/* Subroutine */ int dgelqf_(integer *m, integer *n, doublereal *a, integer * lda, doublereal *tau, doublereal *work, integer *lwork, integer *info) { /* System generated locals */ integer a_dim1, a_offset, i__1, i__2, i__3, i__4; /* Local variables */ integer i__, k, ib, nb, nx, iws, nbmin, iinfo; extern /* Subroutine */ int dgelq2_(integer *, integer *, doublereal *, integer *, doublereal *, doublereal *, integer *), dlarfb_(char *, char *, char *, char *, integer *, integer *, integer *, doublereal *, integer *, doublereal *, integer *, doublereal *, integer *, doublereal *, integer *), dlarft_(char *, char *, integer *, integer *, doublereal *, integer *, doublereal *, doublereal *, integer *), xerbla_(char *, integer *); extern integer ilaenv_(integer *, char *, char *, integer *, integer *, integer *, integer *); integer ldwork, lwkopt; logical lquery; /* -- LAPACK routine (version 3.1) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* DGELQF computes an LQ factorization of a real M-by-N matrix A: */ /* A = L * Q. */ /* Arguments */ /* ========= */ /* M (input) INTEGER */ /* The number of rows of the matrix A. M >= 0. */ /* N (input) INTEGER */ /* The number of columns of the matrix A. N >= 0. */ /* A (input/output) DOUBLE PRECISION array, dimension (LDA,N) */ /* On entry, the M-by-N matrix A. */ /* On exit, the elements on and below the diagonal of the array */ /* contain the m-by-min(m,n) lower trapezoidal matrix L (L is */ /* lower triangular if m <= n); the elements above the diagonal, */ /* with the array TAU, represent the orthogonal matrix Q as a */ /* product of elementary reflectors (see Further Details). */ /* LDA (input) INTEGER */ /* The leading dimension of the array A. LDA >= max(1,M). */ /* TAU (output) DOUBLE PRECISION array, dimension (min(M,N)) */ /* The scalar factors of the elementary reflectors (see Further */ /* Details). */ /* WORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK)) */ /* On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */ /* LWORK (input) INTEGER */ /* The dimension of the array WORK. LWORK >= max(1,M). */ /* For optimum performance LWORK >= M*NB, where NB is the */ /* optimal blocksize. */ /* If LWORK = -1, then a workspace query is assumed; the routine */ /* only calculates the optimal size of the WORK array, returns */ /* this value as the first entry of the WORK array, and no error */ /* message related to LWORK is issued by XERBLA. */ /* INFO (output) INTEGER */ /* = 0: successful exit */ /* < 0: if INFO = -i, the i-th argument had an illegal value */ /* Further Details */ /* =============== */ /* The matrix Q is represented as a product of elementary reflectors */ /* Q = H(k) . . . H(2) H(1), where k = min(m,n). */ /* Each H(i) has the form */ /* H(i) = I - tau * v * v' */ /* where tau is a real scalar, and v is a real vector with */ /* v(1:i-1) = 0 and v(i) = 1; v(i+1:n) is stored on exit in A(i,i+1:n), */ /* and tau in TAU(i). */ /* ===================================================================== */ /* .. Local Scalars .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. Executable Statements .. */ /* Test the input arguments */ /* Parameter adjustments */ a_dim1 = *lda; a_offset = 1 + a_dim1; a -= a_offset; --tau; --work; /* Function Body */ *info = 0; nb = ilaenv_(&c__1, "DGELQF", " ", m, n, &c_n1, &c_n1); lwkopt = *m * nb; work[1] = (doublereal) lwkopt; lquery = *lwork == -1; if (*m < 0) { *info = -1; } else if (*n < 0) { *info = -2; } else if (*lda < max(1,*m)) { *info = -4; } else if (*lwork < max(1,*m) && ! lquery) { *info = -7; } if (*info != 0) { i__1 = -(*info); xerbla_("DGELQF", &i__1); return 0; } else if (lquery) { return 0; } /* Quick return if possible */ k = min(*m,*n); if (k == 0) { work[1] = 1.; return 0; } nbmin = 2; nx = 0; iws = *m; if (nb > 1 && nb < k) { /* Determine when to cross over from blocked to unblocked code. */ /* Computing MAX */ i__1 = 0, i__2 = ilaenv_(&c__3, "DGELQF", " ", m, n, &c_n1, &c_n1); nx = max(i__1,i__2); if (nx < k) { /* Determine if workspace is large enough for blocked code. */ ldwork = *m; iws = ldwork * nb; if (*lwork < iws) { /* Not enough workspace to use optimal NB: reduce NB and */ /* determine the minimum value of NB. */ nb = *lwork / ldwork; /* Computing MAX */ i__1 = 2, i__2 = ilaenv_(&c__2, "DGELQF", " ", m, n, &c_n1, & c_n1); nbmin = max(i__1,i__2); } } } if (nb >= nbmin && nb < k && nx < k) { /* Use blocked code initially */ i__1 = k - nx; i__2 = nb; for (i__ = 1; i__2 < 0 ? i__ >= i__1 : i__ <= i__1; i__ += i__2) { /* Computing MIN */ i__3 = k - i__ + 1; ib = min(i__3,nb); /* Compute the LQ factorization of the current block */ /* A(i:i+ib-1,i:n) */ i__3 = *n - i__ + 1; dgelq2_(&ib, &i__3, &a[i__ + i__ * a_dim1], lda, &tau[i__], &work[ 1], &iinfo); if (i__ + ib <= *m) { /* Form the triangular factor of the block reflector */ /* H = H(i) H(i+1) . . . H(i+ib-1) */ i__3 = *n - i__ + 1; dlarft_("Forward", "Rowwise", &i__3, &ib, &a[i__ + i__ * a_dim1], lda, &tau[i__], &work[1], &ldwork); /* Apply H to A(i+ib:m,i:n) from the right */ i__3 = *m - i__ - ib + 1; i__4 = *n - i__ + 1; dlarfb_("Right", "No transpose", "Forward", "Rowwise", &i__3, &i__4, &ib, &a[i__ + i__ * a_dim1], lda, &work[1], & ldwork, &a[i__ + ib + i__ * a_dim1], lda, &work[ib + 1], &ldwork); } /* L10: */ } } else { i__ = 1; } /* Use unblocked code to factor the last or only block. */ if (i__ <= k) { i__2 = *m - i__ + 1; i__1 = *n - i__ + 1; dgelq2_(&i__2, &i__1, &a[i__ + i__ * a_dim1], lda, &tau[i__], &work[1] , &iinfo); } work[1] = (doublereal) iws; return 0; /* End of DGELQF */ } /* dgelqf_ */
doublereal dqrt14_(char *trans, integer *m, integer *n, integer *nrhs, doublereal *a, integer *lda, doublereal *x, integer *ldx, doublereal * work, integer *lwork) { /* System generated locals */ integer a_dim1, a_offset, x_dim1, x_offset, i__1, i__2, i__3; doublereal ret_val, d__1, d__2, d__3; /* Local variables */ integer i__, j; doublereal err; integer info; doublereal anrm; logical tpsd; doublereal xnrm; extern logical lsame_(char *, char *); doublereal rwork[1]; extern /* Subroutine */ int dgelq2_(integer *, integer *, doublereal *, integer *, doublereal *, doublereal *, integer *), dgeqr2_( integer *, integer *, doublereal *, integer *, doublereal *, doublereal *, integer *); extern doublereal dlamch_(char *), dlange_(char *, integer *, integer *, doublereal *, integer *, doublereal *); extern /* Subroutine */ int dlascl_(char *, integer *, integer *, doublereal *, doublereal *, integer *, integer *, doublereal *, integer *, integer *), dlacpy_(char *, integer *, integer *, doublereal *, integer *, doublereal *, integer *), xerbla_(char *, integer *); integer ldwork; /* -- LAPACK test routine (version 3.1) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* DQRT14 checks whether X is in the row space of A or A'. It does so */ /* by scaling both X and A such that their norms are in the range */ /* [sqrt(eps), 1/sqrt(eps)], then computing a QR factorization of [A,X] */ /* (if TRANS = 'T') or an LQ factorization of [A',X]' (if TRANS = 'N'), */ /* and returning the norm of the trailing triangle, scaled by */ /* MAX(M,N,NRHS)*eps. */ /* Arguments */ /* ========= */ /* TRANS (input) CHARACTER*1 */ /* = 'N': No transpose, check for X in the row space of A */ /* = 'T': Transpose, check for X in the row space of A'. */ /* M (input) INTEGER */ /* The number of rows of the matrix A. */ /* N (input) INTEGER */ /* The number of columns of the matrix A. */ /* NRHS (input) INTEGER */ /* The number of right hand sides, i.e., the number of columns */ /* of X. */ /* A (input) DOUBLE PRECISION array, dimension (LDA,N) */ /* The M-by-N matrix A. */ /* LDA (input) INTEGER */ /* The leading dimension of the array A. */ /* X (input) DOUBLE PRECISION array, dimension (LDX,NRHS) */ /* If TRANS = 'N', the N-by-NRHS matrix X. */ /* IF TRANS = 'T', the M-by-NRHS matrix X. */ /* LDX (input) INTEGER */ /* The leading dimension of the array X. */ /* WORK (workspace) DOUBLE PRECISION array dimension (LWORK) */ /* LWORK (input) INTEGER */ /* length of workspace array required */ /* If TRANS = 'N', LWORK >= (M+NRHS)*(N+2); */ /* if TRANS = 'T', LWORK >= (N+NRHS)*(M+2). */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. Local Arrays .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Executable Statements .. */ /* Parameter adjustments */ a_dim1 = *lda; a_offset = 1 + a_dim1; a -= a_offset; x_dim1 = *ldx; x_offset = 1 + x_dim1; x -= x_offset; --work; /* Function Body */ ret_val = 0.; if (lsame_(trans, "N")) { ldwork = *m + *nrhs; tpsd = FALSE_; if (*lwork < (*m + *nrhs) * (*n + 2)) { xerbla_("DQRT14", &c__10); return ret_val; } else if (*n <= 0 || *nrhs <= 0) { return ret_val; } } else if (lsame_(trans, "T")) { ldwork = *m; tpsd = TRUE_; if (*lwork < (*n + *nrhs) * (*m + 2)) { xerbla_("DQRT14", &c__10); return ret_val; } else if (*m <= 0 || *nrhs <= 0) { return ret_val; } } else { xerbla_("DQRT14", &c__1); return ret_val; } /* Copy and scale A */ dlacpy_("All", m, n, &a[a_offset], lda, &work[1], &ldwork); anrm = dlange_("M", m, n, &work[1], &ldwork, rwork); if (anrm != 0.) { dlascl_("G", &c__0, &c__0, &anrm, &c_b15, m, n, &work[1], &ldwork, & info); } /* Copy X or X' into the right place and scale it */ if (tpsd) { /* Copy X into columns n+1:n+nrhs of work */ dlacpy_("All", m, nrhs, &x[x_offset], ldx, &work[*n * ldwork + 1], & ldwork); xnrm = dlange_("M", m, nrhs, &work[*n * ldwork + 1], &ldwork, rwork); if (xnrm != 0.) { dlascl_("G", &c__0, &c__0, &xnrm, &c_b15, m, nrhs, &work[*n * ldwork + 1], &ldwork, &info); } i__1 = *n + *nrhs; anrm = dlange_("One-norm", m, &i__1, &work[1], &ldwork, rwork); /* Compute QR factorization of X */ i__1 = *n + *nrhs; /* Computing MIN */ i__2 = *m, i__3 = *n + *nrhs; dgeqr2_(m, &i__1, &work[1], &ldwork, &work[ldwork * (*n + *nrhs) + 1], &work[ldwork * (*n + *nrhs) + min(i__2, i__3)+ 1], &info); /* Compute largest entry in upper triangle of */ /* work(n+1:m,n+1:n+nrhs) */ err = 0.; i__1 = *n + *nrhs; for (j = *n + 1; j <= i__1; ++j) { i__2 = min(*m,j); for (i__ = *n + 1; i__ <= i__2; ++i__) { /* Computing MAX */ d__2 = err, d__3 = (d__1 = work[i__ + (j - 1) * *m], abs(d__1) ); err = max(d__2,d__3); /* L10: */ } /* L20: */ } } else { /* Copy X' into rows m+1:m+nrhs of work */ i__1 = *n; for (i__ = 1; i__ <= i__1; ++i__) { i__2 = *nrhs; for (j = 1; j <= i__2; ++j) { work[*m + j + (i__ - 1) * ldwork] = x[i__ + j * x_dim1]; /* L30: */ } /* L40: */ } xnrm = dlange_("M", nrhs, n, &work[*m + 1], &ldwork, rwork) ; if (xnrm != 0.) { dlascl_("G", &c__0, &c__0, &xnrm, &c_b15, nrhs, n, &work[*m + 1], &ldwork, &info); } /* Compute LQ factorization of work */ dgelq2_(&ldwork, n, &work[1], &ldwork, &work[ldwork * *n + 1], &work[ ldwork * (*n + 1) + 1], &info); /* Compute largest entry in lower triangle in */ /* work(m+1:m+nrhs,m+1:n) */ err = 0.; i__1 = *n; for (j = *m + 1; j <= i__1; ++j) { i__2 = ldwork; for (i__ = j; i__ <= i__2; ++i__) { /* Computing MAX */ d__2 = err, d__3 = (d__1 = work[i__ + (j - 1) * ldwork], abs( d__1)); err = max(d__2,d__3); /* L50: */ } /* L60: */ } } /* Computing MAX */ i__1 = max(*m,*n); ret_val = err / ((doublereal) max(i__1,*nrhs) * dlamch_("Epsilon")); return ret_val; /* End of DQRT14 */ } /* dqrt14_ */
/* Subroutine */ int derrlq_(char *path, integer *nunit) { /* Builtin functions */ integer s_wsle(cilist *), e_wsle(void); /* Subroutine */ int s_copy(char *, char *, ftnlen, ftnlen); /* Local variables */ static integer info; static doublereal a[4] /* was [2][2] */, b[2]; static integer i__, j; static doublereal w[2], x[2]; extern /* Subroutine */ int dgelq2_(integer *, integer *, doublereal *, integer *, doublereal *, doublereal *, integer *), dorgl2_( integer *, integer *, integer *, doublereal *, integer *, doublereal *, doublereal *, integer *), dorml2_(char *, char *, integer *, integer *, integer *, doublereal *, integer *, doublereal *, doublereal *, integer *, doublereal *, integer *); static doublereal af[4] /* was [2][2] */; extern /* Subroutine */ int alaesm_(char *, logical *, integer *), dgelqf_(integer *, integer *, doublereal *, integer *, doublereal *, doublereal *, integer *, integer *), dgelqs_( integer *, integer *, integer *, doublereal *, integer *, doublereal *, doublereal *, integer *, doublereal *, integer *, integer *), chkxer_(char *, integer *, integer *, logical *, logical *), dorglq_(integer *, integer *, integer *, doublereal *, integer *, doublereal *, doublereal *, integer *, integer *), dormlq_(char *, char *, integer *, integer *, integer *, doublereal *, integer *, doublereal *, doublereal *, integer *, doublereal *, integer *, integer *); /* Fortran I/O blocks */ static cilist io___1 = { 0, 0, 0, 0, 0 }; #define a_ref(a_1,a_2) a[(a_2)*2 + a_1 - 3] #define af_ref(a_1,a_2) af[(a_2)*2 + a_1 - 3] /* -- LAPACK test routine (version 3.0) -- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., Courant Institute, Argonne National Lab, and Rice University February 29, 1992 Purpose ======= DERRLQ tests the error exits for the DOUBLE PRECISION routines that use the LQ decomposition of a general matrix. Arguments ========= PATH (input) CHARACTER*3 The LAPACK path name for the routines to be tested. NUNIT (input) INTEGER The unit number for output. ===================================================================== */ infoc_1.nout = *nunit; io___1.ciunit = infoc_1.nout; s_wsle(&io___1); e_wsle(); /* Set the variables to innocuous values. */ for (j = 1; j <= 2; ++j) { for (i__ = 1; i__ <= 2; ++i__) { a_ref(i__, j) = 1. / (doublereal) (i__ + j); af_ref(i__, j) = 1. / (doublereal) (i__ + j); /* L10: */ } b[j - 1] = 0.; w[j - 1] = 0.; x[j - 1] = 0.; /* L20: */ } infoc_1.ok = TRUE_; /* Error exits for LQ factorization DGELQF */ s_copy(srnamc_1.srnamt, "DGELQF", (ftnlen)6, (ftnlen)6); infoc_1.infot = 1; dgelqf_(&c_n1, &c__0, a, &c__1, b, w, &c__1, &info); chkxer_("DGELQF", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 2; dgelqf_(&c__0, &c_n1, a, &c__1, b, w, &c__1, &info); chkxer_("DGELQF", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 4; dgelqf_(&c__2, &c__1, a, &c__1, b, w, &c__2, &info); chkxer_("DGELQF", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 7; dgelqf_(&c__2, &c__1, a, &c__2, b, w, &c__1, &info); chkxer_("DGELQF", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); /* DGELQ2 */ s_copy(srnamc_1.srnamt, "DGELQ2", (ftnlen)6, (ftnlen)6); infoc_1.infot = 1; dgelq2_(&c_n1, &c__0, a, &c__1, b, w, &info); chkxer_("DGELQ2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 2; dgelq2_(&c__0, &c_n1, a, &c__1, b, w, &info); chkxer_("DGELQ2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 4; dgelq2_(&c__2, &c__1, a, &c__1, b, w, &info); chkxer_("DGELQ2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); /* DGELQS */ s_copy(srnamc_1.srnamt, "DGELQS", (ftnlen)6, (ftnlen)6); infoc_1.infot = 1; dgelqs_(&c_n1, &c__0, &c__0, a, &c__1, x, b, &c__1, w, &c__1, &info); chkxer_("DGELQS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 2; dgelqs_(&c__0, &c_n1, &c__0, a, &c__1, x, b, &c__1, w, &c__1, &info); chkxer_("DGELQS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 2; dgelqs_(&c__2, &c__1, &c__0, a, &c__2, x, b, &c__1, w, &c__1, &info); chkxer_("DGELQS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 3; dgelqs_(&c__0, &c__0, &c_n1, a, &c__1, x, b, &c__1, w, &c__1, &info); chkxer_("DGELQS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 5; dgelqs_(&c__2, &c__2, &c__0, a, &c__1, x, b, &c__2, w, &c__1, &info); chkxer_("DGELQS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 8; dgelqs_(&c__1, &c__2, &c__0, a, &c__1, x, b, &c__1, w, &c__1, &info); chkxer_("DGELQS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 10; dgelqs_(&c__1, &c__1, &c__2, a, &c__1, x, b, &c__1, w, &c__1, &info); chkxer_("DGELQS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); /* DORGLQ */ s_copy(srnamc_1.srnamt, "DORGLQ", (ftnlen)6, (ftnlen)6); infoc_1.infot = 1; dorglq_(&c_n1, &c__0, &c__0, a, &c__1, x, w, &c__1, &info); chkxer_("DORGLQ", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 2; dorglq_(&c__0, &c_n1, &c__0, a, &c__1, x, w, &c__1, &info); chkxer_("DORGLQ", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 2; dorglq_(&c__2, &c__1, &c__0, a, &c__2, x, w, &c__2, &info); chkxer_("DORGLQ", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 3; dorglq_(&c__0, &c__0, &c_n1, a, &c__1, x, w, &c__1, &info); chkxer_("DORGLQ", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 3; dorglq_(&c__1, &c__1, &c__2, a, &c__1, x, w, &c__1, &info); chkxer_("DORGLQ", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 5; dorglq_(&c__2, &c__2, &c__0, a, &c__1, x, w, &c__2, &info); chkxer_("DORGLQ", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 8; dorglq_(&c__2, &c__2, &c__0, a, &c__2, x, w, &c__1, &info); chkxer_("DORGLQ", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); /* DORGL2 */ s_copy(srnamc_1.srnamt, "DORGL2", (ftnlen)6, (ftnlen)6); infoc_1.infot = 1; dorgl2_(&c_n1, &c__0, &c__0, a, &c__1, x, w, &info); chkxer_("DORGL2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 2; dorgl2_(&c__0, &c_n1, &c__0, a, &c__1, x, w, &info); chkxer_("DORGL2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 2; dorgl2_(&c__2, &c__1, &c__0, a, &c__2, x, w, &info); chkxer_("DORGL2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 3; dorgl2_(&c__0, &c__0, &c_n1, a, &c__1, x, w, &info); chkxer_("DORGL2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 3; dorgl2_(&c__1, &c__1, &c__2, a, &c__1, x, w, &info); chkxer_("DORGL2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 5; dorgl2_(&c__2, &c__2, &c__0, a, &c__1, x, w, &info); chkxer_("DORGL2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); /* DORMLQ */ s_copy(srnamc_1.srnamt, "DORMLQ", (ftnlen)6, (ftnlen)6); infoc_1.infot = 1; dormlq_("/", "N", &c__0, &c__0, &c__0, a, &c__1, x, af, &c__1, w, &c__1, & info); chkxer_("DORMLQ", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 2; dormlq_("L", "/", &c__0, &c__0, &c__0, a, &c__1, x, af, &c__1, w, &c__1, & info); chkxer_("DORMLQ", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 3; dormlq_("L", "N", &c_n1, &c__0, &c__0, a, &c__1, x, af, &c__1, w, &c__1, & info); chkxer_("DORMLQ", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 4; dormlq_("L", "N", &c__0, &c_n1, &c__0, a, &c__1, x, af, &c__1, w, &c__1, & info); chkxer_("DORMLQ", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 5; dormlq_("L", "N", &c__0, &c__0, &c_n1, a, &c__1, x, af, &c__1, w, &c__1, & info); chkxer_("DORMLQ", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 5; dormlq_("L", "N", &c__0, &c__1, &c__1, a, &c__1, x, af, &c__1, w, &c__1, & info); chkxer_("DORMLQ", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 5; dormlq_("R", "N", &c__1, &c__0, &c__1, a, &c__1, x, af, &c__1, w, &c__1, & info); chkxer_("DORMLQ", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 7; dormlq_("L", "N", &c__2, &c__0, &c__2, a, &c__1, x, af, &c__2, w, &c__1, & info); chkxer_("DORMLQ", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 7; dormlq_("R", "N", &c__0, &c__2, &c__2, a, &c__1, x, af, &c__1, w, &c__1, & info); chkxer_("DORMLQ", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 10; dormlq_("L", "N", &c__2, &c__1, &c__0, a, &c__2, x, af, &c__1, w, &c__1, & info); chkxer_("DORMLQ", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 12; dormlq_("L", "N", &c__1, &c__2, &c__0, a, &c__1, x, af, &c__1, w, &c__1, & info); chkxer_("DORMLQ", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 12; dormlq_("R", "N", &c__2, &c__1, &c__0, a, &c__1, x, af, &c__2, w, &c__1, & info); chkxer_("DORMLQ", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); /* DORML2 */ s_copy(srnamc_1.srnamt, "DORML2", (ftnlen)6, (ftnlen)6); infoc_1.infot = 1; dorml2_("/", "N", &c__0, &c__0, &c__0, a, &c__1, x, af, &c__1, w, &info); chkxer_("DORML2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 2; dorml2_("L", "/", &c__0, &c__0, &c__0, a, &c__1, x, af, &c__1, w, &info); chkxer_("DORML2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 3; dorml2_("L", "N", &c_n1, &c__0, &c__0, a, &c__1, x, af, &c__1, w, &info); chkxer_("DORML2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 4; dorml2_("L", "N", &c__0, &c_n1, &c__0, a, &c__1, x, af, &c__1, w, &info); chkxer_("DORML2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 5; dorml2_("L", "N", &c__0, &c__0, &c_n1, a, &c__1, x, af, &c__1, w, &info); chkxer_("DORML2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 5; dorml2_("L", "N", &c__0, &c__1, &c__1, a, &c__1, x, af, &c__1, w, &info); chkxer_("DORML2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 5; dorml2_("R", "N", &c__1, &c__0, &c__1, a, &c__1, x, af, &c__1, w, &info); chkxer_("DORML2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 7; dorml2_("L", "N", &c__2, &c__1, &c__2, a, &c__1, x, af, &c__2, w, &info); chkxer_("DORML2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 7; dorml2_("R", "N", &c__1, &c__2, &c__2, a, &c__1, x, af, &c__1, w, &info); chkxer_("DORML2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); infoc_1.infot = 10; dorml2_("L", "N", &c__2, &c__1, &c__0, a, &c__2, x, af, &c__1, w, &info); chkxer_("DORML2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, & infoc_1.ok); /* Print a summary line. */ alaesm_(path, &infoc_1.ok, &infoc_1.nout); return 0; /* End of DERRLQ */ } /* derrlq_ */