void tim2_isr ( void ) { //TIM2_SR &= ~TIM_SR_UIF; //clearing update interrupt flag TIM_SR(TIM2) &= ~TIM_SR_UIF; /* Clear interrrupt flag. */ /* ISR HAS TO DO SOMRTHING A LITTLE HEAVY // https://my.st.com/public/STe2ecommunities/mcu/Lists/cortex_mx_stm32/Flat.aspx?RootFolder=/public/STe2ecommunities/mcu/Lists/cortex_mx_stm32/Problem%20with%20DMA-USART%20Rx%20on%20STM32F407VG&FolderCTID=0x01200200770978C69A1141439FE559EB459D7580009C4E14902C3CDE46A77F0FFD06506F5B¤tviews=148 // ie: after setting SR, you need to pause read/writes // ie: if the ISR is too quick, there may be a spurious re-invocation (tail chain), so you need to do a little something to avoid cpu race condition // -- another way to do it, is to do a SR read (which blocks until its 'set' finishes), thus stalling until the ISR is 'done': //void SPI2_IRQHandler(void) { volatile unsigned int dummy; ... some code... SPI2_CR2 &= ~SPI_CR2_RXNEIE; // Turn off RXE interrupt enable ...some code... dummy = SPI2_SR; // Prevent tail-chaining. return; } */ #if 0 __asm__("nop"); gpio_toggle(GPIOB, GPIO12); /* LED on/off. */ #endif // VGA line logic // // line1 // line2 // .. // line600 // front porch blank 1 line // vsync pulse 4 lines // back porch blank 23 lines // \__> back to top // // handle vblank stuff // - front porch, leads to // - vsync, leads to // - back porch // vsync is normally HIGH, but goes to LOW during pulse done_sync = 0; if ( front_porch_togo ) { front_porch_togo --; if ( ! front_porch_togo ) { // on exit front porch, start vsync pulse vsync_go_low(); vsync_togo = 4; } done_sync = 1; goto hsync; //return; // do nothing.. } if ( vsync_togo ) { vsync_togo --; if ( ! vsync_togo ) { // on exit vsync pulse, start back porch vsync_go_high(); back_porch_togo = 23; } done_sync = 1; goto hsync; //return; } if ( back_porch_togo ) { back_porch_togo --; if ( ! back_porch_togo ) { line_count = 1; } done_sync = 1; goto hsync; //return; // do nothing.. } hsync: // hsync period.. // should use timer/interupt to 'end the line' and go hsync? // /* 1uS Front Porch */ /* 1uS */ i = 22; while ( i-- ) { __asm__("nop"); } /* 3.2uS Horizontal Sync */ hsync_go_low(); i = 60; while ( i-- ) { __asm__("nop"); } /* 2.2uS Back Porch */ hsync_go_high(); i = 45; while ( i-- ) { __asm__("nop"); } if ( done_sync ) { return; } // actual line data // // line data on/off/on/off.. // off for hsync/porch business! #if 1 // pull from array //i = line_count % FBHEIGHT; i = line_count/4; unsigned char *p = framebuffer + ( i * FBWIDTH ); // 240 //p = framebuffer + ( (line_count%240) * 240 ); #if 1 dma_memcpy ( p, 320 ); #else i = 90 / 10; // 120 while ( i-- ) { rgb_go_level ( (*p++) ); rgb_go_level ( (*p++) ); rgb_go_level ( (*p++) ); rgb_go_level ( (*p++) ); rgb_go_level ( (*p++) ); rgb_go_level ( (*p++) ); rgb_go_level ( (*p++) ); rgb_go_level ( (*p++) ); rgb_go_level ( (*p++) ); rgb_go_level ( (*p++) ); rgb_go_level ( (*p++) ); rgb_go_level ( (*p++) ); rgb_go_level ( (*p++) ); rgb_go_level ( (*p++) ); rgb_go_level ( (*p++) ); rgb_go_level ( (*p++) ); rgb_go_level ( (*p++) ); rgb_go_level ( (*p++) ); rgb_go_level ( (*p++) ); rgb_go_level ( (*p++) ); //gpio_set ( GPIOC, *p++ ); //GPIO_BSRR(GPIOC) = *p++; //GPIO_BSRR(GPIOC) = 1<<6; } // disable all colour pins (dma does it itself in its isr) //GPIO_BSRR(GPIOC) = 0x00; gpio_clear ( GPIOC, GPIO0 | GPIO1 | GPIO2 | GPIO3 | GPIO4 | GPIO5 ); //rgb_go_level ( 0 ); #endif #endif // entering vblank period? // if ( line_count > VISIBLE_ROWS ) { front_porch_togo = 1; return; // entering front porch } line_count++; }
static int __sram spi_transfer_step(struct spi_stellaris_data *priv) { dev_vdbg(&priv->bitbang.master->dev, "%s: ntxwords %d, nrxwords %d, nwords %d, SR %08x\n", __func__, priv->ntxwords, priv->nrxwords, priv->nwords, ssi_getreg(priv, STLR_SSI_SR_OFFSET)); #ifdef CONFIG_STELLARIS_DMA /* Check if the transfer is complete */ if (priv->ntxwords == 0) { dev_dbg(&priv->bitbang.master->dev, "Transfer complete\n"); /* Wake up the waiting thread */ complete(&priv->xfer_done); return 0; } priv->xfer_size = min(priv->ntxwords, DMA_MAX_TRANSFER_SIZE); if( priv->txbuffer ) { dma_memcpy(priv->dma_tx_buffer, priv->txbuffer, priv->xfer_size); priv->txbuffer = (char*)priv->txbuffer + priv->xfer_size; } dev_vdbg(&priv->bitbang.master->dev, "%s: xfer_size %u\n", __func__, priv->xfer_size); dma_setup_xfer(priv->dma_rx_channel, priv->dma_rx_buffer, priv->base + STLR_SSI_DR_OFFSET, priv->xfer_size, priv->dma_rx_flags); dma_setup_xfer(priv->dma_tx_channel, priv->base + STLR_SSI_DR_OFFSET, priv->dma_tx_buffer, priv->xfer_size, priv->dma_tx_flags); dma_start_xfer(priv->dma_rx_channel); dma_start_xfer(priv->dma_tx_channel); #ifdef CONFIG_ARCH_TM4C putreg32(SSI_DMACTL_RXDMAE | SSI_DMACTL_TXDMAE, priv->base + STLR_SSI_DMACTL_OFFSET); #endif /* CONFIG_ARCH_TM4C */ #else /* CONFIG_STELLARIS_DMA */ /* Handle outgoing Tx FIFO transfers */ ssi_performtx(priv); /* Handle incoming Rx FIFO transfers */ ssi_performrx(priv); dev_vdbg(&priv->bitbang.master->dev, "ntxwords: %d nrxwords: %d nwords: %d SR: %08x IM: %08x\n", priv->ntxwords, priv->nrxwords, priv->nwords, ssi_getreg(priv, STLR_SSI_SR_OFFSET), ssi_getreg(priv, STLR_SSI_IM_OFFSET)); /* Check if the transfer is complete */ if (priv->nrxwords >= priv->nwords) { #ifndef POLLING_MODE /* Yes.. Disable all SSI interrupt sources */ ssi_putreg(priv, STLR_SSI_IM_OFFSET, 0); /* Wake up the waiting thread */ complete(&priv->xfer_done); #endif /* POLLING_MODE */ dev_dbg(&priv->bitbang.master->dev, "Transfer complete\n"); return 0; } #endif /* CONFIG_STELLARIS_DMA */ return 1; }
/* Transfer the section to the L1 memory */ int module_frob_arch_sections(Elf_Ehdr *hdr, Elf_Shdr *sechdrs, char *secstrings, struct module *mod) { /* * XXX: sechdrs are vmalloced in kernel/module.c * and would be vfreed just after module is loaded, * so we hack to keep the only information we needed * in mod->arch to correctly free L1 I/D sram later. * NOTE: this breaks the semantic of mod->arch structure. */ Elf_Shdr *s, *sechdrs_end = sechdrs + hdr->e_shnum; void *dest; for (s = sechdrs; s < sechdrs_end; ++s) { const char *shname = secstrings + s->sh_name; if (s->sh_size == 0) continue; if (!strcmp(".l1.text", shname) || (!strcmp(".text", shname) && (hdr->e_flags & EF_BFIN_CODE_IN_L1))) { dest = l1_inst_sram_alloc(s->sh_size); mod->arch.text_l1 = dest; if (dest == NULL) { pr_err("L1 inst memory allocation failed\n", mod->name); return -1; } dma_memcpy(dest, (void *)s->sh_addr, s->sh_size); } else if (!strcmp(".l1.data", shname) || (!strcmp(".data", shname) && (hdr->e_flags & EF_BFIN_DATA_IN_L1))) { dest = l1_data_sram_alloc(s->sh_size); mod->arch.data_a_l1 = dest; if (dest == NULL) { pr_err("L1 data memory allocation failed\n", mod->name); return -1; } memcpy(dest, (void *)s->sh_addr, s->sh_size); } else if (!strcmp(".l1.bss", shname) || (!strcmp(".bss", shname) && (hdr->e_flags & EF_BFIN_DATA_IN_L1))) { dest = l1_data_sram_zalloc(s->sh_size); mod->arch.bss_a_l1 = dest; if (dest == NULL) { pr_err("L1 data memory allocation failed\n", mod->name); return -1; } } else if (!strcmp(".l1.data.B", shname)) { dest = l1_data_B_sram_alloc(s->sh_size); mod->arch.data_b_l1 = dest; if (dest == NULL) { pr_err("L1 data memory allocation failed\n", mod->name); return -1; } memcpy(dest, (void *)s->sh_addr, s->sh_size); } else if (!strcmp(".l1.bss.B", shname)) { dest = l1_data_B_sram_alloc(s->sh_size); mod->arch.bss_b_l1 = dest; if (dest == NULL) { pr_err("L1 data memory allocation failed\n", mod->name); return -1; } memset(dest, 0, s->sh_size); } else if (!strcmp(".l2.text", shname) || (!strcmp(".text", shname) && (hdr->e_flags & EF_BFIN_CODE_IN_L2))) { dest = l2_sram_alloc(s->sh_size); mod->arch.text_l2 = dest; if (dest == NULL) { pr_err("L2 SRAM allocation failed\n", mod->name); return -1; } memcpy(dest, (void *)s->sh_addr, s->sh_size); } else if (!strcmp(".l2.data", shname) || (!strcmp(".data", shname) && (hdr->e_flags & EF_BFIN_DATA_IN_L2))) { dest = l2_sram_alloc(s->sh_size); mod->arch.data_l2 = dest; if (dest == NULL) { pr_err("L2 SRAM allocation failed\n", mod->name); return -1; } memcpy(dest, (void *)s->sh_addr, s->sh_size); } else if (!strcmp(".l2.bss", shname) || (!strcmp(".bss", shname) && (hdr->e_flags & EF_BFIN_DATA_IN_L2))) { dest = l2_sram_zalloc(s->sh_size); mod->arch.bss_l2 = dest; if (dest == NULL) { pr_err("L2 SRAM allocation failed\n", mod->name); return -1; } } else continue; s->sh_flags &= ~SHF_ALLOC; s->sh_addr = (unsigned long)dest; } return 0; }
int apply_relocate_add(Elf_Shdr *sechdrs, const char *strtab, unsigned int symindex, unsigned int relsec, struct module *mod) { unsigned int i; Elf32_Rela *rel = (void *)sechdrs[relsec].sh_addr; Elf32_Sym *sym; unsigned long location, value, size; pr_debug("applying relocate section %u to %u\n", mod->name, relsec, sechdrs[relsec].sh_info); for (i = 0; i < sechdrs[relsec].sh_size / sizeof(*rel); i++) { /* This is where to make the change */ location = sechdrs[sechdrs[relsec].sh_info].sh_addr + rel[i].r_offset; /* This is the symbol it is referring to. Note that all undefined symbols have been resolved. */ sym = (Elf32_Sym *) sechdrs[symindex].sh_addr + ELF32_R_SYM(rel[i].r_info); value = sym->st_value; value += rel[i].r_addend; #ifdef CONFIG_SMP if (location >= COREB_L1_DATA_A_START) { pr_err("cannot relocate in L1: %u (SMP kernel)", mod->name, ELF32_R_TYPE(rel[i].r_info)); return -ENOEXEC; } #endif pr_debug("location is %lx, value is %lx type is %d\n", mod->name, location, value, ELF32_R_TYPE(rel[i].r_info)); switch (ELF32_R_TYPE(rel[i].r_info)) { case R_BFIN_HUIMM16: value >>= 16; case R_BFIN_LUIMM16: case R_BFIN_RIMM16: size = 2; break; case R_BFIN_BYTE4_DATA: size = 4; break; case R_BFIN_PCREL24: case R_BFIN_PCREL24_JUMP_L: case R_BFIN_PCREL12_JUMP: case R_BFIN_PCREL12_JUMP_S: case R_BFIN_PCREL10: pr_err("unsupported relocation: %u (no -mlong-calls?)\n", mod->name, ELF32_R_TYPE(rel[i].r_info)); return -ENOEXEC; default: pr_err("unknown relocation: %u\n", mod->name, ELF32_R_TYPE(rel[i].r_info)); return -ENOEXEC; } switch (bfin_mem_access_type(location, size)) { case BFIN_MEM_ACCESS_CORE: case BFIN_MEM_ACCESS_CORE_ONLY: memcpy((void *)location, &value, size); break; case BFIN_MEM_ACCESS_DMA: dma_memcpy((void *)location, &value, size); break; case BFIN_MEM_ACCESS_ITEST: isram_memcpy((void *)location, &value, size); break; default: pr_err("invalid relocation for %#lx\n", mod->name, location); return -ENOEXEC; } } return 0; }
int main_simple(void) { static uint32_t g_ui32SrcBuf[MEM_BUFFER_SIZE]; static uint32_t g_ui32DstBuf[MEM_BUFFER_SIZE]; /* Set up clock for 120MHz */ MAP_SysCtlClockFreqSet((SYSCTL_XTAL_25MHZ | SYSCTL_OSC_MAIN | SYSCTL_USE_PLL | SYSCTL_CFG_VCO_480), 120000000); /* Set up SysTick timer */ ROM_SysTickPeriodSet(0xffffffff); ROM_SysTickEnable(); /* Enable interrupts */ ROM_IntMasterEnable(); init_dma_memcpy(UDMA_CHANNEL_SW); { /* Scope out the counter */ uint_fast16_t ui16Idx; /* Fill source buffer with varying numbers */ for(ui16Idx = 0; ui16Idx < MEM_BUFFER_SIZE; ui16Idx++) { g_ui32SrcBuf[ui16Idx] = ui16Idx; } } void *cbfn_ptr[2] = {&set_udma_txfer_done, NULL}; volatile unsigned int t0 = (ROM_SysTickValueGet()); dma_memcpy( g_ui32DstBuf, g_ui32SrcBuf, MEM_BUFFER_SIZE, UDMA_CHANNEL_SW, cbfn_ptr[0] ); /* Wait for udma txfer to complete */ while (!udma_txfer_done); volatile unsigned int t1 = (ROM_SysTickValueGet()); memcpy(g_ui32DstBuf, g_ui32SrcBuf, MEM_BUFFER_SIZE); volatile unsigned int t2 = (ROM_SysTickValueGet()); t2 = t1 - t2; /* Calc time taken for memcpy */ t1 = t0 - t1; /* Calc time taken for dma_memcpy */ volatile uint32_t count_past_dma = 0; /* Wait around compare txfer times */ while (1){ count_past_dma++; } return 0; }
int module_frob_arch_sections(Elf_Ehdr *hdr, Elf_Shdr *sechdrs, char *secstrings, struct module *mod) { /* */ Elf_Shdr *s, *sechdrs_end = sechdrs + hdr->e_shnum; void *dest; for (s = sechdrs; s < sechdrs_end; ++s) { const char *shname = secstrings + s->sh_name; if (s->sh_size == 0) continue; if (!strcmp(".l1.text", shname) || (!strcmp(".text", shname) && (hdr->e_flags & EF_BFIN_CODE_IN_L1))) { dest = l1_inst_sram_alloc(s->sh_size); mod->arch.text_l1 = dest; if (dest == NULL) { pr_err("L1 inst memory allocation failed\n"); return -1; } dma_memcpy(dest, (void *)s->sh_addr, s->sh_size); } else if (!strcmp(".l1.data", shname) || (!strcmp(".data", shname) && (hdr->e_flags & EF_BFIN_DATA_IN_L1))) { dest = l1_data_sram_alloc(s->sh_size); mod->arch.data_a_l1 = dest; if (dest == NULL) { pr_err("L1 data memory allocation failed\n"); return -1; } memcpy(dest, (void *)s->sh_addr, s->sh_size); } else if (!strcmp(".l1.bss", shname) || (!strcmp(".bss", shname) && (hdr->e_flags & EF_BFIN_DATA_IN_L1))) { dest = l1_data_sram_zalloc(s->sh_size); mod->arch.bss_a_l1 = dest; if (dest == NULL) { pr_err("L1 data memory allocation failed\n"); return -1; } } else if (!strcmp(".l1.data.B", shname)) { dest = l1_data_B_sram_alloc(s->sh_size); mod->arch.data_b_l1 = dest; if (dest == NULL) { pr_err("L1 data memory allocation failed\n"); return -1; } memcpy(dest, (void *)s->sh_addr, s->sh_size); } else if (!strcmp(".l1.bss.B", shname)) { dest = l1_data_B_sram_alloc(s->sh_size); mod->arch.bss_b_l1 = dest; if (dest == NULL) { pr_err("L1 data memory allocation failed\n"); return -1; } memset(dest, 0, s->sh_size); } else if (!strcmp(".l2.text", shname) || (!strcmp(".text", shname) && (hdr->e_flags & EF_BFIN_CODE_IN_L2))) { dest = l2_sram_alloc(s->sh_size); mod->arch.text_l2 = dest; if (dest == NULL) { pr_err("L2 SRAM allocation failed\n"); return -1; } memcpy(dest, (void *)s->sh_addr, s->sh_size); } else if (!strcmp(".l2.data", shname) || (!strcmp(".data", shname) && (hdr->e_flags & EF_BFIN_DATA_IN_L2))) { dest = l2_sram_alloc(s->sh_size); mod->arch.data_l2 = dest; if (dest == NULL) { pr_err("L2 SRAM allocation failed\n"); return -1; } memcpy(dest, (void *)s->sh_addr, s->sh_size); } else if (!strcmp(".l2.bss", shname) || (!strcmp(".bss", shname) && (hdr->e_flags & EF_BFIN_DATA_IN_L2))) { dest = l2_sram_zalloc(s->sh_size); mod->arch.bss_l2 = dest; if (dest == NULL) { pr_err("L2 SRAM allocation failed\n"); return -1; } } else continue; s->sh_flags &= ~SHF_ALLOC; s->sh_addr = (unsigned long)dest; } return 0; }