示例#1
0
文件: dgelqf.c 项目: Barbakas/windage
/* Subroutine */ int dgelqf_(integer *m, integer *n, doublereal *a, integer *
	lda, doublereal *tau, doublereal *work, integer *lwork, integer *info)
{
    /* System generated locals */
    integer a_dim1, a_offset, i__1, i__2, i__3, i__4;

    /* Local variables */
    integer i__, k, ib, nb, nx, iws, nbmin, iinfo;
    extern /* Subroutine */ int dgelq2_(integer *, integer *, doublereal *, 
	    integer *, doublereal *, doublereal *, integer *), dlarfb_(char *, 
	     char *, char *, char *, integer *, integer *, integer *, 
	    doublereal *, integer *, doublereal *, integer *, doublereal *, 
	    integer *, doublereal *, integer *), dlarft_(char *, char *, integer *, integer *, doublereal 
	    *, integer *, doublereal *, doublereal *, integer *), xerbla_(char *, integer *);
    extern integer ilaenv_(integer *, char *, char *, integer *, integer *, 
	    integer *, integer *);
    integer ldwork, lwkopt;
    logical lquery;


/*  -- LAPACK routine (version 3.1) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/*     November 2006 */

/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  DGELQF computes an LQ factorization of a real M-by-N matrix A: */
/*  A = L * Q. */

/*  Arguments */
/*  ========= */

/*  M       (input) INTEGER */
/*          The number of rows of the matrix A.  M >= 0. */

/*  N       (input) INTEGER */
/*          The number of columns of the matrix A.  N >= 0. */

/*  A       (input/output) DOUBLE PRECISION array, dimension (LDA,N) */
/*          On entry, the M-by-N matrix A. */
/*          On exit, the elements on and below the diagonal of the array */
/*          contain the m-by-min(m,n) lower trapezoidal matrix L (L is */
/*          lower triangular if m <= n); the elements above the diagonal, */
/*          with the array TAU, represent the orthogonal matrix Q as a */
/*          product of elementary reflectors (see Further Details). */

/*  LDA     (input) INTEGER */
/*          The leading dimension of the array A.  LDA >= max(1,M). */

/*  TAU     (output) DOUBLE PRECISION array, dimension (min(M,N)) */
/*          The scalar factors of the elementary reflectors (see Further */
/*          Details). */

/*  WORK    (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK)) */
/*          On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */

/*  LWORK   (input) INTEGER */
/*          The dimension of the array WORK.  LWORK >= max(1,M). */
/*          For optimum performance LWORK >= M*NB, where NB is the */
/*          optimal blocksize. */

/*          If LWORK = -1, then a workspace query is assumed; the routine */
/*          only calculates the optimal size of the WORK array, returns */
/*          this value as the first entry of the WORK array, and no error */
/*          message related to LWORK is issued by XERBLA. */

/*  INFO    (output) INTEGER */
/*          = 0:  successful exit */
/*          < 0:  if INFO = -i, the i-th argument had an illegal value */

/*  Further Details */
/*  =============== */

/*  The matrix Q is represented as a product of elementary reflectors */

/*     Q = H(k) . . . H(2) H(1), where k = min(m,n). */

/*  Each H(i) has the form */

/*     H(i) = I - tau * v * v' */

/*  where tau is a real scalar, and v is a real vector with */
/*  v(1:i-1) = 0 and v(i) = 1; v(i+1:n) is stored on exit in A(i,i+1:n), */
/*  and tau in TAU(i). */

/*  ===================================================================== */

/*     .. Local Scalars .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. External Functions .. */
/*     .. */
/*     .. Executable Statements .. */

/*     Test the input arguments */

    /* Parameter adjustments */
    a_dim1 = *lda;
    a_offset = 1 + a_dim1;
    a -= a_offset;
    --tau;
    --work;

    /* Function Body */
    *info = 0;
    nb = ilaenv_(&c__1, "DGELQF", " ", m, n, &c_n1, &c_n1);
    lwkopt = *m * nb;
    work[1] = (doublereal) lwkopt;
    lquery = *lwork == -1;
    if (*m < 0) {
	*info = -1;
    } else if (*n < 0) {
	*info = -2;
    } else if (*lda < max(1,*m)) {
	*info = -4;
    } else if (*lwork < max(1,*m) && ! lquery) {
	*info = -7;
    }
    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("DGELQF", &i__1);
	return 0;
    } else if (lquery) {
	return 0;
    }

/*     Quick return if possible */

    k = min(*m,*n);
    if (k == 0) {
	work[1] = 1.;
	return 0;
    }

    nbmin = 2;
    nx = 0;
    iws = *m;
    if (nb > 1 && nb < k) {

/*        Determine when to cross over from blocked to unblocked code. */

/* Computing MAX */
	i__1 = 0, i__2 = ilaenv_(&c__3, "DGELQF", " ", m, n, &c_n1, &c_n1);
	nx = max(i__1,i__2);
	if (nx < k) {

/*           Determine if workspace is large enough for blocked code. */

	    ldwork = *m;
	    iws = ldwork * nb;
	    if (*lwork < iws) {

/*              Not enough workspace to use optimal NB:  reduce NB and */
/*              determine the minimum value of NB. */

		nb = *lwork / ldwork;
/* Computing MAX */
		i__1 = 2, i__2 = ilaenv_(&c__2, "DGELQF", " ", m, n, &c_n1, &
			c_n1);
		nbmin = max(i__1,i__2);
	    }
	}
    }

    if (nb >= nbmin && nb < k && nx < k) {

/*        Use blocked code initially */

	i__1 = k - nx;
	i__2 = nb;
	for (i__ = 1; i__2 < 0 ? i__ >= i__1 : i__ <= i__1; i__ += i__2) {
/* Computing MIN */
	    i__3 = k - i__ + 1;
	    ib = min(i__3,nb);

/*           Compute the LQ factorization of the current block */
/*           A(i:i+ib-1,i:n) */

	    i__3 = *n - i__ + 1;
	    dgelq2_(&ib, &i__3, &a[i__ + i__ * a_dim1], lda, &tau[i__], &work[
		    1], &iinfo);
	    if (i__ + ib <= *m) {

/*              Form the triangular factor of the block reflector */
/*              H = H(i) H(i+1) . . . H(i+ib-1) */

		i__3 = *n - i__ + 1;
		dlarft_("Forward", "Rowwise", &i__3, &ib, &a[i__ + i__ * 
			a_dim1], lda, &tau[i__], &work[1], &ldwork);

/*              Apply H to A(i+ib:m,i:n) from the right */

		i__3 = *m - i__ - ib + 1;
		i__4 = *n - i__ + 1;
		dlarfb_("Right", "No transpose", "Forward", "Rowwise", &i__3, 
			&i__4, &ib, &a[i__ + i__ * a_dim1], lda, &work[1], &
			ldwork, &a[i__ + ib + i__ * a_dim1], lda, &work[ib + 
			1], &ldwork);
	    }
/* L10: */
	}
    } else {
	i__ = 1;
    }

/*     Use unblocked code to factor the last or only block. */

    if (i__ <= k) {
	i__2 = *m - i__ + 1;
	i__1 = *n - i__ + 1;
	dgelq2_(&i__2, &i__1, &a[i__ + i__ * a_dim1], lda, &tau[i__], &work[1]
, &iinfo);
    }

    work[1] = (doublereal) iws;
    return 0;

/*     End of DGELQF */

} /* dgelqf_ */
示例#2
0
doublereal dqrt14_(char *trans, integer *m, integer *n, integer *nrhs, 
	doublereal *a, integer *lda, doublereal *x, integer *ldx, doublereal *
	work, integer *lwork)
{
    /* System generated locals */
    integer a_dim1, a_offset, x_dim1, x_offset, i__1, i__2, i__3;
    doublereal ret_val, d__1, d__2, d__3;

    /* Local variables */
    integer i__, j;
    doublereal err;
    integer info;
    doublereal anrm;
    logical tpsd;
    doublereal xnrm;
    extern logical lsame_(char *, char *);
    doublereal rwork[1];
    extern /* Subroutine */ int dgelq2_(integer *, integer *, doublereal *, 
	    integer *, doublereal *, doublereal *, integer *), dgeqr2_(
	    integer *, integer *, doublereal *, integer *, doublereal *, 
	    doublereal *, integer *);
    extern doublereal dlamch_(char *), dlange_(char *, integer *, 
	    integer *, doublereal *, integer *, doublereal *);
    extern /* Subroutine */ int dlascl_(char *, integer *, integer *, 
	    doublereal *, doublereal *, integer *, integer *, doublereal *, 
	    integer *, integer *), dlacpy_(char *, integer *, integer 
	    *, doublereal *, integer *, doublereal *, integer *), 
	    xerbla_(char *, integer *);
    integer ldwork;


/*  -- LAPACK test routine (version 3.1) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/*     November 2006 */

/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  DQRT14 checks whether X is in the row space of A or A'.  It does so */
/*  by scaling both X and A such that their norms are in the range */
/*  [sqrt(eps), 1/sqrt(eps)], then computing a QR factorization of [A,X] */
/*  (if TRANS = 'T') or an LQ factorization of [A',X]' (if TRANS = 'N'), */
/*  and returning the norm of the trailing triangle, scaled by */
/*  MAX(M,N,NRHS)*eps. */

/*  Arguments */
/*  ========= */

/*  TRANS   (input) CHARACTER*1 */
/*          = 'N':  No transpose, check for X in the row space of A */
/*          = 'T':  Transpose, check for X in the row space of A'. */

/*  M       (input) INTEGER */
/*          The number of rows of the matrix A. */

/*  N       (input) INTEGER */
/*          The number of columns of the matrix A. */

/*  NRHS    (input) INTEGER */
/*          The number of right hand sides, i.e., the number of columns */
/*          of X. */

/*  A       (input) DOUBLE PRECISION array, dimension (LDA,N) */
/*          The M-by-N matrix A. */

/*  LDA     (input) INTEGER */
/*          The leading dimension of the array A. */

/*  X       (input) DOUBLE PRECISION array, dimension (LDX,NRHS) */
/*          If TRANS = 'N', the N-by-NRHS matrix X. */
/*          IF TRANS = 'T', the M-by-NRHS matrix X. */

/*  LDX     (input) INTEGER */
/*          The leading dimension of the array X. */

/*  WORK    (workspace) DOUBLE PRECISION array dimension (LWORK) */

/*  LWORK   (input) INTEGER */
/*          length of workspace array required */
/*          If TRANS = 'N', LWORK >= (M+NRHS)*(N+2); */
/*          if TRANS = 'T', LWORK >= (N+NRHS)*(M+2). */

/*  ===================================================================== */

/*     .. Parameters .. */
/*     .. */
/*     .. Local Scalars .. */
/*     .. */
/*     .. Local Arrays .. */
/*     .. */
/*     .. External Functions .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. Executable Statements .. */

    /* Parameter adjustments */
    a_dim1 = *lda;
    a_offset = 1 + a_dim1;
    a -= a_offset;
    x_dim1 = *ldx;
    x_offset = 1 + x_dim1;
    x -= x_offset;
    --work;

    /* Function Body */
    ret_val = 0.;
    if (lsame_(trans, "N")) {
	ldwork = *m + *nrhs;
	tpsd = FALSE_;
	if (*lwork < (*m + *nrhs) * (*n + 2)) {
	    xerbla_("DQRT14", &c__10);
	    return ret_val;
	} else if (*n <= 0 || *nrhs <= 0) {
	    return ret_val;
	}
    } else if (lsame_(trans, "T")) {
	ldwork = *m;
	tpsd = TRUE_;
	if (*lwork < (*n + *nrhs) * (*m + 2)) {
	    xerbla_("DQRT14", &c__10);
	    return ret_val;
	} else if (*m <= 0 || *nrhs <= 0) {
	    return ret_val;
	}
    } else {
	xerbla_("DQRT14", &c__1);
	return ret_val;
    }

/*     Copy and scale A */

    dlacpy_("All", m, n, &a[a_offset], lda, &work[1], &ldwork);
    anrm = dlange_("M", m, n, &work[1], &ldwork, rwork);
    if (anrm != 0.) {
	dlascl_("G", &c__0, &c__0, &anrm, &c_b15, m, n, &work[1], &ldwork, &
		info);
    }

/*     Copy X or X' into the right place and scale it */

    if (tpsd) {

/*        Copy X into columns n+1:n+nrhs of work */

	dlacpy_("All", m, nrhs, &x[x_offset], ldx, &work[*n * ldwork + 1], &
		ldwork);
	xnrm = dlange_("M", m, nrhs, &work[*n * ldwork + 1], &ldwork, rwork);
	if (xnrm != 0.) {
	    dlascl_("G", &c__0, &c__0, &xnrm, &c_b15, m, nrhs, &work[*n * 
		    ldwork + 1], &ldwork, &info);
	}
	i__1 = *n + *nrhs;
	anrm = dlange_("One-norm", m, &i__1, &work[1], &ldwork, rwork);

/*        Compute QR factorization of X */

	i__1 = *n + *nrhs;
/* Computing MIN */
	i__2 = *m, i__3 = *n + *nrhs;
	dgeqr2_(m, &i__1, &work[1], &ldwork, &work[ldwork * (*n + *nrhs) + 1], 
		 &work[ldwork * (*n + *nrhs) + min(i__2, i__3)+ 1], &info);

/*        Compute largest entry in upper triangle of */
/*        work(n+1:m,n+1:n+nrhs) */

	err = 0.;
	i__1 = *n + *nrhs;
	for (j = *n + 1; j <= i__1; ++j) {
	    i__2 = min(*m,j);
	    for (i__ = *n + 1; i__ <= i__2; ++i__) {
/* Computing MAX */
		d__2 = err, d__3 = (d__1 = work[i__ + (j - 1) * *m], abs(d__1)
			);
		err = max(d__2,d__3);
/* L10: */
	    }
/* L20: */
	}

    } else {

/*        Copy X' into rows m+1:m+nrhs of work */

	i__1 = *n;
	for (i__ = 1; i__ <= i__1; ++i__) {
	    i__2 = *nrhs;
	    for (j = 1; j <= i__2; ++j) {
		work[*m + j + (i__ - 1) * ldwork] = x[i__ + j * x_dim1];
/* L30: */
	    }
/* L40: */
	}

	xnrm = dlange_("M", nrhs, n, &work[*m + 1], &ldwork, rwork)
		;
	if (xnrm != 0.) {
	    dlascl_("G", &c__0, &c__0, &xnrm, &c_b15, nrhs, n, &work[*m + 1], 
		    &ldwork, &info);
	}

/*        Compute LQ factorization of work */

	dgelq2_(&ldwork, n, &work[1], &ldwork, &work[ldwork * *n + 1], &work[
		ldwork * (*n + 1) + 1], &info);

/*        Compute largest entry in lower triangle in */
/*        work(m+1:m+nrhs,m+1:n) */

	err = 0.;
	i__1 = *n;
	for (j = *m + 1; j <= i__1; ++j) {
	    i__2 = ldwork;
	    for (i__ = j; i__ <= i__2; ++i__) {
/* Computing MAX */
		d__2 = err, d__3 = (d__1 = work[i__ + (j - 1) * ldwork], abs(
			d__1));
		err = max(d__2,d__3);
/* L50: */
	    }
/* L60: */
	}

    }

/* Computing MAX */
    i__1 = max(*m,*n);
    ret_val = err / ((doublereal) max(i__1,*nrhs) * dlamch_("Epsilon"));

    return ret_val;

/*     End of DQRT14 */

} /* dqrt14_ */
示例#3
0
文件: derrlq.c 项目: zangel/uquad
/* Subroutine */ int derrlq_(char *path, integer *nunit)
{
    /* Builtin functions */
    integer s_wsle(cilist *), e_wsle(void);
    /* Subroutine */ int s_copy(char *, char *, ftnlen, ftnlen);

    /* Local variables */
    static integer info;
    static doublereal a[4]	/* was [2][2] */, b[2];
    static integer i__, j;
    static doublereal w[2], x[2];
    extern /* Subroutine */ int dgelq2_(integer *, integer *, doublereal *, 
	    integer *, doublereal *, doublereal *, integer *), dorgl2_(
	    integer *, integer *, integer *, doublereal *, integer *, 
	    doublereal *, doublereal *, integer *), dorml2_(char *, char *, 
	    integer *, integer *, integer *, doublereal *, integer *, 
	    doublereal *, doublereal *, integer *, doublereal *, integer *);
    static doublereal af[4]	/* was [2][2] */;
    extern /* Subroutine */ int alaesm_(char *, logical *, integer *),
	     dgelqf_(integer *, integer *, doublereal *, integer *, 
	    doublereal *, doublereal *, integer *, integer *), dgelqs_(
	    integer *, integer *, integer *, doublereal *, integer *, 
	    doublereal *, doublereal *, integer *, doublereal *, integer *, 
	    integer *), chkxer_(char *, integer *, integer *, logical *, 
	    logical *), dorglq_(integer *, integer *, integer *, 
	    doublereal *, integer *, doublereal *, doublereal *, integer *, 
	    integer *), dormlq_(char *, char *, integer *, integer *, integer 
	    *, doublereal *, integer *, doublereal *, doublereal *, integer *,
	     doublereal *, integer *, integer *);

    /* Fortran I/O blocks */
    static cilist io___1 = { 0, 0, 0, 0, 0 };



#define a_ref(a_1,a_2) a[(a_2)*2 + a_1 - 3]
#define af_ref(a_1,a_2) af[(a_2)*2 + a_1 - 3]


/*  -- LAPACK test routine (version 3.0) --   
       Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,   
       Courant Institute, Argonne National Lab, and Rice University   
       February 29, 1992   


    Purpose   
    =======   

    DERRLQ tests the error exits for the DOUBLE PRECISION routines   
    that use the LQ decomposition of a general matrix.   

    Arguments   
    =========   

    PATH    (input) CHARACTER*3   
            The LAPACK path name for the routines to be tested.   

    NUNIT   (input) INTEGER   
            The unit number for output.   

    ===================================================================== */


    infoc_1.nout = *nunit;
    io___1.ciunit = infoc_1.nout;
    s_wsle(&io___1);
    e_wsle();

/*     Set the variables to innocuous values. */

    for (j = 1; j <= 2; ++j) {
	for (i__ = 1; i__ <= 2; ++i__) {
	    a_ref(i__, j) = 1. / (doublereal) (i__ + j);
	    af_ref(i__, j) = 1. / (doublereal) (i__ + j);
/* L10: */
	}
	b[j - 1] = 0.;
	w[j - 1] = 0.;
	x[j - 1] = 0.;
/* L20: */
    }
    infoc_1.ok = TRUE_;

/*     Error exits for LQ factorization   

       DGELQF */

    s_copy(srnamc_1.srnamt, "DGELQF", (ftnlen)6, (ftnlen)6);
    infoc_1.infot = 1;
    dgelqf_(&c_n1, &c__0, a, &c__1, b, w, &c__1, &info);
    chkxer_("DGELQF", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    infoc_1.infot = 2;
    dgelqf_(&c__0, &c_n1, a, &c__1, b, w, &c__1, &info);
    chkxer_("DGELQF", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    infoc_1.infot = 4;
    dgelqf_(&c__2, &c__1, a, &c__1, b, w, &c__2, &info);
    chkxer_("DGELQF", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    infoc_1.infot = 7;
    dgelqf_(&c__2, &c__1, a, &c__2, b, w, &c__1, &info);
    chkxer_("DGELQF", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);

/*     DGELQ2 */

    s_copy(srnamc_1.srnamt, "DGELQ2", (ftnlen)6, (ftnlen)6);
    infoc_1.infot = 1;
    dgelq2_(&c_n1, &c__0, a, &c__1, b, w, &info);
    chkxer_("DGELQ2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    infoc_1.infot = 2;
    dgelq2_(&c__0, &c_n1, a, &c__1, b, w, &info);
    chkxer_("DGELQ2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    infoc_1.infot = 4;
    dgelq2_(&c__2, &c__1, a, &c__1, b, w, &info);
    chkxer_("DGELQ2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);

/*     DGELQS */

    s_copy(srnamc_1.srnamt, "DGELQS", (ftnlen)6, (ftnlen)6);
    infoc_1.infot = 1;
    dgelqs_(&c_n1, &c__0, &c__0, a, &c__1, x, b, &c__1, w, &c__1, &info);
    chkxer_("DGELQS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    infoc_1.infot = 2;
    dgelqs_(&c__0, &c_n1, &c__0, a, &c__1, x, b, &c__1, w, &c__1, &info);
    chkxer_("DGELQS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    infoc_1.infot = 2;
    dgelqs_(&c__2, &c__1, &c__0, a, &c__2, x, b, &c__1, w, &c__1, &info);
    chkxer_("DGELQS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    infoc_1.infot = 3;
    dgelqs_(&c__0, &c__0, &c_n1, a, &c__1, x, b, &c__1, w, &c__1, &info);
    chkxer_("DGELQS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    infoc_1.infot = 5;
    dgelqs_(&c__2, &c__2, &c__0, a, &c__1, x, b, &c__2, w, &c__1, &info);
    chkxer_("DGELQS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    infoc_1.infot = 8;
    dgelqs_(&c__1, &c__2, &c__0, a, &c__1, x, b, &c__1, w, &c__1, &info);
    chkxer_("DGELQS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    infoc_1.infot = 10;
    dgelqs_(&c__1, &c__1, &c__2, a, &c__1, x, b, &c__1, w, &c__1, &info);
    chkxer_("DGELQS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);

/*     DORGLQ */

    s_copy(srnamc_1.srnamt, "DORGLQ", (ftnlen)6, (ftnlen)6);
    infoc_1.infot = 1;
    dorglq_(&c_n1, &c__0, &c__0, a, &c__1, x, w, &c__1, &info);
    chkxer_("DORGLQ", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    infoc_1.infot = 2;
    dorglq_(&c__0, &c_n1, &c__0, a, &c__1, x, w, &c__1, &info);
    chkxer_("DORGLQ", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    infoc_1.infot = 2;
    dorglq_(&c__2, &c__1, &c__0, a, &c__2, x, w, &c__2, &info);
    chkxer_("DORGLQ", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    infoc_1.infot = 3;
    dorglq_(&c__0, &c__0, &c_n1, a, &c__1, x, w, &c__1, &info);
    chkxer_("DORGLQ", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    infoc_1.infot = 3;
    dorglq_(&c__1, &c__1, &c__2, a, &c__1, x, w, &c__1, &info);
    chkxer_("DORGLQ", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    infoc_1.infot = 5;
    dorglq_(&c__2, &c__2, &c__0, a, &c__1, x, w, &c__2, &info);
    chkxer_("DORGLQ", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    infoc_1.infot = 8;
    dorglq_(&c__2, &c__2, &c__0, a, &c__2, x, w, &c__1, &info);
    chkxer_("DORGLQ", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);

/*     DORGL2 */

    s_copy(srnamc_1.srnamt, "DORGL2", (ftnlen)6, (ftnlen)6);
    infoc_1.infot = 1;
    dorgl2_(&c_n1, &c__0, &c__0, a, &c__1, x, w, &info);
    chkxer_("DORGL2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    infoc_1.infot = 2;
    dorgl2_(&c__0, &c_n1, &c__0, a, &c__1, x, w, &info);
    chkxer_("DORGL2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    infoc_1.infot = 2;
    dorgl2_(&c__2, &c__1, &c__0, a, &c__2, x, w, &info);
    chkxer_("DORGL2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    infoc_1.infot = 3;
    dorgl2_(&c__0, &c__0, &c_n1, a, &c__1, x, w, &info);
    chkxer_("DORGL2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    infoc_1.infot = 3;
    dorgl2_(&c__1, &c__1, &c__2, a, &c__1, x, w, &info);
    chkxer_("DORGL2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    infoc_1.infot = 5;
    dorgl2_(&c__2, &c__2, &c__0, a, &c__1, x, w, &info);
    chkxer_("DORGL2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);

/*     DORMLQ */

    s_copy(srnamc_1.srnamt, "DORMLQ", (ftnlen)6, (ftnlen)6);
    infoc_1.infot = 1;
    dormlq_("/", "N", &c__0, &c__0, &c__0, a, &c__1, x, af, &c__1, w, &c__1, &
	    info);
    chkxer_("DORMLQ", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    infoc_1.infot = 2;
    dormlq_("L", "/", &c__0, &c__0, &c__0, a, &c__1, x, af, &c__1, w, &c__1, &
	    info);
    chkxer_("DORMLQ", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    infoc_1.infot = 3;
    dormlq_("L", "N", &c_n1, &c__0, &c__0, a, &c__1, x, af, &c__1, w, &c__1, &
	    info);
    chkxer_("DORMLQ", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    infoc_1.infot = 4;
    dormlq_("L", "N", &c__0, &c_n1, &c__0, a, &c__1, x, af, &c__1, w, &c__1, &
	    info);
    chkxer_("DORMLQ", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    infoc_1.infot = 5;
    dormlq_("L", "N", &c__0, &c__0, &c_n1, a, &c__1, x, af, &c__1, w, &c__1, &
	    info);
    chkxer_("DORMLQ", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    infoc_1.infot = 5;
    dormlq_("L", "N", &c__0, &c__1, &c__1, a, &c__1, x, af, &c__1, w, &c__1, &
	    info);
    chkxer_("DORMLQ", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    infoc_1.infot = 5;
    dormlq_("R", "N", &c__1, &c__0, &c__1, a, &c__1, x, af, &c__1, w, &c__1, &
	    info);
    chkxer_("DORMLQ", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    infoc_1.infot = 7;
    dormlq_("L", "N", &c__2, &c__0, &c__2, a, &c__1, x, af, &c__2, w, &c__1, &
	    info);
    chkxer_("DORMLQ", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    infoc_1.infot = 7;
    dormlq_("R", "N", &c__0, &c__2, &c__2, a, &c__1, x, af, &c__1, w, &c__1, &
	    info);
    chkxer_("DORMLQ", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    infoc_1.infot = 10;
    dormlq_("L", "N", &c__2, &c__1, &c__0, a, &c__2, x, af, &c__1, w, &c__1, &
	    info);
    chkxer_("DORMLQ", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    infoc_1.infot = 12;
    dormlq_("L", "N", &c__1, &c__2, &c__0, a, &c__1, x, af, &c__1, w, &c__1, &
	    info);
    chkxer_("DORMLQ", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    infoc_1.infot = 12;
    dormlq_("R", "N", &c__2, &c__1, &c__0, a, &c__1, x, af, &c__2, w, &c__1, &
	    info);
    chkxer_("DORMLQ", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);

/*     DORML2 */

    s_copy(srnamc_1.srnamt, "DORML2", (ftnlen)6, (ftnlen)6);
    infoc_1.infot = 1;
    dorml2_("/", "N", &c__0, &c__0, &c__0, a, &c__1, x, af, &c__1, w, &info);
    chkxer_("DORML2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    infoc_1.infot = 2;
    dorml2_("L", "/", &c__0, &c__0, &c__0, a, &c__1, x, af, &c__1, w, &info);
    chkxer_("DORML2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    infoc_1.infot = 3;
    dorml2_("L", "N", &c_n1, &c__0, &c__0, a, &c__1, x, af, &c__1, w, &info);
    chkxer_("DORML2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    infoc_1.infot = 4;
    dorml2_("L", "N", &c__0, &c_n1, &c__0, a, &c__1, x, af, &c__1, w, &info);
    chkxer_("DORML2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    infoc_1.infot = 5;
    dorml2_("L", "N", &c__0, &c__0, &c_n1, a, &c__1, x, af, &c__1, w, &info);
    chkxer_("DORML2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    infoc_1.infot = 5;
    dorml2_("L", "N", &c__0, &c__1, &c__1, a, &c__1, x, af, &c__1, w, &info);
    chkxer_("DORML2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    infoc_1.infot = 5;
    dorml2_("R", "N", &c__1, &c__0, &c__1, a, &c__1, x, af, &c__1, w, &info);
    chkxer_("DORML2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    infoc_1.infot = 7;
    dorml2_("L", "N", &c__2, &c__1, &c__2, a, &c__1, x, af, &c__2, w, &info);
    chkxer_("DORML2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    infoc_1.infot = 7;
    dorml2_("R", "N", &c__1, &c__2, &c__2, a, &c__1, x, af, &c__1, w, &info);
    chkxer_("DORML2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);
    infoc_1.infot = 10;
    dorml2_("L", "N", &c__2, &c__1, &c__0, a, &c__2, x, af, &c__1, w, &info);
    chkxer_("DORML2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
	    infoc_1.ok);

/*     Print a summary line. */

    alaesm_(path, &infoc_1.ok, &infoc_1.nout);

    return 0;

/*     End of DERRLQ */

} /* derrlq_ */