->pos[0] + dMUL(beta,R[0*4+2]); a[1] = c->final_posr->pos[1] + dMUL(beta,R[1*4+2]); a[2] = c->final_posr->pos[2] + dMUL(beta,R[2*4+2]); return c->radius - dSqrt (dMUL((x-a[0]),(x-a[0])) + dMUL((y-a[1]),(y-a[1])) + dMUL((z-a[2]),(z-a[2]))); }
dReal dGeomCapsulePointDepth (dGeomID g, dReal x, dReal y, dReal z) { dUASSERT (g && g->type == dCapsuleClass,"argument not a ccylinder"); g->recomputePosr(); dxCapsule *c = (dxCapsule*) g; const dReal* R = g->final_posr->R; const dReal* pos = g->final_posr->pos; dVector3 a; a[0] = x - pos[0]; a[1] = y - pos[1]; a[2] = z - pos[2]; dReal beta = dDOT14(a,R+2); dReal lz2 = c->lz*REAL(0.5); if (beta < -lz2) beta = -lz2; else if (beta > lz2) beta = lz2; a[0] = c->final_posr->pos[0] + beta*R[0*4+2]; a[1] = c->final_posr->pos[1] + beta*R[1*4+2]; a[2] = c->final_posr->pos[2] + beta*R[2*4+2]; return c->radius - dSqrt ((x-a[0])*(x-a[0]) + (y-a[1])*(y-a[1]) + (z-a[2])*(z-a[2])); }
static int ray_sphere_helper (dxRay *ray, dVector3 sphere_pos, dReal radius, dContactGeom *contact, int mode) { dVector3 q; q[0] = ray->final_posr->pos[0] - sphere_pos[0]; q[1] = ray->final_posr->pos[1] - sphere_pos[1]; q[2] = ray->final_posr->pos[2] - sphere_pos[2]; dReal B = dDOT14(q,ray->final_posr->R+2); dReal C = dDOT(q,q) - radius*radius; // note: if C <= 0 then the start of the ray is inside the sphere dReal k = B*B - C; if (k < 0) return 0; k = dSqrt(k); dReal alpha; if (mode && C >= 0) { alpha = -B + k; if (alpha < 0) return 0; } else { alpha = -B - k; if (alpha < 0) { alpha = -B + k; if (alpha < 0) return 0; } } if (alpha > ray->length) return 0; contact->pos[0] = ray->final_posr->pos[0] + alpha*ray->final_posr->R[0*4+2]; contact->pos[1] = ray->final_posr->pos[1] + alpha*ray->final_posr->R[1*4+2]; contact->pos[2] = ray->final_posr->pos[2] + alpha*ray->final_posr->R[2*4+2]; dReal nsign = (C < 0 || mode) ? REAL(-1.0) : REAL(1.0); contact->normal[0] = nsign*(contact->pos[0] - sphere_pos[0]); contact->normal[1] = nsign*(contact->pos[1] - sphere_pos[1]); contact->normal[2] = nsign*(contact->pos[2] - sphere_pos[2]); dNormalize3 (contact->normal); contact->depth = alpha; return 1; }
EXPORT_C int dBoxBox (const dVector3 p1, const dMatrix3 R1, const dVector3 side1, const dVector3 p2, const dMatrix3 R2, const dVector3 side2, dVector3 normal, dReal *depth, int *return_code, int maxc, dContactGeom *contact, int skip) { const dReal fudge_factor = REAL(1.05); dVector3 p,pp,normalC; const dReal *normalR = 0; dReal A[3],B[3],R11,R12,R13,R21,R22,R23,R31,R32,R33, Q11,Q12,Q13,Q21,Q22,Q23,Q31,Q32,Q33,s,s2,l; int i,j,invert_normal,code; // get vector from centers of box 1 to box 2, relative to box 1 p[0] = p2[0] - p1[0]; p[1] = p2[1] - p1[1]; p[2] = p2[2] - p1[2]; dMULTIPLY1_331 (pp,R1,p); // get pp = p relative to body 1 // get side lengths / 2 A[0] = dMUL(side1[0],REAL(0.5)); A[1] = dMUL(side1[1],REAL(0.5)); A[2] = dMUL(side1[2],REAL(0.5)); B[0] = dMUL(side2[0],REAL(0.5)); B[1] = dMUL(side2[1],REAL(0.5)); B[2] = dMUL(side2[2],REAL(0.5)); // Rij is R1'*R2, i.e. the relative rotation between R1 and R2 R11 = dDOT44(R1+0,R2+0); R12 = dDOT44(R1+0,R2+1); R13 = dDOT44(R1+0,R2+2); R21 = dDOT44(R1+1,R2+0); R22 = dDOT44(R1+1,R2+1); R23 = dDOT44(R1+1,R2+2); R31 = dDOT44(R1+2,R2+0); R32 = dDOT44(R1+2,R2+1); R33 = dDOT44(R1+2,R2+2); Q11 = dFabs(R11); Q12 = dFabs(R12); Q13 = dFabs(R13); Q21 = dFabs(R21); Q22 = dFabs(R22); Q23 = dFabs(R23); Q31 = dFabs(R31); Q32 = dFabs(R32); Q33 = dFabs(R33); // for all 15 possible separating axes: // * see if the axis separates the boxes. if so, return 0. // * find the depth of the penetration along the separating axis (s2) // * if this is the largest depth so far, record it. // the normal vector will be set to the separating axis with the smallest // depth. note: normalR is set to point to a column of R1 or R2 if that is // the smallest depth normal so far. otherwise normalR is 0 and normalC is // set to a vector relative to body 1. invert_normal is 1 if the sign of // the normal should be flipped. #define TST(expr1,expr2,norm,cc) \ s2 = dFabs(expr1) - (expr2); \ if (s2 > 0) return 0; \ if (s2 > s) { \ s = s2; \ normalR = norm; \ invert_normal = ((expr1) < 0); \ code = (cc); \ } s = -dInfinity; invert_normal = 0; code = 0; // separating axis = u1,u2,u3 TST (pp[0],(A[0] + dMUL(B[0],Q11) + dMUL(B[1],Q12) + dMUL(B[2],Q13)),R1+0,1); TST (pp[1],(A[1] + dMUL(B[0],Q21) + dMUL(B[1],Q22) + dMUL(B[2],Q23)),R1+1,2); TST (pp[2],(A[2] + dMUL(B[0],Q31) + dMUL(B[1],Q32) + dMUL(B[2],Q33)),R1+2,3); // separating axis = v1,v2,v3 TST (dDOT41(R2+0,p),(dMUL(A[0],Q11) + dMUL(A[1],Q21) + dMUL(A[2],Q31) + B[0]),R2+0,4); TST (dDOT41(R2+1,p),(dMUL(A[0],Q12) + dMUL(A[1],Q22) + dMUL(A[2],Q32) + B[1]),R2+1,5); TST (dDOT41(R2+2,p),(dMUL(A[0],Q13) + dMUL(A[1],Q23) + dMUL(A[2],Q33) + B[2]),R2+2,6); // note: cross product axes need to be scaled when s is computed. // normal (n1,n2,n3) is relative to box 1. #undef TST #define TST(expr1,expr2,n1,n2,n3,cc) \ s2 = dFabs(expr1) - (expr2); \ if (s2 > 0) return 0; \ l = dSqrt (dMUL((n1),(n1)) + dMUL((n2),(n2)) + dMUL((n3),(n3))); \ if (l > 0) { \ s2 = dDIV(s2,l); \ if (dMUL(s2,fudge_factor) > s) { \ s = s2; \ normalR = 0; \ normalC[0] = dDIV((n1),l); normalC[1] = dDIV((n2),l); normalC[2] = dDIV((n3),l); \ invert_normal = ((expr1) < 0); \ code = (cc); \ } \ } // separating axis = u1 x (v1,v2,v3) TST((dMUL(pp[2],R21)-dMUL(pp[1],R31)),(dMUL(A[1],Q31)+dMUL(A[2],Q21)+dMUL(B[1],Q13)+dMUL(B[2],Q12)),0,-R31,R21,7); TST((dMUL(pp[2],R22)-dMUL(pp[1],R32)),(dMUL(A[1],Q32)+dMUL(A[2],Q22)+dMUL(B[0],Q13)+dMUL(B[2],Q11)),0,-R32,R22,8); TST((dMUL(pp[2],R23)-dMUL(pp[1],R33)),(dMUL(A[1],Q33)+dMUL(A[2],Q23)+dMUL(B[0],Q12)+dMUL(B[1],Q11)),0,-R33,R23,9); // separating axis = u2 x (v1,v2,v3) TST((dMUL(pp[0],R31)-dMUL(pp[2],R11)),(dMUL(A[0],Q31)+dMUL(A[2],Q11)+dMUL(B[1],Q23)+dMUL(B[2],Q22)),R31,0,-R11,10); TST((dMUL(pp[0],R32)-dMUL(pp[2],R12)),(dMUL(A[0],Q32)+dMUL(A[2],Q12)+dMUL(B[0],Q23)+dMUL(B[2],Q21)),R32,0,-R12,11); TST((dMUL(pp[0],R33)-dMUL(pp[2],R13)),(dMUL(A[0],Q33)+dMUL(A[2],Q13)+dMUL(B[0],Q22)+dMUL(B[1],Q21)),R33,0,-R13,12); // separating axis = u3 x (v1,v2,v3) TST((dMUL(pp[1],R11)-dMUL(pp[0],R21)),(dMUL(A[0],Q21)+dMUL(A[1],Q11)+dMUL(B[1],Q33)+dMUL(B[2],Q32)),-R21,R11,0,13); TST((dMUL(pp[1],R12)-dMUL(pp[0],R22)),(dMUL(A[0],Q22)+dMUL(A[1],Q12)+dMUL(B[0],Q33)+dMUL(B[2],Q31)),-R22,R12,0,14); TST((dMUL(pp[1],R13)-dMUL(pp[0],R23)),(dMUL(A[0],Q23)+dMUL(A[1],Q13)+dMUL(B[0],Q32)+dMUL(B[1],Q31)),-R23,R13,0,15); #undef TST if (!code) return 0; // if we get to this point, the boxes interpenetrate. compute the normal // in global coordinates. if (normalR) { normal[0] = normalR[0]; normal[1] = normalR[4]; normal[2] = normalR[8]; } else { dMULTIPLY0_331 (normal,R1,normalC); } if (invert_normal) { normal[0] = -normal[0]; normal[1] = -normal[1]; normal[2] = -normal[2]; } *depth = -s; // compute contact point(s) if (code > 6) { // an edge from box 1 touches an edge from box 2. // find a point pa on the intersecting edge of box 1 dVector3 pa; dReal sign; for (i=0; i<3; i++) pa[i] = p1[i]; for (j=0; j<3; j++) { sign = (dDOT14(normal,R1+j) > 0) ? REAL(1.0) : REAL(-1.0); for (i=0; i<3; i++) pa[i] += dMUL(sign,dMUL(A[j],R1[i*4+j])); } // find a point pb on the intersecting edge of box 2 dVector3 pb; for (i=0; i<3; i++) pb[i] = p2[i]; for (j=0; j<3; j++) { sign = (dDOT14(normal,R2+j) > 0) ? REAL(-1.0) : REAL(1.0); for (i=0; i<3; i++) pb[i] += dMUL(sign,dMUL(B[j],R2[i*4+j])); } dReal alpha,beta; dVector3 ua,ub; for (i=0; i<3; i++) ua[i] = R1[((code)-7)/3 + i*4]; for (i=0; i<3; i++) ub[i] = R2[((code)-7)%3 + i*4]; dLineClosestApproach (pa,ua,pb,ub,&alpha,&beta); for (i=0; i<3; i++) pa[i] += dMUL(ua[i],alpha); for (i=0; i<3; i++) pb[i] += dMUL(ub[i],beta); for (i=0; i<3; i++) contact[0].pos[i] = dMUL(REAL(0.5),(pa[i]+pb[i])); contact[0].depth = *depth; *return_code = code; return 1; } // okay, we have a face-something intersection (because the separating // axis is perpendicular to a face). define face 'a' to be the reference // face (i.e. the normal vector is perpendicular to this) and face 'b' to be // the incident face (the closest face of the other box). const dReal *Ra,*Rb,*pa,*pb,*Sa,*Sb; if (code <= 3) { Ra = R1; Rb = R2; pa = p1; pb = p2; Sa = A; Sb = B; } else { Ra = R2; Rb = R1; pa = p2; pb = p1; Sa = B; Sb = A; } // nr = normal vector of reference face dotted with axes of incident box. // anr = absolute values of nr. dVector3 normal2,nr,anr; if (code <= 3) { normal2[0] = normal[0]; normal2[1] = normal[1]; normal2[2] = normal[2]; } else { normal2[0] = -normal[0]; normal2[1] = -normal[1]; normal2[2] = -normal[2]; } dMULTIPLY1_331 (nr,Rb,normal2); anr[0] = dFabs (nr[0]); anr[1] = dFabs (nr[1]); anr[2] = dFabs (nr[2]); // find the largest compontent of anr: this corresponds to the normal // for the indident face. the other axis numbers of the indicent face // are stored in a1,a2. int lanr,a1,a2; if (anr[1] > anr[0]) { if (anr[1] > anr[2]) { a1 = 0; lanr = 1; a2 = 2; } else { a1 = 0; a2 = 1; lanr = 2; } } else { if (anr[0] > anr[2]) { lanr = 0; a1 = 1; a2 = 2; } else { a1 = 0; a2 = 1; lanr = 2; } } // compute center point of incident face, in reference-face coordinates dVector3 center; if (nr[lanr] < 0) { for (i=0; i<3; i++) center[i] = pb[i] - pa[i] + dMUL(Sb[lanr],Rb[i*4+lanr]); } else { for (i=0; i<3; i++) center[i] = pb[i] - pa[i] - dMUL(Sb[lanr],Rb[i*4+lanr]); } // find the normal and non-normal axis numbers of the reference box int codeN,code1,code2; if (code <= 3) codeN = code-1; else codeN = code-4; if (codeN==0) { code1 = 1; code2 = 2; } else if (codeN==1) { code1 = 0; code2 = 2; } else { code1 = 0; code2 = 1; } // find the four corners of the incident face, in reference-face coordinates dReal quad[8]; // 2D coordinate of incident face (x,y pairs) dReal c1,c2,m11,m12,m21,m22; c1 = dDOT14 (center,Ra+code1); c2 = dDOT14 (center,Ra+code2); // optimize this? - we have already computed this data above, but it is not // stored in an easy-to-index format. for now it's quicker just to recompute // the four dot products. m11 = dDOT44 (Ra+code1,Rb+a1); m12 = dDOT44 (Ra+code1,Rb+a2); m21 = dDOT44 (Ra+code2,Rb+a1); m22 = dDOT44 (Ra+code2,Rb+a2); { dReal k1 = dMUL(m11,Sb[a1]); dReal k2 = dMUL(m21,Sb[a1]); dReal k3 = dMUL(m12,Sb[a2]); dReal k4 = dMUL(m22,Sb[a2]); quad[0] = c1 - k1 - k3; quad[1] = c2 - k2 - k4; quad[2] = c1 - k1 + k3; quad[3] = c2 - k2 + k4; quad[4] = c1 + k1 + k3; quad[5] = c2 + k2 + k4; quad[6] = c1 + k1 - k3; quad[7] = c2 + k2 - k4; } // find the size of the reference face dReal rect[2]; rect[0] = Sa[code1]; rect[1] = Sa[code2]; // intersect the incident and reference faces dReal ret[16]; int n = intersectRectQuad (rect,quad,ret); if (n < 1) return 0; // this should never happen // convert the intersection points into reference-face coordinates, // and compute the contact position and depth for each point. only keep // those points that have a positive (penetrating) depth. delete points in // the 'ret' array as necessary so that 'point' and 'ret' correspond. dReal point[3*8]; // penetrating contact points dReal dep[8]; // depths for those points dReal det1 = dRecip(dMUL(m11,m22) - dMUL(m12,m21)); m11 = dMUL(m11,det1); m12 = dMUL(m12,det1); m21 = dMUL(m21,det1); m22 = dMUL(m22,det1); int cnum = 0; // number of penetrating contact points found for (j=0; j < n; j++) { dReal k1 = dMUL(m22,(ret[j*2]-c1)) - dMUL(m12,(ret[j*2+1]-c2)); dReal k2 = -dMUL(m21,(ret[j*2]-c1)) + dMUL(m11,(ret[j*2+1]-c2)); for (i=0; i<3; i++) point[cnum*3+i] = center[i] + dMUL(k1,Rb[i*4+a1]) + dMUL(k2,Rb[i*4+a2]); dep[cnum] = Sa[codeN] - dDOT(normal2,point+cnum*3); if (dep[cnum] >= 0) { ret[cnum*2] = ret[j*2]; ret[cnum*2+1] = ret[j*2+1]; cnum++; } } if (cnum < 1) return 0; // this should never happen // we can't generate more contacts than we actually have if (maxc > cnum) maxc = cnum; if (maxc < 1) maxc = 1; if (cnum <= maxc) { // we have less contacts than we need, so we use them all for (j=0; j < cnum; j++) { dContactGeom *con = CONTACT(contact,skip*j); for (i=0; i<3; i++) con->pos[i] = point[j*3+i] + pa[i]; con->depth = dep[j]; } } else { // we have more contacts than are wanted, some of them must be culled. // find the deepest point, it is always the first contact. int i1 = 0; dReal maxdepth = dep[0]; for (i=1; i<cnum; i++) { if (dep[i] > maxdepth) { maxdepth = dep[i]; i1 = i; } } int iret[8]; cullPoints (cnum,ret,maxc,i1,iret); for (j=0; j < maxc; j++) { dContactGeom *con = CONTACT(contact,skip*j); for (i=0; i<3; i++) con->pos[i] = point[iret[j]*3+i] + pa[i]; con->depth = dep[iret[j]]; } cnum = maxc; } *return_code = code; return cnum; }
int dCollideBoxPlane (dxGeom *o1, dxGeom *o2, int flags, dContactGeom *contact, int skip) { dxBox *box = (dxBox*) o1; dxPlane *plane = (dxPlane*) o2; contact->g1 = o1; contact->g2 = o2; int ret = 0; //@@@ problem: using 4-vector (plane->p) as 3-vector (normal). const dReal *R = o1->final_posr->R; // rotation of box const dReal *n = plane->p; // normal vector // project sides lengths along normal vector, get absolute values dReal Q1 = dDOT14(n,R+0); dReal Q2 = dDOT14(n,R+1); dReal Q3 = dDOT14(n,R+2); dReal A1 = dMUL(box->side[0],Q1); dReal A2 = dMUL(box->side[1],Q2); dReal A3 = dMUL(box->side[2],Q3); dReal B1 = dFabs(A1); dReal B2 = dFabs(A2); dReal B3 = dFabs(A3); // early exit test dReal depth = plane->p[3] + dMUL(REAL(0.5),(B1+B2+B3)) - dDOT(n,o1->final_posr->pos); if (depth < 0) return 0; // find number of contacts requested int maxc = flags & NUMC_MASK; if (maxc < 1) maxc = 1; if (maxc > 3) maxc = 3; // no more than 3 contacts per box allowed // find deepest point dVector3 p; p[0] = o1->final_posr->pos[0]; p[1] = o1->final_posr->pos[1]; p[2] = o1->final_posr->pos[2]; #define FOO(i,op) \ p[0] op dMUL(REAL(0.5),dMUL(box->side[i],R[0+i])); \ p[1] op dMUL(REAL(0.5),dMUL(box->side[i],R[4+i])); \ p[2] op dMUL(REAL(0.5),dMUL(box->side[i],R[8+i])); #define BAR(i,iinc) if (A ## iinc > 0) { FOO(i,-=) } else { FOO(i,+=) } BAR(0,1); BAR(1,2); BAR(2,3); #undef FOO #undef BAR // the deepest point is the first contact point contact->pos[0] = p[0]; contact->pos[1] = p[1]; contact->pos[2] = p[2]; contact->normal[0] = n[0]; contact->normal[1] = n[1]; contact->normal[2] = n[2]; contact->depth = depth; ret = 1; // ret is number of contact points found so far if (maxc == 1) goto done; // get the second and third contact points by starting from `p' and going // along the two sides with the smallest projected length. #define FOO(i,j,op) \ CONTACT(contact,i*skip)->pos[0] = p[0] op dMUL(box->side[j],R[0+j]); \ CONTACT(contact,i*skip)->pos[1] = p[1] op dMUL(box->side[j],R[4+j]); \ CONTACT(contact,i*skip)->pos[2] = p[2] op dMUL(box->side[j],R[8+j]); #define BAR(ctact,side,sideinc) \ depth -= B ## sideinc; \ if (depth < 0) goto done; \ if (A ## sideinc > 0) { FOO(ctact,side,+) } else { FOO(ctact,side,-) } \ CONTACT(contact,ctact*skip)->depth = depth; \ ret++; CONTACT(contact,skip)->normal[0] = n[0]; CONTACT(contact,skip)->normal[1] = n[1]; CONTACT(contact,skip)->normal[2] = n[2]; if (maxc == 3) { CONTACT(contact,2*skip)->normal[0] = n[0]; CONTACT(contact,2*skip)->normal[1] = n[1]; CONTACT(contact,2*skip)->normal[2] = n[2]; } if (B1 < B2) { if (B3 < B1) goto use_side_3; else { BAR(1,0,1); // use side 1 if (maxc == 2) goto done; if (B2 < B3) goto contact2_2; else goto contact2_3; } } else { if (B3 < B2) { use_side_3: // use side 3 BAR(1,2,3); if (maxc == 2) goto done; if (B1 < B2) goto contact2_1; else goto contact2_2; } else { BAR(1,1,2); // use side 2 if (maxc == 2) goto done; if (B1 < B3) goto contact2_1; else goto contact2_3; } } contact2_1: BAR(2,0,1); goto done; contact2_2: BAR(2,1,2); goto done; contact2_3: BAR(2,2,3); goto done; #undef FOO #undef BAR done: for (int i=0; i<ret; i++) { CONTACT(contact,i*skip)->g1 = o1; CONTACT(contact,i*skip)->g2 = o2; } return ret; }
// Ray - Cylinder collider by David Walters (June 2006) int dCollideRayCylinder( dxGeom *o1, dxGeom *o2, int flags, dContactGeom *contact, int skip ) { dIASSERT( skip >= (int)sizeof( dContactGeom ) ); dIASSERT( o1->type == dRayClass ); dIASSERT( o2->type == dCylinderClass ); dIASSERT( (flags & NUMC_MASK) >= 1 ); dxRay* ray = (dxRay*)( o1 ); dxCylinder* cyl = (dxCylinder*)( o2 ); // Fill in contact information. contact->g1 = ray; contact->g2 = cyl; contact->side1 = -1; contact->side2 = -1; const dReal half_length = cyl->lz * REAL( 0.5 ); // // Compute some useful info // dVector3 q, r; dReal d, C, k; // Vector 'r', line segment from C to R (ray start) ( r = R - C ) r[ 0 ] = ray->final_posr->pos[0] - cyl->final_posr->pos[0]; r[ 1 ] = ray->final_posr->pos[1] - cyl->final_posr->pos[1]; r[ 2 ] = ray->final_posr->pos[2] - cyl->final_posr->pos[2]; // Distance that ray start is along cyl axis ( Z-axis direction ) d = dDOT41( cyl->final_posr->R + 2, r ); // // Compute vector 'q' representing the shortest line from R to the cylinder z-axis (Cz). // // Point on axis ( in world space ): cp = ( d * Cz ) + C // // Line 'q' from R to cp: q = cp - R // q = ( d * Cz ) + C - R // q = ( d * Cz ) - ( R - C ) q[ 0 ] = ( d * cyl->final_posr->R[0*4+2] ) - r[ 0 ]; q[ 1 ] = ( d * cyl->final_posr->R[1*4+2] ) - r[ 1 ]; q[ 2 ] = ( d * cyl->final_posr->R[2*4+2] ) - r[ 2 ]; // Compute square length of 'q'. Subtract from radius squared to // get square distance 'C' between the line q and the radius. // if C < 0 then ray start position is within infinite extension of cylinder C = dDOT( q, q ) - ( cyl->radius * cyl->radius ); // Compute the projection of ray direction normal onto cylinder direction normal. dReal uv = dDOT44( cyl->final_posr->R+2, ray->final_posr->R+2 ); // // Find ray collision with infinite cylinder // // Compute vector from end of ray direction normal to projection on cylinder direction normal. r[ 0 ] = ( uv * cyl->final_posr->R[0*4+2] ) - ray->final_posr->R[0*4+2]; r[ 1 ] = ( uv * cyl->final_posr->R[1*4+2] ) - ray->final_posr->R[1*4+2]; r[ 2 ] = ( uv * cyl->final_posr->R[2*4+2] ) - ray->final_posr->R[2*4+2]; // Quadratic Formula Magic // Compute discriminant 'k': // k < 0 : No intersection // k = 0 : Tangent // k > 0 : Intersection dReal A = dDOT( r, r ); dReal B = 2 * dDOT( q, r ); k = B*B - 4*A*C; // // Collision with Flat Caps ? // // No collision with cylinder edge. ( Use epsilon here or we miss some obvious cases ) if ( k < dEpsilon && C <= 0 ) { // The ray does not intersect the edge of the infinite cylinder, // but the ray start is inside and so must run parallel to the axis. // It may yet intersect an end cap. The following cases are valid: // -ve-cap , -half centre +half , +ve-cap // <<================|-------------------|------------->>>---|================>> // | | // | d-------------------> 1. // 2. d------------------> | // 3. <------------------d | // | <-------------------d 4. // | | // <<================|-------------------|------------->>>---|===============>> // Negative if the ray and cylinder axes point in opposite directions. const dReal uvsign = ( uv < 0 ) ? REAL( -1.0 ) : REAL( 1.0 ); // Negative if the ray start is inside the cylinder const dReal internal = ( d >= -half_length && d <= +half_length ) ? REAL( -1.0 ) : REAL( 1.0 ); // Ray and Cylinder axes run in the same direction ( cases 1, 2 ) // Ray and Cylinder axes run in opposite directions ( cases 3, 4 ) if ( ( ( uv > 0 ) && ( d + ( uvsign * ray->length ) < half_length * internal ) ) || ( ( uv < 0 ) && ( d + ( uvsign * ray->length ) > half_length * internal ) ) ) { return 0; // No intersection with caps or curved surface. } // Compute depth (distance from ray to cylinder) contact->depth = ( ( -uvsign * d ) - ( internal * half_length ) ); // Compute contact point. contact->pos[0] = ray->final_posr->pos[0] + ( contact->depth * ray->final_posr->R[0*4+2] ); contact->pos[1] = ray->final_posr->pos[1] + ( contact->depth * ray->final_posr->R[1*4+2] ); contact->pos[2] = ray->final_posr->pos[2] + ( contact->depth * ray->final_posr->R[2*4+2] ); // Compute reflected contact normal. contact->normal[0] = uvsign * ( cyl->final_posr->R[0*4+2] ); contact->normal[1] = uvsign * ( cyl->final_posr->R[1*4+2] ); contact->normal[2] = uvsign * ( cyl->final_posr->R[2*4+2] ); // Contact! return 1; } // // Collision with Curved Edge ? // if ( k > 0 ) { // Finish off quadratic formula to get intersection co-efficient k = dSqrt( k ); A = dRecip( 2 * A ); // Compute distance along line to contact point. dReal alpha = ( -B - k ) * A; if ( alpha < 0 ) { // Flip in the other direction. alpha = ( -B + k ) * A; } // Intersection point is within ray length? if ( alpha >= 0 && alpha <= ray->length ) { // The ray intersects the infinite cylinder! // Compute contact point. contact->pos[0] = ray->final_posr->pos[0] + ( alpha * ray->final_posr->R[0*4+2] ); contact->pos[1] = ray->final_posr->pos[1] + ( alpha * ray->final_posr->R[1*4+2] ); contact->pos[2] = ray->final_posr->pos[2] + ( alpha * ray->final_posr->R[2*4+2] ); // q is the vector from the cylinder centre to the contact point. q[0] = contact->pos[0] - cyl->final_posr->pos[0]; q[1] = contact->pos[1] - cyl->final_posr->pos[1]; q[2] = contact->pos[2] - cyl->final_posr->pos[2]; // Compute the distance along the cylinder axis of this contact point. d = dDOT14( q, cyl->final_posr->R+2 ); // Check to see if the intersection point is between the flat end caps if ( d >= -half_length && d <= +half_length ) { // Flip the normal if the start point is inside the cylinder. const dReal nsign = ( C < 0 ) ? REAL( -1.0 ) : REAL( 1.0 ); // Compute contact normal. contact->normal[0] = nsign * (contact->pos[0] - (cyl->final_posr->pos[0] + d*cyl->final_posr->R[0*4+2])); contact->normal[1] = nsign * (contact->pos[1] - (cyl->final_posr->pos[1] + d*cyl->final_posr->R[1*4+2])); contact->normal[2] = nsign * (contact->pos[2] - (cyl->final_posr->pos[2] + d*cyl->final_posr->R[2*4+2])); dNormalize3( contact->normal ); // Store depth. contact->depth = alpha; // Contact! return 1; } } } // No contact with anything. return 0; }
int dCollideSphereBox (dxGeom *o1, dxGeom *o2, int flags, dContactGeom *contact, int skip) { dIASSERT (skip >= (int)sizeof(dContactGeom)); dIASSERT (o1->type == dSphereClass); dIASSERT (o2->type == dBoxClass); dIASSERT ((flags & NUMC_MASK) >= 1); // this is easy. get the sphere center `p' relative to the box, and then clip // that to the boundary of the box (call that point `q'). if q is on the // boundary of the box and |p-q| is <= sphere radius, they touch. // if q is inside the box, the sphere is inside the box, so set a contact // normal to push the sphere to the closest box face. dVector3 l,t,p,q,r; dReal depth; int onborder = 0; dxSphere *sphere = (dxSphere*) o1; dxBox *box = (dxBox*) o2; contact->g1 = o1; contact->g2 = o2; p[0] = o1->final_posr->pos[0] - o2->final_posr->pos[0]; p[1] = o1->final_posr->pos[1] - o2->final_posr->pos[1]; p[2] = o1->final_posr->pos[2] - o2->final_posr->pos[2]; l[0] = box->side[0]*REAL(0.5); t[0] = dDOT14(p,o2->final_posr->R); if (t[0] < -l[0]) { t[0] = -l[0]; onborder = 1; } if (t[0] > l[0]) { t[0] = l[0]; onborder = 1; } l[1] = box->side[1]*REAL(0.5); t[1] = dDOT14(p,o2->final_posr->R+1); if (t[1] < -l[1]) { t[1] = -l[1]; onborder = 1; } if (t[1] > l[1]) { t[1] = l[1]; onborder = 1; } t[2] = dDOT14(p,o2->final_posr->R+2); l[2] = box->side[2]*REAL(0.5); if (t[2] < -l[2]) { t[2] = -l[2]; onborder = 1; } if (t[2] > l[2]) { t[2] = l[2]; onborder = 1; } if (!onborder) { // sphere center inside box. find closest face to `t' dReal min_distance = l[0] - dFabs(t[0]); int mini = 0; for (int i=1; i<3; i++) { dReal face_distance = l[i] - dFabs(t[i]); if (face_distance < min_distance) { min_distance = face_distance; mini = i; } } // contact position = sphere center contact->pos[0] = o1->final_posr->pos[0]; contact->pos[1] = o1->final_posr->pos[1]; contact->pos[2] = o1->final_posr->pos[2]; // contact normal points to closest face dVector3 tmp; tmp[0] = 0; tmp[1] = 0; tmp[2] = 0; tmp[mini] = (t[mini] > 0) ? REAL(1.0) : REAL(-1.0); dMULTIPLY0_331 (contact->normal,o2->final_posr->R,tmp); // contact depth = distance to wall along normal plus radius contact->depth = min_distance + sphere->radius; return 1; } t[3] = 0; //@@@ hmmm dMULTIPLY0_331 (q,o2->final_posr->R,t); r[0] = p[0] - q[0]; r[1] = p[1] - q[1]; r[2] = p[2] - q[2]; depth = sphere->radius - dSqrt(dDOT(r,r)); if (depth < 0) return 0; contact->pos[0] = q[0] + o2->final_posr->pos[0]; contact->pos[1] = q[1] + o2->final_posr->pos[1]; contact->pos[2] = q[2] + o2->final_posr->pos[2]; contact->normal[0] = r[0]; contact->normal[1] = r[1]; contact->normal[2] = r[2]; dNormalize3 (contact->normal); contact->depth = depth; return 1; }
int dBoxBox2 (const btVector3 p1, const dMatrix3 R1, const btVector3 side1, const btVector3 p2, const dMatrix3 R2, const btVector3 side2, BoxBoxResults *results) { const btScalar fudge_factor = 1.05; btVector3 p,pp,normalC; normalC[0] = 0.f; normalC[1] = 0.f; normalC[2] = 0.f; const btScalar *normalR = 0; btScalar A[3],B[3],R11,R12,R13,R21,R22,R23,R31,R32,R33, Q11,Q12,Q13,Q21,Q22,Q23,Q31,Q32,Q33,s,s2,l,normal[3],depth; int i,j,invert_normal,code; // get vector from centers of box 1 to box 2, relative to box 1 p[0] = p2[0] - p1[0]; p[1] = p2[1] - p1[1]; p[2] = p2[2] - p1[2]; dMULTIPLY1_331 (pp,R1,p); // get pp = p relative to body 1 // get side lengths (already specified as half lengths) A[0] = side1[0]; A[1] = side1[1]; A[2] = side1[2]; B[0] = side2[0]; B[1] = side2[1]; B[2] = side2[2]; // Rij is R1'*R2, i.e. the relative rotation between R1 and R2 R11 = dDOT44(R1+0,R2+0); R12 = dDOT44(R1+0,R2+1); R13 = dDOT44(R1+0,R2+2); R21 = dDOT44(R1+1,R2+0); R22 = dDOT44(R1+1,R2+1); R23 = dDOT44(R1+1,R2+2); R31 = dDOT44(R1+2,R2+0); R32 = dDOT44(R1+2,R2+1); R33 = dDOT44(R1+2,R2+2); Q11 = btFabs(R11); Q12 = btFabs(R12); Q13 = btFabs(R13); Q21 = btFabs(R21); Q22 = btFabs(R22); Q23 = btFabs(R23); Q31 = btFabs(R31); Q32 = btFabs(R32); Q33 = btFabs(R33); // for all 15 possible separating axes: // * see if the axis separates the boxes. if so, return 0. // * find the depth of the penetration along the separating axis (s2) // * if this is the largest depth so far, record it. // the normal vector will be set to the separating axis with the smallest // depth. note: normalR is set to point to a column of R1 or R2 if that is // the smallest depth normal so far. otherwise normalR is 0 and normalC is // set to a vector relative to body 1. invert_normal is 1 if the sign of // the normal should be flipped. #define TST(expr1,expr2,norm,cc) \ s2 = btFabs(expr1) - (expr2); \ if (s2 > 0) return 0; \ if (s2 > s) { \ s = s2; \ normalR = norm; \ invert_normal = ((expr1) < 0); \ code = (cc); \ } s = -dInfinity; invert_normal = 0; code = 0; // separating axis = u1,u2,u3 TST (pp[0],(A[0] + B[0]*Q11 + B[1]*Q12 + B[2]*Q13),R1+0,1); TST (pp[1],(A[1] + B[0]*Q21 + B[1]*Q22 + B[2]*Q23),R1+1,2); TST (pp[2],(A[2] + B[0]*Q31 + B[1]*Q32 + B[2]*Q33),R1+2,3); // separating axis = v1,v2,v3 TST (dDOT41(R2+0,p),(A[0]*Q11 + A[1]*Q21 + A[2]*Q31 + B[0]),R2+0,4); TST (dDOT41(R2+1,p),(A[0]*Q12 + A[1]*Q22 + A[2]*Q32 + B[1]),R2+1,5); TST (dDOT41(R2+2,p),(A[0]*Q13 + A[1]*Q23 + A[2]*Q33 + B[2]),R2+2,6); // note: cross product axes need to be scaled when s is computed. // normal (n1,n2,n3) is relative to box 1. #undef TST #define TST(expr1,expr2,n1,n2,n3,cc) \ s2 = btFabs(expr1) - (expr2); \ if (s2 > SIMD_EPSILON) return 0; \ l = btSqrt((n1)*(n1) + (n2)*(n2) + (n3)*(n3)); \ if (l > SIMD_EPSILON) { \ s2 /= l; \ if (s2*fudge_factor > s) { \ s = s2; \ normalR = 0; \ normalC[0] = (n1)/l; normalC[1] = (n2)/l; normalC[2] = (n3)/l; \ invert_normal = ((expr1) < 0); \ code = (cc); \ } \ } btScalar fudge2 = 1.0e-5f; Q11 += fudge2; Q12 += fudge2; Q13 += fudge2; Q21 += fudge2; Q22 += fudge2; Q23 += fudge2; Q31 += fudge2; Q32 += fudge2; Q33 += fudge2; // separating axis = u1 x (v1,v2,v3) TST(pp[2]*R21-pp[1]*R31,(A[1]*Q31+A[2]*Q21+B[1]*Q13+B[2]*Q12),0,-R31,R21,7); TST(pp[2]*R22-pp[1]*R32,(A[1]*Q32+A[2]*Q22+B[0]*Q13+B[2]*Q11),0,-R32,R22,8); TST(pp[2]*R23-pp[1]*R33,(A[1]*Q33+A[2]*Q23+B[0]*Q12+B[1]*Q11),0,-R33,R23,9); // separating axis = u2 x (v1,v2,v3) TST(pp[0]*R31-pp[2]*R11,(A[0]*Q31+A[2]*Q11+B[1]*Q23+B[2]*Q22),R31,0,-R11,10); TST(pp[0]*R32-pp[2]*R12,(A[0]*Q32+A[2]*Q12+B[0]*Q23+B[2]*Q21),R32,0,-R12,11); TST(pp[0]*R33-pp[2]*R13,(A[0]*Q33+A[2]*Q13+B[0]*Q22+B[1]*Q21),R33,0,-R13,12); // separating axis = u3 x (v1,v2,v3) TST(pp[1]*R11-pp[0]*R21,(A[0]*Q21+A[1]*Q11+B[1]*Q33+B[2]*Q32),-R21,R11,0,13); TST(pp[1]*R12-pp[0]*R22,(A[0]*Q22+A[1]*Q12+B[0]*Q33+B[2]*Q31),-R22,R12,0,14); TST(pp[1]*R13-pp[0]*R23,(A[0]*Q23+A[1]*Q13+B[0]*Q32+B[1]*Q31),-R23,R13,0,15); #undef TST if (!code) return 0; results->code = code; // if we get to this point, the boxes interpenetrate. compute the normal // in global coordinates. if (normalR) { normal[0] = normalR[0]; normal[1] = normalR[4]; normal[2] = normalR[8]; } else { dMULTIPLY0_331 (normal,R1,normalC); } if (invert_normal) { normal[0] = -normal[0]; normal[1] = -normal[1]; normal[2] = -normal[2]; } depth = -s; // compute contact point(s) if (code > 6) { // an edge from box 1 touches an edge from box 2. // find a point pa on the intersecting edge of box 1 btVector3 pa; btScalar sign; for (i=0; i<3; i++) pa[i] = p1[i]; for (j=0; j<3; j++) { sign = (dDOT14(normal,R1+j) > 0) ? 1.0 : -1.0; for (i=0; i<3; i++) pa[i] += sign * A[j] * R1[i*4+j]; } // find a point pb on the intersecting edge of box 2 btVector3 pb; for (i=0; i<3; i++) pb[i] = p2[i]; for (j=0; j<3; j++) { sign = (dDOT14(normal,R2+j) > 0) ? -1.0 : 1.0; for (i=0; i<3; i++) pb[i] += sign * B[j] * R2[i*4+j]; } btScalar alpha,beta; btVector3 ua,ub; for (i=0; i<3; i++) ua[i] = R1[((code)-7)/3 + i*4]; for (i=0; i<3; i++) ub[i] = R2[((code)-7)%3 + i*4]; dLineClosestApproach (pa,ua,pb,ub,&alpha,&beta); for (i=0; i<3; i++) pa[i] += ua[i]*alpha; for (i=0; i<3; i++) pb[i] += ub[i]*beta; { btVector3 pointInWorld; addContactPoint(results,normal,pb,depth); } return 1; } // okay, we have a face-something intersection (because the separating // axis is perpendicular to a face). define face 'a' to be the reference // face (i.e. the normal vector is perpendicular to this) and face 'b' to be // the incident face (the closest face of the other box). const btScalar *Ra,*Rb,*pa,*pb,*Sa,*Sb; if (code <= 3) { Ra = R1; Rb = R2; pa = p1; pb = p2; Sa = A; Sb = B; } else { Ra = R2; Rb = R1; pa = p2; pb = p1; Sa = B; Sb = A; } // nr = normal vector of reference face dotted with axes of incident box. // anr = absolute values of nr. btVector3 normal2,nr,anr; if (code <= 3) { normal2[0] = normal[0]; normal2[1] = normal[1]; normal2[2] = normal[2]; } else { normal2[0] = -normal[0]; normal2[1] = -normal[1]; normal2[2] = -normal[2]; } dMULTIPLY1_331 (nr,Rb,normal2); anr[0] = btFabs (nr[0]); anr[1] = btFabs (nr[1]); anr[2] = btFabs (nr[2]); // find the largest compontent of anr: this corresponds to the normal // for the indident face. the other axis numbers of the indicent face // are stored in a1,a2. int lanr,a1,a2; if (anr[1] > anr[0]) { if (anr[1] > anr[2]) { a1 = 0; lanr = 1; a2 = 2; } else { a1 = 0; a2 = 1; lanr = 2; } } else { if (anr[0] > anr[2]) { lanr = 0; a1 = 1; a2 = 2; } else { a1 = 0; a2 = 1; lanr = 2; } } // compute center point of incident face, in reference-face coordinates btVector3 center; if (nr[lanr] < 0) { for (i=0; i<3; i++) center[i] = pb[i] - pa[i] + Sb[lanr] * Rb[i*4+lanr]; } else { for (i=0; i<3; i++) center[i] = pb[i] - pa[i] - Sb[lanr] * Rb[i*4+lanr]; } // find the normal and non-normal axis numbers of the reference box int codeN,code1,code2; if (code <= 3) codeN = code-1; else codeN = code-4; if (codeN==0) { code1 = 1; code2 = 2; } else if (codeN==1) { code1 = 0; code2 = 2; } else { code1 = 0; code2 = 1; } // find the four corners of the incident face, in reference-face coordinates btScalar quad[8]; // 2D coordinate of incident face (x,y pairs) btScalar c1,c2,m11,m12,m21,m22; c1 = dDOT14 (center,Ra+code1); c2 = dDOT14 (center,Ra+code2); // optimize this? - we have already computed this data above, but it is not // stored in an easy-to-index format. for now it's quicker just to recompute // the four dot products. m11 = dDOT44 (Ra+code1,Rb+a1); m12 = dDOT44 (Ra+code1,Rb+a2); m21 = dDOT44 (Ra+code2,Rb+a1); m22 = dDOT44 (Ra+code2,Rb+a2); { btScalar k1 = m11*Sb[a1]; btScalar k2 = m21*Sb[a1]; btScalar k3 = m12*Sb[a2]; btScalar k4 = m22*Sb[a2]; quad[0] = c1 - k1 - k3; quad[1] = c2 - k2 - k4; quad[2] = c1 - k1 + k3; quad[3] = c2 - k2 + k4; quad[4] = c1 + k1 + k3; quad[5] = c2 + k2 + k4; quad[6] = c1 + k1 - k3; quad[7] = c2 + k2 - k4; } // find the size of the reference face btScalar rect[2]; rect[0] = Sa[code1]; rect[1] = Sa[code2]; // intersect the incident and reference faces btScalar ret[16]; int n = intersectRectQuad2 (rect,quad,ret); if (n < 1) return 0; // this should never happen // convert the intersection points into reference-face coordinates, // and compute the contact position and depth for each point. only keep // those points that have a positive (penetrating) depth. delete points in // the 'ret' array as necessary so that 'point' and 'ret' correspond. btScalar point[3*8]; // penetrating contact points btScalar dep[8]; // depths for those points btScalar det1 = 1.f/(m11*m22 - m12*m21); m11 *= det1; m12 *= det1; m21 *= det1; m22 *= det1; int cnum = 0; // number of penetrating contact points found for (j=0; j < n; j++) { btScalar k1 = m22*(ret[j*2]-c1) - m12*(ret[j*2+1]-c2); btScalar k2 = -m21*(ret[j*2]-c1) + m11*(ret[j*2+1]-c2); for (i=0; i<3; i++) point[cnum*3+i] = center[i] + k1*Rb[i*4+a1] + k2*Rb[i*4+a2]; dep[cnum] = Sa[codeN] - dDOT(normal2,point+cnum*3); if (dep[cnum] >= 0) { ret[cnum*2] = ret[j*2]; ret[cnum*2+1] = ret[j*2+1]; cnum++; } } if (cnum < 1) return 0; // this should never happen // we can't generate more contacts than we actually have int maxc = 4; if (maxc > cnum) maxc = cnum; if (maxc < 1) maxc = 1; if (cnum <= maxc) { if (code<4) { // we have less contacts than we need, so we use them all for (j=0; j < cnum; j++) { btVector3 pointInWorld; for (i=0; i<3; i++) pointInWorld[i] = point[j*3+i] + pa[i]; addContactPoint(results,normal,pointInWorld,dep[j]); } } else { // we have less contacts than we need, so we use them all for (j=0; j < cnum; j++) { btVector3 pointInWorld; for (i=0; i<3; i++) pointInWorld[i] = point[j*3+i] + pa[i]-normal[i]*dep[j]; addContactPoint(results,normal,pointInWorld,dep[j]); } } } else { // we have more contacts than are wanted, some of them must be culled. // find the deepest point, it is always the first contact. int i1 = 0; btScalar maxdepth = dep[0]; for (i=1; i<cnum; i++) { if (dep[i] > maxdepth) { maxdepth = dep[i]; i1 = i; } } int iret[8]; cullPoints2 (cnum,ret,maxc,i1,iret); for (j=0; j < maxc; j++) { btVector3 posInWorld; for (i=0; i<3; i++) posInWorld[i] = point[iret[j]*3+i] + pa[i]; if (code<4) { addContactPoint(results, normal,posInWorld,dep[iret[j]]); } else { posInWorld[0] -= normal[0]*dep[iret[j]]; posInWorld[1] -= normal[1]*dep[iret[j]]; posInWorld[2] -= normal[2]*dep[iret[j]]; addContactPoint(results, normal,posInWorld,dep[iret[j]]); } } cnum = maxc; } return cnum; }
int dcTriListCollider::dTriCyl ( const dReal* v0,const dReal* v1,const dReal* v2, Triangle* T, dxGeom *o1, dxGeom *o2, int flags, dContactGeom *contact, int skip ) { // VERIFY (skip >= (int)sizeof(dContactGeom)); VERIFY (dGeomGetClass(o1)== dCylinderClassUser); const dReal *R = dGeomGetRotation(o1); const dReal* p=dGeomGetPosition(o1); dReal radius; dReal hlz; dGeomCylinderGetParams(o1,&radius,&hlz); hlz/=2.f; // find number of contacts requested int maxc = flags & NUMC_MASK; if (maxc < 1) maxc = 1; if (maxc > 3) maxc = 3; // no more than 3 contacts per box allowed const dVector3 &triAx=T->norm; dVector3 triSideAx0={T->side0[0],T->side0[1],T->side0[2]}; //{v1[0]-v0[0],v1[1]-v0[1],v1[2]-v0[2]}; dVector3 triSideAx1={T->side1[0],T->side1[1],T->side1[2]}; //{v2[0]-v1[0],v2[1]-v1[1],v2[2]-v1[2]}; dVector3 triSideAx2={v0[0]-v2[0],v0[1]-v2[1],v0[2]-v2[2]}; //dCROSS(triAx,=,triSideAx0,triSideAx1); int code=0; dReal signum, outDepth,cos0,cos1,cos2,sin1; //////////////////////////////////////////////////////////////////////////// //sepparation along tri plane normal;/////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //accurate_normalize(triAx); //cos0=dDOT14(triAx,R+0); cos1=dFabs(dDOT14(triAx,R+1)); //cos2=dDOT14(triAx,R+2); //sin1=_sqrt(cos0*cos0+cos2*cos2); //////////////////////// //another way ////////// cos1=cos1<REAL(1.) ? cos1 : REAL(1.); //cos1 may slightly exeed 1.f sin1=_sqrt(REAL(1.)-cos1*cos1); ////////////////////////////// dReal sidePr=cos1*hlz+sin1*radius; dReal dist=-T->dist; //dDOT(triAx,v0)-dDOT(triAx,p); if(dist>0.f) RETURN0; dReal depth=sidePr-dFabs(dist); outDepth=depth; signum=dist>0.f ? 1.f : -1.f; code=0; if(depth<0.f) RETURN0; dReal depth0,depth1,depth2,dist0,dist1,dist2; bool isPdist0,isPdist1,isPdist2; bool testV0,testV1,testV2; bool sideTestV00,sideTestV01,sideTestV02; bool sideTestV10,sideTestV11,sideTestV12; bool sideTestV20,sideTestV21,sideTestV22; ////////////////////////////////////////////////////////////////////////////// //cylinder axis - one of the triangle vertexes touches cylinder's flat surface ////////////////////////////////////////////////////////////////////////////// dist0=dDOT14(v0,R+1)-dDOT14(p,R+1); dist1=dDOT14(v1,R+1)-dDOT14(p,R+1); dist2=dDOT14(v2,R+1)-dDOT14(p,R+1); isPdist0=dist0>0.f; isPdist1=dist1>0.f; isPdist2=dist2>0.f; depth0=hlz-dFabs(dist0); depth1=hlz-dFabs(dist1); depth2=hlz-dFabs(dist2); testV0=depth0>0.f; testV1=depth1>0.f; testV2=depth2>0.f; if(isPdist0==isPdist1 && isPdist1== isPdist2) //(here and lower) check the tryangle is on one side of the cylinder { if(depth0>depth1) if(depth0>depth2) if(testV0){ if(depth0<outDepth) { signum= isPdist0 ? 1.f : -1.f; outDepth=depth0; code=1; } } else RETURN0; else if(testV2){ if(depth2<outDepth) { outDepth=depth2; signum= isPdist2 ? 1.f : -1.f; code=3; } } else RETURN0; else if(depth1>depth2) if(testV1){ if(depth1<outDepth) { outDepth=depth1; signum= isPdist1 ? 1.f : -1.f; code=2; } } else RETURN0; else if(testV2){ if(depth2<outDepth) { outDepth=depth2; signum= isPdist2 ? 1.f : -1.f; code=2; } } else RETURN0; } dVector3 axis,outAx; dReal posProj; dReal pointDepth=0.f; #define TEST(vx,ox1,ox2,c) \ {\ posProj=dDOT14(v##vx,R+1)-dDOT14(p,R+1);\ \ axis[0]=v##vx[0]-p[0]-R[1]*posProj;\ axis[1]=v##vx[1]-p[1]-R[5]*posProj;\ axis[2]=v##vx[2]-p[2]-R[9]*posProj;\ \ accurate_normalize(axis);\ \ \ dist0=dDOT(v0,axis)-dDOT(p,axis);\ dist1=dDOT(v1,axis)-dDOT(p,axis);\ dist2=dDOT(v2,axis)-dDOT(p,axis);\ \ isPdist0=dist0>0.f;\ isPdist1=dist1>0.f;\ isPdist2=dist2>0.f;\ \ depth0=radius-dFabs(dist0);\ depth1=radius-dFabs(dist1);\ depth2=radius-dFabs(dist2);\ \ sideTestV##vx##0=depth0>0.f;\ sideTestV##vx##1=depth1>0.f;\ sideTestV##vx##2=depth2>0.f;\ \ if(isPdist0==isPdist1 && isPdist1== isPdist2)\ \ {\ if(sideTestV##vx##0||sideTestV##vx##1||sideTestV##vx##2){\ if(!(depth##vx<depth##ox1 || depth##vx<depth##ox2))\ {\ if(depth##vx<outDepth && depth##vx > pointDepth)\ {\ pointDepth=depth##vx;\ signum= isPdist##vx ? 1.f : -1.f;\ outAx[0]=axis[0];\ outAx[1]=axis[1];\ outAx[2]=axis[2];\ code=c;\ }\ }\ }\ else RETURN0;\ \ \ \ }\ } if(testV0) TEST(0,1,2,4) if(testV1 ) TEST(1,2,0,5) //&& sideTestV01 if(testV2 ) TEST(2,0,1,6) //&& sideTestV02 && sideTestV12 #undef TEST dVector3 tpos,pos; if(code>3) outDepth=pointDepth; //deepest vertex axis used if its depth less than outDepth //else{ //bool outV0=!(testV0&&sideTestV00&&sideTestV10&&sideTestV20); //bool outV1=!(testV1&&sideTestV01&&sideTestV11&&sideTestV21); //bool outV2=!(testV2&&sideTestV02&&sideTestV12&&sideTestV22); bool outV0=true; bool outV1=true; bool outV2=true; ///////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////////// ///crosses between triangle sides and cylinder axis////////////////////////// ///////////////////////////////////////////////////////////////////////////// #define TEST(ax,nx,ox,c) if(cylinderCrossesLine(p,R+1,hlz,v##ax,v##nx,triSideAx##ax,tpos)) {\ dCROSS114(axis,=,triSideAx##ax,R+1);\ accurate_normalize(axis);\ dist##ax=dDOT(v##ax,axis)-dDOT(p,axis);\ dist##ox=dDOT(v##ox,axis)-dDOT(p,axis);\ \ isPdist##ax=dist##ax>0.f;\ isPdist##ox=dist##ox>0.f;\ \ if(isPdist##ax == isPdist##ox)\ {\ depth##ax=radius-dFabs(dist##ax);\ depth##ox=radius-dFabs(dist##ox);\ \ if(depth##ax>0.f){\ if(depth##ax<=outDepth && depth##ax>=depth##ox) \ {\ outDepth=depth##ax;\ signum= isPdist##ax ? 1.f : -1.f;\ outAx[0]=axis[0];\ outAx[1]=axis[1];\ outAx[2]=axis[2];\ pos[0]=tpos[0];\ pos[1]=tpos[1];\ pos[2]=tpos[2];\ code=c;\ }\ }\ else if(depth##ox<0.f) RETURN0;\ \ }\ } accurate_normalize(triSideAx0); if(outV0&&outV1) TEST(0,1,2,7) accurate_normalize(triSideAx1); if(outV1&&outV2) TEST(1,2,0,8) accurate_normalize(triSideAx2); if(outV2&&outV0) TEST(2,0,1,9) #undef TEST //////////////////////////////////// //test cylinder rings on triangle sides//// //////////////////////////////////// dVector3 tAx,cen; dReal sign; bool cs; #define TEST(ax,nx,ox,c) \ {\ posProj=dDOT(p,triSideAx##ax)-dDOT(v##ax,triSideAx##ax);\ axis[0]=p[0]-v0[0]-triSideAx##ax[0]*posProj;\ axis[1]=p[1]-v0[1]-triSideAx##ax[1]*posProj;\ axis[2]=p[2]-v0[2]-triSideAx##ax[2]*posProj;\ \ sign=dDOT14(axis,R+1)>0.f ? 1.f :-1.f;\ cen[0]=p[0]-sign*R[1]*hlz;\ cen[1]=p[1]-sign*R[5]*hlz;\ cen[2]=p[2]-sign*R[9]*hlz;\ \ cs=circleLineIntersection(R+1,cen,radius,triSideAx##ax,v##ax,-sign,tpos);\ \ axis[0]=tpos[0]-cen[0];\ axis[1]=tpos[1]-cen[1];\ axis[2]=tpos[2]-cen[2];\ \ if(cs){ \ \ cos0=dDOT14(axis,R+0);\ cos2=dDOT14(axis,R+2);\ tAx[0]=R[2]*cos0-R[0]*cos2;\ tAx[1]=R[6]*cos0-R[4]*cos2;\ tAx[2]=R[10]*cos0-R[8]*cos2;\ \ dCROSS(axis,=,triSideAx##ax,tAx);\ \ }\ accurate_normalize(axis);\ dist##ax=dDOT(v##ax,axis)-dDOT(p,axis);\ if(dist##ax*dDOT(axis,triSideAx##nx)>0.f){\ \ cos0=dDOT14(axis,R+0);\ cos1=dFabs(dDOT14(axis,R+1));\ cos2=dDOT14(axis,R+2);\ \ \ sin1=_sqrt(cos0*cos0+cos2*cos2);\ \ sidePr=cos1*hlz+sin1*radius;\ \ \ dist##ox=dDOT(v##ox,axis)-dDOT(p,axis);\ \ isPdist##ax=dist##ax>0.f;\ isPdist##ox=dist##ox>0.f;\ \ if(isPdist##ax == isPdist##ox) \ \ {\ depth##ax=sidePr-dFabs(dist##ax);\ depth##ox=sidePr-dFabs(dist##ox);\ \ if(depth##ax>0.f){\ if(depth##ax<outDepth) \ {\ outDepth=depth##ax;\ signum= isPdist##ax ? 1.f : -1.f;\ outAx[0]=axis[0];\ outAx[1]=axis[1];\ outAx[2]=axis[2];\ pos[0]=tpos[0];\ pos[1]=tpos[1];\ pos[2]=tpos[2];\ code=c;\ }\ }\ else if(depth##ox<0.f) RETURN0;\ \ \ }\ }\ } if(7!=code) TEST(0,1,2,10) if(8!=code) TEST(1,2,0,11) if(9!=code) TEST(2,0,1,12) #undef TEST //} ////////////////////////////////////////////////////////////////////// ///if we get to this poit tri touches cylinder/////////////////////// ///////////////////////////////////////////////////////////////////// //VERIFY( g_pGameLevel ); CDB::TRI* T_array = inl_ph_world().ObjectSpace().GetStaticTris(); dVector3 norm; unsigned int ret; flags8& gl_state=gl_cl_tries_state[I-B]; if(code==0){ norm[0]=triAx[0]*signum; norm[1]=triAx[1]*signum; norm[2]=triAx[2]*signum; dReal Q1 = dDOT14(norm,R+0); dReal Q2 = dDOT14(norm,R+1); dReal Q3 = dDOT14(norm,R+2); dReal factor =_sqrt(Q1*Q1+Q3*Q3); dReal C1,C3; dReal centerDepth;//depth in the cirle centre if(factor>0.f) { C1=Q1/factor; C3=Q3/factor; } else { C1=1.f; C3=0.f; } dReal A1 = radius * C1;//cosinus dReal A2 = hlz;//Q2 dReal A3 = radius * C3;//sinus if(factor>0.f) centerDepth=outDepth-A1*Q1-A3*Q3; else centerDepth=outDepth; pos[0]=p[0]; pos[1]=p[1]; pos[2]=p[2]; pos[0]+= Q2>0 ? hlz*R[1]:-hlz*R[1]; pos[1]+= Q2>0 ? hlz*R[5]:-hlz*R[5]; pos[2]+= Q2>0 ? hlz*R[9]:-hlz*R[9]; ret=0; dVector3 cross0, cross1, cross2; dReal ds0,ds1,ds2; dCROSS(cross0,=,triAx,triSideAx0); ds0=dDOT(cross0,v0); dCROSS(cross1,=,triAx,triSideAx1); ds1=dDOT(cross1,v1); dCROSS(cross2,=,triAx,triSideAx2); ds2=dDOT(cross2,v2); contact->pos[0] = pos[0]+A1*R[0]+A3*R[2]; contact->pos[1] = pos[1]+A1*R[4]+A3*R[6]; contact->pos[2] = pos[2]+A1*R[8]+A3*R[10]; if(dDOT(cross0,contact->pos)-ds0>0.f && dDOT(cross1,contact->pos)-ds1>0.f && dDOT(cross2,contact->pos)-ds2>0.f){ contact->depth = outDepth; ret=1; } if(dFabs(Q2)>M_SQRT1_2){ A1=(-C1*M_COS_PI_3-C3*M_SIN_PI_3)*radius; A3=(-C3*M_COS_PI_3+C1*M_SIN_PI_3)*radius; CONTACT(contact,ret*skip)->pos[0]=pos[0]+A1*R[0]+A3*R[2]; CONTACT(contact,ret*skip)->pos[1]=pos[1]+A1*R[4]+A3*R[6]; CONTACT(contact,ret*skip)->pos[2]=pos[2]+A1*R[8]+A3*R[10]; CONTACT(contact,ret*skip)->depth=centerDepth+Q1*A1+Q3*A3; if(CONTACT(contact,ret*skip)->depth>0.f) if(dDOT(cross0,CONTACT(contact,ret*skip)->pos)-ds0>0.f && dDOT(cross1,CONTACT(contact,ret*skip)->pos)-ds1>0.f && dDOT(cross2,CONTACT(contact,ret*skip)->pos)-ds2>0.f) ++ret; A1=(-C1*M_COS_PI_3+C3*M_SIN_PI_3)*radius; A3=(-C3*M_COS_PI_3-C1*M_SIN_PI_3)*radius; CONTACT(contact,ret*skip)->pos[0]=pos[0]+A1*R[0]+A3*R[2]; CONTACT(contact,ret*skip)->pos[1]=pos[1]+A1*R[4]+A3*R[6]; CONTACT(contact,ret*skip)->pos[2]=pos[2]+A1*R[8]+A3*R[10]; CONTACT(contact,ret*skip)->depth=centerDepth+Q1*A1+Q3*A3; if(CONTACT(contact,ret*skip)->depth>0.f) if(dDOT(cross0,CONTACT(contact,ret*skip)->pos)-ds0>0.f && dDOT(cross1,CONTACT(contact,ret*skip)->pos)-ds1>0.f && dDOT(cross2,CONTACT(contact,ret*skip)->pos)-ds2>0.f) ++ret; } else { CONTACT(contact,ret*skip)->pos[0]=contact->pos[0]-2.f*(Q2>0 ? hlz*R[1]:-hlz*R[1]); CONTACT(contact,ret*skip)->pos[1]=contact->pos[1]-2.f*(Q2>0 ? hlz*R[5]:-hlz*R[5]); CONTACT(contact,ret*skip)->pos[2]=contact->pos[2]-2.f*(Q2>0 ? hlz*R[9]:-hlz*R[9]); CONTACT(contact,ret*skip)->depth=outDepth-dFabs(Q2*2.f*A2); if(CONTACT(contact,ret*skip)->depth>0.f) if(dDOT(cross0,CONTACT(contact,ret*skip)->pos)-ds0>0.f && dDOT(cross1,CONTACT(contact,ret*skip)->pos)-ds1>0.f && dDOT(cross2,CONTACT(contact,ret*skip)->pos)-ds2>0.f) ++ret; } }
int dcTriListCollider::dSortedTriCyl ( const dReal* triSideAx0,const dReal* triSideAx1, const dReal* triAx, //const dReal* v0, //const dReal* v1, //const dReal* v2, CDB::TRI* T, dReal dist, dxGeom *o1, dxGeom *o2, int flags, dContactGeom *contact, int skip ) { VERIFY (dGeomGetClass(o1)== dCylinderClassUser); const dReal *R = dGeomGetRotation(o1); const dReal* p=dGeomGetPosition(o1); dReal radius; dReal hlz; dGeomCylinderGetParams(o1,&radius,&hlz); hlz/=2.f; // find number of contacts requested int maxc = flags & NUMC_MASK; if (maxc < 1) maxc = 1; if (maxc > 3) maxc = 3; // no more than 3 contacts per box allowed dReal signum, outDepth,cos1,sin1; //////////////////////////////////////////////////////////////////////////// //sepparation along tri plane normal;/////////////////////////////////////// //////////////////////////////////////////////////////////////////////////// //cos0=dDOT14(triAx,R+0); cos1=dFabs(dDOT14(triAx,R+1)); //cos2=dDOT14(triAx,R+2); //sin1=_sqrt(cos0*cos0+cos2*cos2); //////////////////////// //another way ////////// cos1=cos1<REAL(1.) ? cos1 : REAL(1.); //cos1 may slightly exeed 1.f sin1=_sqrt(REAL(1.)-cos1*cos1); ////////////////////////////// dReal sidePr=cos1*hlz+sin1*radius; if(dist>0.f) return 0; dReal depth=sidePr-dist; outDepth=depth; signum=-1.f; int code=0; if(depth<0.f) return 0; dVector3 norm; unsigned int ret=0; dVector3 pos; if(code==0){ norm[0]=triAx[0]*signum; norm[1]=triAx[1]*signum; norm[2]=triAx[2]*signum; dReal Q1 = signum*dDOT14(triAx,R+0); dReal Q2 = signum*dDOT14(triAx,R+1); dReal Q3 = signum*dDOT14(triAx,R+2); dReal factor =_sqrt(Q1*Q1+Q3*Q3); dReal C1,C3; dReal centerDepth;//depth in the cirle centre if(factor>0.f) { C1=Q1/factor; C3=Q3/factor; } else { C1=1.f; C3=0.f; } dReal A1 = radius * C1;//cosinus dReal A2 = hlz*Q2; dReal A3 = radius * C3;//sinus if(factor>0.f) centerDepth=outDepth-A1*Q1-A3*Q3; else centerDepth=outDepth; pos[0]=p[0]; pos[1]=p[1]; pos[2]=p[2]; pos[0]+= A2>0 ? hlz*R[1]:-hlz*R[1]; pos[1]+= A2>0 ? hlz*R[5]:-hlz*R[5]; pos[2]+= A2>0 ? hlz*R[9]:-hlz*R[9]; ret=0; contact->pos[0] = pos[0]+A1*R[0]+A3*R[2]; contact->pos[1] = pos[1]+A1*R[4]+A3*R[6]; contact->pos[2] = pos[2]+A1*R[8]+A3*R[10]; { contact->depth = outDepth; ret=1; } if(dFabs(Q2)>M_SQRT1_2){ A1=(-C1*M_COS_PI_3-C3*M_SIN_PI_3)*radius; A3=(-C3*M_COS_PI_3+C1*M_SIN_PI_3)*radius; CONTACT(contact,ret*skip)->pos[0]=pos[0]+A1*R[0]+A3*R[2]; CONTACT(contact,ret*skip)->pos[1]=pos[1]+A1*R[4]+A3*R[6]; CONTACT(contact,ret*skip)->pos[2]=pos[2]+A1*R[8]+A3*R[10]; CONTACT(contact,ret*skip)->depth=centerDepth+Q1*A1+Q3*A3; if(CONTACT(contact,ret*skip)->depth>0.f)++ret; A1=(-C1*M_COS_PI_3+C3*M_SIN_PI_3)*radius; A3=(-C3*M_COS_PI_3-C1*M_SIN_PI_3)*radius; CONTACT(contact,ret*skip)->pos[0]=pos[0]+A1*R[0]+A3*R[2]; CONTACT(contact,ret*skip)->pos[1]=pos[1]+A1*R[4]+A3*R[6]; CONTACT(contact,ret*skip)->pos[2]=pos[2]+A1*R[8]+A3*R[10]; CONTACT(contact,ret*skip)->depth=centerDepth+Q1*A1+Q3*A3; if(CONTACT(contact,ret*skip)->depth>0.f)++ret; } else { CONTACT(contact,ret*skip)->pos[0]=contact->pos[0]-2.f*(A2>0 ? hlz*R[1]:-hlz*R[1]); CONTACT(contact,ret*skip)->pos[1]=contact->pos[1]-2.f*(A2>0 ? hlz*R[5]:-hlz*R[5]); CONTACT(contact,ret*skip)->pos[2]=contact->pos[2]-2.f*(A2>0 ? hlz*R[9]:-hlz*R[9]); CONTACT(contact,ret*skip)->depth=outDepth-Q2*2.f*A2; if(CONTACT(contact,ret*skip)->depth>0.f)++ret; } } if((int)ret>maxc) ret=(unsigned int)maxc; for (unsigned int i=0; i<ret; ++i) { CONTACT(contact,i*skip)->g1 = const_cast<dxGeom*> (o2); CONTACT(contact,i*skip)->g2 = const_cast<dxGeom*> (o1); CONTACT(contact,i*skip)->normal[0] = norm[0]; CONTACT(contact,i*skip)->normal[1] = norm[1]; CONTACT(contact,i*skip)->normal[2] = norm[2]; SURFACE(contact,i*skip)->mode=T->material; } if(ret&&dGeomGetUserData(o1)->callback)dGeomGetUserData(o1)->callback(T,contact); return ret; }
int dBoxBox (const dVector3 p1, const dMatrix3 R1, const dVector3 side1, const dVector3 p2, const dMatrix3 R2, const dVector3 side2, dVector3 normal, dReal *depth, int *return_code, int flags, dContactGeom *contact, int skip) { const dReal fudge_factor = REAL(1.05); dVector3 p,pp,normalC={0,0,0}; const dReal *normalR = 0; dReal A[3],B[3],R11,R12,R13,R21,R22,R23,R31,R32,R33, Q11,Q12,Q13,Q21,Q22,Q23,Q31,Q32,Q33,s,s2,l,expr1_val; int i,j,invert_normal,code; // get vector from centers of box 1 to box 2, relative to box 1 p[0] = p2[0] - p1[0]; p[1] = p2[1] - p1[1]; p[2] = p2[2] - p1[2]; dMULTIPLY1_331 (pp,R1,p); // get pp = p relative to body 1 // get side lengths / 2 A[0] = side1[0]*REAL(0.5); A[1] = side1[1]*REAL(0.5); A[2] = side1[2]*REAL(0.5); B[0] = side2[0]*REAL(0.5); B[1] = side2[1]*REAL(0.5); B[2] = side2[2]*REAL(0.5); // Rij is R1'*R2, i.e. the relative rotation between R1 and R2 R11 = dDOT44(R1+0,R2+0); R12 = dDOT44(R1+0,R2+1); R13 = dDOT44(R1+0,R2+2); R21 = dDOT44(R1+1,R2+0); R22 = dDOT44(R1+1,R2+1); R23 = dDOT44(R1+1,R2+2); R31 = dDOT44(R1+2,R2+0); R32 = dDOT44(R1+2,R2+1); R33 = dDOT44(R1+2,R2+2); Q11 = dFabs(R11); Q12 = dFabs(R12); Q13 = dFabs(R13); Q21 = dFabs(R21); Q22 = dFabs(R22); Q23 = dFabs(R23); Q31 = dFabs(R31); Q32 = dFabs(R32); Q33 = dFabs(R33); // for all 15 possible separating axes: // * see if the axis separates the boxes. if so, return 0. // * find the depth of the penetration along the separating axis (s2) // * if this is the largest depth so far, record it. // the normal vector will be set to the separating axis with the smallest // depth. note: normalR is set to point to a column of R1 or R2 if that is // the smallest depth normal so far. otherwise normalR is 0 and normalC is // set to a vector relative to body 1. invert_normal is 1 if the sign of // the normal should be flipped. do { #define TST(expr1,expr2,norm,cc) \ expr1_val = (expr1); /* Avoid duplicate evaluation of expr1 */ \ s2 = dFabs(expr1_val) - (expr2); \ if (s2 > 0) return 0; \ if (s2 > s) { \ s = s2; \ normalR = norm; \ invert_normal = ((expr1_val) < 0); \ code = (cc); \ if (flags & CONTACTS_UNIMPORTANT) break; \ } s = -dInfinity; invert_normal = 0; code = 0; // separating axis = u1,u2,u3 TST (pp[0],(A[0] + B[0]*Q11 + B[1]*Q12 + B[2]*Q13),R1+0,1); TST (pp[1],(A[1] + B[0]*Q21 + B[1]*Q22 + B[2]*Q23),R1+1,2); TST (pp[2],(A[2] + B[0]*Q31 + B[1]*Q32 + B[2]*Q33),R1+2,3); // separating axis = v1,v2,v3 TST (dDOT41(R2+0,p),(A[0]*Q11 + A[1]*Q21 + A[2]*Q31 + B[0]),R2+0,4); TST (dDOT41(R2+1,p),(A[0]*Q12 + A[1]*Q22 + A[2]*Q32 + B[1]),R2+1,5); TST (dDOT41(R2+2,p),(A[0]*Q13 + A[1]*Q23 + A[2]*Q33 + B[2]),R2+2,6); // note: cross product axes need to be scaled when s is computed. // normal (n1,n2,n3) is relative to box 1. #undef TST #define TST(expr1,expr2,n1,n2,n3,cc) \ expr1_val = (expr1); /* Avoid duplicate evaluation of expr1 */ \ s2 = dFabs(expr1_val) - (expr2); \ if (s2 > 0) return 0; \ l = dSqrt ((n1)*(n1) + (n2)*(n2) + (n3)*(n3)); \ if (l > 0) { \ s2 /= l; \ if (s2*fudge_factor > s) { \ s = s2; \ normalR = 0; \ normalC[0] = (n1)/l; normalC[1] = (n2)/l; normalC[2] = (n3)/l; \ invert_normal = ((expr1_val) < 0); \ code = (cc); \ if (flags & CONTACTS_UNIMPORTANT) break; \ } \ } // We only need to check 3 edges per box // since parallel edges are equivalent. // separating axis = u1 x (v1,v2,v3) TST(pp[2]*R21-pp[1]*R31,(A[1]*Q31+A[2]*Q21+B[1]*Q13+B[2]*Q12),0,-R31,R21,7); TST(pp[2]*R22-pp[1]*R32,(A[1]*Q32+A[2]*Q22+B[0]*Q13+B[2]*Q11),0,-R32,R22,8); TST(pp[2]*R23-pp[1]*R33,(A[1]*Q33+A[2]*Q23+B[0]*Q12+B[1]*Q11),0,-R33,R23,9); // separating axis = u2 x (v1,v2,v3) TST(pp[0]*R31-pp[2]*R11,(A[0]*Q31+A[2]*Q11+B[1]*Q23+B[2]*Q22),R31,0,-R11,10); TST(pp[0]*R32-pp[2]*R12,(A[0]*Q32+A[2]*Q12+B[0]*Q23+B[2]*Q21),R32,0,-R12,11); TST(pp[0]*R33-pp[2]*R13,(A[0]*Q33+A[2]*Q13+B[0]*Q22+B[1]*Q21),R33,0,-R13,12); // separating axis = u3 x (v1,v2,v3) TST(pp[1]*R11-pp[0]*R21,(A[0]*Q21+A[1]*Q11+B[1]*Q33+B[2]*Q32),-R21,R11,0,13); TST(pp[1]*R12-pp[0]*R22,(A[0]*Q22+A[1]*Q12+B[0]*Q33+B[2]*Q31),-R22,R12,0,14); TST(pp[1]*R13-pp[0]*R23,(A[0]*Q23+A[1]*Q13+B[0]*Q32+B[1]*Q31),-R23,R13,0,15); #undef TST } while (0); if (!code) return 0; // if we get to this point, the boxes interpenetrate. compute the normal // in global coordinates. if (normalR) { normal[0] = normalR[0]; normal[1] = normalR[4]; normal[2] = normalR[8]; } else { dMULTIPLY0_331 (normal,R1,normalC); } if (invert_normal) { normal[0] = -normal[0]; normal[1] = -normal[1]; normal[2] = -normal[2]; } *depth = -s; // compute contact point(s) if (code > 6) { // An edge from box 1 touches an edge from box 2. // find a point pa on the intersecting edge of box 1 dVector3 pa; dReal sign; // Copy p1 into pa for (i=0; i<3; i++) pa[i] = p1[i]; // why no memcpy? // Get world position of p2 into pa for (j=0; j<3; j++) { sign = (dDOT14(normal,R1+j) > 0) ? REAL(1.0) : REAL(-1.0); for (i=0; i<3; i++) pa[i] += sign * A[j] * R1[i*4+j]; } // find a point pb on the intersecting edge of box 2 dVector3 pb; // Copy p2 into pb for (i=0; i<3; i++) pb[i] = p2[i]; // why no memcpy? // Get world position of p2 into pb for (j=0; j<3; j++) { sign = (dDOT14(normal,R2+j) > 0) ? REAL(-1.0) : REAL(1.0); for (i=0; i<3; i++) pb[i] += sign * B[j] * R2[i*4+j]; } dReal alpha,beta; dVector3 ua,ub; // Get direction of first edge for (i=0; i<3; i++) ua[i] = R1[((code)-7)/3 + i*4]; // Get direction of second edge for (i=0; i<3; i++) ub[i] = R2[((code)-7)%3 + i*4]; // Get closest points between edges (one at each) dLineClosestApproach (pa,ua,pb,ub,&alpha,&beta); for (i=0; i<3; i++) pa[i] += ua[i]*alpha; for (i=0; i<3; i++) pb[i] += ub[i]*beta; // Set the contact point as halfway between the 2 closest points for (i=0; i<3; i++) contact[0].pos[i] = REAL(0.5)*(pa[i]+pb[i]); contact[0].depth = *depth; *return_code = code; return 1; } // okay, we have a face-something intersection (because the separating // axis is perpendicular to a face). define face 'a' to be the reference // face (i.e. the normal vector is perpendicular to this) and face 'b' to be // the incident face (the closest face of the other box). // Note: Unmodified parameter values are being used here const dReal *Ra,*Rb,*pa,*pb,*Sa,*Sb; if (code <= 3) { // One of the faces of box 1 is the reference face Ra = R1; // Rotation of 'a' Rb = R2; // Rotation of 'b' pa = p1; // Center (location) of 'a' pb = p2; // Center (location) of 'b' Sa = A; // Side Lenght of 'a' Sb = B; // Side Lenght of 'b' } else { // One of the faces of box 2 is the reference face Ra = R2; // Rotation of 'a' Rb = R1; // Rotation of 'b' pa = p2; // Center (location) of 'a' pb = p1; // Center (location) of 'b' Sa = B; // Side Lenght of 'a' Sb = A; // Side Lenght of 'b' } // nr = normal vector of reference face dotted with axes of incident box. // anr = absolute values of nr. /* The normal is flipped if necessary so it always points outward from box 'a', box 'b' is thus always the incident box */ dVector3 normal2,nr,anr; if (code <= 3) { normal2[0] = normal[0]; normal2[1] = normal[1]; normal2[2] = normal[2]; } else { normal2[0] = -normal[0]; normal2[1] = -normal[1]; normal2[2] = -normal[2]; } // Rotate normal2 in incident box opposite direction dMULTIPLY1_331 (nr,Rb,normal2); anr[0] = dFabs (nr[0]); anr[1] = dFabs (nr[1]); anr[2] = dFabs (nr[2]); // find the largest compontent of anr: this corresponds to the normal // for the incident face. the other axis numbers of the incident face // are stored in a1,a2. int lanr,a1,a2; if (anr[1] > anr[0]) { if (anr[1] > anr[2]) { a1 = 0; lanr = 1; a2 = 2; } else { a1 = 0; a2 = 1; lanr = 2; } } else { if (anr[0] > anr[2]) { lanr = 0; a1 = 1; a2 = 2; } else { a1 = 0; a2 = 1; lanr = 2; } } // compute center point of incident face, in reference-face coordinates dVector3 center; if (nr[lanr] < 0) { for (i=0; i<3; i++) center[i] = pb[i] - pa[i] + Sb[lanr] * Rb[i*4+lanr]; } else { for (i=0; i<3; i++) center[i] = pb[i] - pa[i] - Sb[lanr] * Rb[i*4+lanr]; } // find the normal and non-normal axis numbers of the reference box int codeN,code1,code2; if (code <= 3) codeN = code-1; else codeN = code-4; if (codeN==0) { code1 = 1; code2 = 2; } else if (codeN==1) { code1 = 0; code2 = 2; } else { code1 = 0; code2 = 1; } // find the four corners of the incident face, in reference-face coordinates dReal quad[8]; // 2D coordinate of incident face (x,y pairs) dReal c1,c2,m11,m12,m21,m22; c1 = dDOT14 (center,Ra+code1); c2 = dDOT14 (center,Ra+code2); // optimize this? - we have already computed this data above, but it is not // stored in an easy-to-index format. for now it's quicker just to recompute // the four dot products. m11 = dDOT44 (Ra+code1,Rb+a1); m12 = dDOT44 (Ra+code1,Rb+a2); m21 = dDOT44 (Ra+code2,Rb+a1); m22 = dDOT44 (Ra+code2,Rb+a2); { dReal k1 = m11*Sb[a1]; dReal k2 = m21*Sb[a1]; dReal k3 = m12*Sb[a2]; dReal k4 = m22*Sb[a2]; quad[0] = c1 - k1 - k3; quad[1] = c2 - k2 - k4; quad[2] = c1 - k1 + k3; quad[3] = c2 - k2 + k4; quad[4] = c1 + k1 + k3; quad[5] = c2 + k2 + k4; quad[6] = c1 + k1 - k3; quad[7] = c2 + k2 - k4; } // find the size of the reference face dReal rect[2]; rect[0] = Sa[code1]; rect[1] = Sa[code2]; // intersect the incident and reference faces dReal ret[16]; int n = intersectRectQuad (rect,quad,ret); if (n < 1) return 0; // this should never happen // convert the intersection points into reference-face coordinates, // and compute the contact position and depth for each point. only keep // those points that have a positive (penetrating) depth. delete points in // the 'ret' array as necessary so that 'point' and 'ret' correspond. dReal point[3*8]; // penetrating contact points dReal dep[8]; // depths for those points dReal det1 = dRecip(m11*m22 - m12*m21); m11 *= det1; m12 *= det1; m21 *= det1; m22 *= det1; int cnum = 0; // number of penetrating contact points found for (j=0; j < n; j++) { dReal k1 = m22*(ret[j*2]-c1) - m12*(ret[j*2+1]-c2); dReal k2 = -m21*(ret[j*2]-c1) + m11*(ret[j*2+1]-c2); for (i=0; i<3; i++) point[cnum*3+i] = center[i] + k1*Rb[i*4+a1] + k2*Rb[i*4+a2]; dep[cnum] = Sa[codeN] - dDOT(normal2,point+cnum*3); if (dep[cnum] >= 0) { ret[cnum*2] = ret[j*2]; ret[cnum*2+1] = ret[j*2+1]; cnum++; if ((cnum | CONTACTS_UNIMPORTANT) == (flags & (NUMC_MASK | CONTACTS_UNIMPORTANT))) { break; } } } if (cnum < 1) { return 0; // this should not happen, yet does at times (demo_plane2d single precision). } // we can't generate more contacts than we actually have int maxc = flags & NUMC_MASK; if (maxc > cnum) maxc = cnum; if (maxc < 1) maxc = 1; // Even though max count must not be zero this check is kept for backward compatibility as this is a public function if (cnum <= maxc) { // we have less contacts than we need, so we use them all for (j=0; j < cnum; j++) { dContactGeom *con = CONTACT(contact,skip*j); for (i=0; i<3; i++) con->pos[i] = point[j*3+i] + pa[i]; con->depth = dep[j]; } } else { dIASSERT(!(flags & CONTACTS_UNIMPORTANT)); // cnum should be generated not greater than maxc so that "then" clause is executed // we have more contacts than are wanted, some of them must be culled. // find the deepest point, it is always the first contact. int i1 = 0; dReal maxdepth = dep[0]; for (i=1; i<cnum; i++) { if (dep[i] > maxdepth) { maxdepth = dep[i]; i1 = i; } } int iret[8]; cullPoints (cnum,ret,maxc,i1,iret); for (j=0; j < maxc; j++) { dContactGeom *con = CONTACT(contact,skip*j); for (i=0; i<3; i++) con->pos[i] = point[iret[j]*3+i] + pa[i]; con->depth = dep[iret[j]]; } cnum = maxc; } *return_code = code; return cnum; }
int dCollideRayCapsule (dxGeom *o1, dxGeom *o2, int flags, dContactGeom *contact, int skip) { dIASSERT (skip >= (int)sizeof(dContactGeom)); dIASSERT (o1->type == dRayClass); dIASSERT (o2->type == dCapsuleClass); dIASSERT ((flags & NUMC_MASK) >= 1); dxRay *ray = (dxRay*) o1; dxCapsule *ccyl = (dxCapsule*) o2; contact->g1 = ray; contact->g2 = ccyl; contact->side1 = -1; contact->side2 = -1; dReal lz2 = ccyl->lz * REAL(0.5); // compute some useful info dVector3 cs,q,r; dReal C,k; cs[0] = ray->final_posr->pos[0] - ccyl->final_posr->pos[0]; cs[1] = ray->final_posr->pos[1] - ccyl->final_posr->pos[1]; cs[2] = ray->final_posr->pos[2] - ccyl->final_posr->pos[2]; k = dDOT41(ccyl->final_posr->R+2,cs); // position of ray start along ccyl axis q[0] = k*ccyl->final_posr->R[0*4+2] - cs[0]; q[1] = k*ccyl->final_posr->R[1*4+2] - cs[1]; q[2] = k*ccyl->final_posr->R[2*4+2] - cs[2]; C = dDOT(q,q) - ccyl->radius*ccyl->radius; // if C < 0 then ray start position within infinite extension of cylinder // see if ray start position is inside the capped cylinder int inside_ccyl = 0; if (C < 0) { if (k < -lz2) k = -lz2; else if (k > lz2) k = lz2; r[0] = ccyl->final_posr->pos[0] + k*ccyl->final_posr->R[0*4+2]; r[1] = ccyl->final_posr->pos[1] + k*ccyl->final_posr->R[1*4+2]; r[2] = ccyl->final_posr->pos[2] + k*ccyl->final_posr->R[2*4+2]; if ((ray->final_posr->pos[0]-r[0])*(ray->final_posr->pos[0]-r[0]) + (ray->final_posr->pos[1]-r[1])*(ray->final_posr->pos[1]-r[1]) + (ray->final_posr->pos[2]-r[2])*(ray->final_posr->pos[2]-r[2]) < ccyl->radius*ccyl->radius) { inside_ccyl = 1; } } // compute ray collision with infinite cylinder, except for the case where // the ray is outside the capped cylinder but within the infinite cylinder // (it that case the ray can only hit endcaps) if (!inside_ccyl && C < 0) { // set k to cap position to check if (k < 0) k = -lz2; else k = lz2; } else { dReal uv = dDOT44(ccyl->final_posr->R+2,ray->final_posr->R+2); r[0] = uv*ccyl->final_posr->R[0*4+2] - ray->final_posr->R[0*4+2]; r[1] = uv*ccyl->final_posr->R[1*4+2] - ray->final_posr->R[1*4+2]; r[2] = uv*ccyl->final_posr->R[2*4+2] - ray->final_posr->R[2*4+2]; dReal A = dDOT(r,r); dReal B = 2*dDOT(q,r); k = B*B-4*A*C; if (k < 0) { // the ray does not intersect the infinite cylinder, but if the ray is // inside and parallel to the cylinder axis it may intersect the end // caps. set k to cap position to check. if (!inside_ccyl) return 0; if (uv < 0) k = -lz2; else k = lz2; } else { k = dSqrt(k); A = dRecip (2*A); dReal alpha = (-B-k)*A; if (alpha < 0) { alpha = (-B+k)*A; if (alpha < 0) return 0; } if (alpha > ray->length) return 0; // the ray intersects the infinite cylinder. check to see if the // intersection point is between the caps contact->pos[0] = ray->final_posr->pos[0] + alpha*ray->final_posr->R[0*4+2]; contact->pos[1] = ray->final_posr->pos[1] + alpha*ray->final_posr->R[1*4+2]; contact->pos[2] = ray->final_posr->pos[2] + alpha*ray->final_posr->R[2*4+2]; q[0] = contact->pos[0] - ccyl->final_posr->pos[0]; q[1] = contact->pos[1] - ccyl->final_posr->pos[1]; q[2] = contact->pos[2] - ccyl->final_posr->pos[2]; k = dDOT14(q,ccyl->final_posr->R+2); dReal nsign = inside_ccyl ? REAL(-1.0) : REAL(1.0); if (k >= -lz2 && k <= lz2) { contact->normal[0] = nsign * (contact->pos[0] - (ccyl->final_posr->pos[0] + k*ccyl->final_posr->R[0*4+2])); contact->normal[1] = nsign * (contact->pos[1] - (ccyl->final_posr->pos[1] + k*ccyl->final_posr->R[1*4+2])); contact->normal[2] = nsign * (contact->pos[2] - (ccyl->final_posr->pos[2] + k*ccyl->final_posr->R[2*4+2])); dNormalize3 (contact->normal); contact->depth = alpha; return 1; } // the infinite cylinder intersection point is not between the caps. // set k to cap position to check. if (k < 0) k = -lz2; else k = lz2; } } // check for ray intersection with the caps. k must indicate the cap // position to check q[0] = ccyl->final_posr->pos[0] + k*ccyl->final_posr->R[0*4+2]; q[1] = ccyl->final_posr->pos[1] + k*ccyl->final_posr->R[1*4+2]; q[2] = ccyl->final_posr->pos[2] + k*ccyl->final_posr->R[2*4+2]; return ray_sphere_helper (ray,q,ccyl->radius,contact, inside_ccyl); }