Example #1
0
//--------------------------------------------------------------
void testApp::setup()
{
	ofSetLogLevel(OF_LOG_VERBOSE);
	n1 = 10;
	n2 = 20;
	n3 = 30;

	//create dispatcher
	jppevent::EventDispatcher dispatcher(this);

	//add listener
	dispatcher.addEventListener("A", eventHandler1);
	dispatcher.addEventListener("B", eventHandler1);
	dispatcher.addEventListener("B", eventHandler2, 100); //high priority
	dispatcher.addEventListener("B", eventHandler3);

	//dispatch test
	ofLog() << "----------------------------------------";
	jppevent::Event eA("A");
	dispatcher.dispatchEvent(&eA);

	ofLog() << "----------------------------------------";
	dispatcher.dispatchEvent("A");

	ofLog() << "----------------------------------------";
	jppevent::Event eB("B");
	dispatcher.dispatchEvent(&eB);
}
void eA() {

	char simbolo = palavra[posicaoPalavra];

	if (ehNumero(simbolo)) {
		posicaoPalavra++;
		eD();
	} else if (ehAbreParenteses(simbolo)) {
		posicaoPalavra++;
		eB();
	} else {
		printf("\nNÃO ACEITO!\n");
	}
}
Example #3
0
bool ASMu3Dmx::assembleL2matrices (SparseMatrix& A, StdVector& B,
                                   const IntegrandBase& integrand,
                                   bool continuous) const
{
  const int p1 = projBasis->order(0);
  const int p2 = projBasis->order(1);
  const int p3 = projBasis->order(2);

  // Get Gaussian quadrature points
  const int ng1 = continuous ? nGauss : p1 - 1;
  const int ng2 = continuous ? nGauss : p2 - 1;
  const int ng3 = continuous ? nGauss : p3 - 1;
  const double* xg = GaussQuadrature::getCoord(ng1);
  const double* yg = GaussQuadrature::getCoord(ng2);
  const double* zg = GaussQuadrature::getCoord(ng3);
  const double* wg = continuous ? GaussQuadrature::getWeight(nGauss) : nullptr;
  if (!xg || !yg || !zg) return false;
  if (continuous && !wg) return false;

  size_t nnod = this->getNoProjectionNodes();
  double dV = 0.0;
  Vectors phi(2);
  Matrices dNdu(2);
  Matrix sField, Xnod, Jac;
  std::vector<Go::BasisDerivs> spl1(2);
  std::vector<Go::BasisPts> spl0(2);


  // === Assembly loop over all elements in the patch ==========================
  LR::LRSplineVolume* geoVol;
  if (m_basis[geoBasis-1]->nBasisFunctions() == projBasis->nBasisFunctions())
    geoVol = m_basis[geoBasis-1].get();
  else
    geoVol = projBasis.get();

  for (const LR::Element* el1 : geoVol->getAllElements())
  {
    double uh = (el1->umin()+el1->umax())/2.0;
    double vh = (el1->vmin()+el1->vmax())/2.0;
    double wh = (el1->wmin()+el1->wmax())/2.0;
    std::vector<size_t> els;
    els.push_back(projBasis->getElementContaining(uh, vh, wh) + 1);
    els.push_back(m_basis[geoBasis-1]->getElementContaining(uh, vh, wh) + 1);

    if (continuous)
    {
      // Set up control point (nodal) coordinates for current element
      if (!this->getElementCoordinates(Xnod,els[1]))
        return false;
      else if ((dV = 0.25*this->getParametricVolume(els[1])) < 0.0)
        return false; // topology error (probably logic error)
    }

    // Compute parameter values of the Gauss points over this element
    RealArray gpar[3], unstrGpar[3];
    this->getGaussPointParameters(gpar[0],0,ng1,els[1],xg);
    this->getGaussPointParameters(gpar[1],1,ng2,els[1],yg);
    this->getGaussPointParameters(gpar[2],2,ng3,els[1],zg);

    // convert to unstructred mesh representation
    expandTensorGrid(gpar, unstrGpar);

    // Evaluate the secondary solution at all integration points
    if (!this->evalSolution(sField,integrand,unstrGpar))
      return false;

    // set up basis function size (for extractBasis subroutine)
    const LR::Element* elm = projBasis->getElement(els[0]-1);
    phi[0].resize(elm->nBasisFunctions());
    phi[1].resize(el1->nBasisFunctions());
    IntVec lmnpc;
    if (projBasis != m_basis[0]) {
      lmnpc.reserve(phi[0].size());
      for (const LR::Basisfunction* f : elm->support())
        lmnpc.push_back(f->getId());
    }
    const IntVec& mnpc = projBasis == m_basis[0] ? MNPC[els[1]-1] : lmnpc;

    // --- Integration loop over all Gauss points in each direction ----------
    Matrix eA(phi[0].size(), phi[0].size());
    Vectors eB(sField.rows(), Vector(phi[0].size()));
    int ip = 0;
    for (int k = 0; k < ng3; k++)
      for (int j = 0; j < ng2; j++)
        for (int i = 0; i < ng1; i++, ip++)
        {
          if (continuous)
          {
            projBasis->computeBasis(gpar[0][i], gpar[1][j], gpar[2][k],
                                    spl1[0], els[0]-1);
            SplineUtils::extractBasis(spl1[0],phi[0],dNdu[0]);
            m_basis[geoBasis-1]->computeBasis(gpar[0][i], gpar[1][j], gpar[2][k],
                                              spl1[1], els[1]-1);
            SplineUtils::extractBasis(spl1[1], phi[1], dNdu[1]);
          }
          else
          {
            projBasis->computeBasis(gpar[0][i], gpar[1][j], gpar[2][k],
                                    spl0[0], els[0]-1);
            phi[0] = spl0[0].basisValues;
          }

          // Compute the Jacobian inverse and derivatives
          double dJw = 1.0;
          if (continuous)
          {
            dJw = dV*wg[i]*wg[j]*wg[k]*utl::Jacobian(Jac,dNdu[1],Xnod,dNdu[1],false);
            if (dJw == 0.0) continue; // skip singular points
          }

          // Integrate the mass matrix
          eA.outer_product(phi[0], phi[0], true, dJw);

          // Integrate the rhs vector B
          for (size_t r = 1; r <= sField.rows(); r++)
            eB[r-1].add(phi[0],sField(r,ip+1)*dJw);
        }

    for (size_t i = 0; i < eA.rows(); ++i) {
      for (size_t j = 0; j < eA.cols(); ++j)
        A(mnpc[i]+1, mnpc[j]+1) += eA(i+1,j+1);

      int jp = mnpc[i]+1;
      for (size_t r = 0; r < sField.rows(); r++, jp += nnod)
        B(jp) += eB[r](1+i);
    }
  }

  return true;
}
Example #4
0
bool ASMs3Dmx::assembleL2matrices (SparseMatrix& A, StdVector& B,
                                   const IntegrandBase& integrand,
                                   bool continuous) const
{
  const size_t nnod = projBasis->numCoefs(0) *
                      projBasis->numCoefs(1) *
                      projBasis->numCoefs(2);

  const int p1 = svol->order(0);
  const int p2 = svol->order(1);
  const int p3 = svol->order(2);
  const int p11 = projBasis->order(0);
  const int p21 = projBasis->order(1);
  const int p31 = projBasis->order(2);
  const int n1 = svol->numCoefs(0);
  const int n2 = svol->numCoefs(1);
  const int n3 = svol->numCoefs(2);
  const int nel1 = n1 - p1 + 1;
  const int nel2 = n2 - p2 + 1;
  const int nel3 = n3 - p3 + 1;

  // Get Gaussian quadrature point coordinates (and weights if continuous)
  const int ng1 = continuous ? nGauss : p1 - 1;
  const int ng2 = continuous ? nGauss : p2 - 1;
  const int ng3 = continuous ? nGauss : p3 - 1;
  const double* xg = GaussQuadrature::getCoord(ng1);
  const double* yg = GaussQuadrature::getCoord(ng2);
  const double* zg = GaussQuadrature::getCoord(ng3);
  const double* wg = continuous ? GaussQuadrature::getWeight(nGauss) : 0;
  if (!xg || !yg || !zg) return false;
  if (continuous && !wg) return false;

  // Compute parameter values of the Gauss points over the whole patch
  Matrix gp;
  std::array<RealArray,3> gpar;
  gpar[0] = this->getGaussPointParameters(gp,0,ng1,xg);
  gpar[1] = this->getGaussPointParameters(gp,1,ng2,yg);
  gpar[2] = this->getGaussPointParameters(gp,2,ng3,zg);

  // Evaluate basis functions at all integration points
  std::vector<Go::BasisPts>    spl0;
  std::array<std::vector<Go::BasisDerivs>,2> spl1;
  if (continuous) {
    projBasis->computeBasisGrid(gpar[0],gpar[1],gpar[2],spl1[0]);
    svol->computeBasisGrid(gpar[0],gpar[1],gpar[2],spl1[1]);
  } else
    projBasis->computeBasisGrid(gpar[0],gpar[1],gpar[2],spl0);

  // Evaluate the secondary solution at all integration points
  Matrix sField;
  if (!this->evalSolution(sField,integrand,gpar.data()))
  {
    std::cerr <<" *** ASMs3D::assembleL2matrices: Failed for patch "<< idx+1
      <<" nPoints="<< gpar[0].size()*gpar[1].size()*gpar[2].size()
      << std::endl;
    return false;
  }

  double dV = 1.0;
  std::array<Vector,2> phi;
  phi[0].resize(p11*p21*p31);
  phi[1].resize(p1*p2*p3);
  std::array<Matrix,2> dNdu;
  Matrix Xnod, J;


  // === Assembly loop over all elements in the patch ==========================

  int iel = 0;
  for (int i3 = 0; i3 < nel3; i3++)
    for (int i2 = 0; i2 < nel2; i2++)
      for (int i1 = 0; i1 < nel1; i1++, iel++)
      {
        if (MLGE[iel] < 1) continue; // zero-volume element

        if (continuous)
        {
          // Set up control point (nodal) coordinates for current element
          if (!this->getElementCoordinates(Xnod,1+iel))
            return false;
          else if ((dV = 0.125*this->getParametricVolume(1+iel)) < 0.0)
            return false; // topology error (probably logic error)
        }

        int ip = ((i3*ng2*nel2 + i2)*ng1*nel1 + i1)*ng3;
        IntVec lmnpc;
        if (projBasis != m_basis[0]) {
          lmnpc.reserve(phi[0].size());
          int nuv = projBasis->numCoefs(0)*projBasis->numCoefs(1);
          int widx = (spl1[0][ip].left_idx[2]-p31+1)*nuv;
          for (int k = 0; k < p31; ++k, widx += nuv) {
            int vidx = (spl1[0][ip].left_idx[1]-p21+1)*projBasis->numCoefs(0);
            for (int j = 0; j < p21; ++j, vidx += projBasis->numCoefs(0))
              for (int i = 0; i < p11; ++i)
                if (continuous)
                  lmnpc.push_back(spl1[0][ip].left_idx[0]-p11+1+i+vidx+widx);
                else
                  lmnpc.push_back(spl0[ip].left_idx[0]-p11+1+i+vidx+widx);
          }
        }
        const IntVec& mnpc = projBasis == m_basis[0] ? MNPC[iel] : lmnpc;

        // --- Integration loop over all Gauss points in each direction --------

        Matrix eA(p11*p21*p31, p11*p21*p31);
        Vectors eB(sField.rows(), Vector(p11*p21*p31));
        for (int k = 0; k < ng3; k++, ip += ng2*(nel2-1)*ng1*nel1)
          for (int j = 0; j < ng2; j++, ip += ng1*(nel1-1))
            for (int i = 0; i < ng1; i++, ip++)
            {
              if (continuous) {
                SplineUtils::extractBasis(spl1[0][ip],phi[0],dNdu[0]);
                SplineUtils::extractBasis(spl1[1][ip],phi[1],dNdu[1]);
              } else
                phi[0] = spl0[ip].basisValues;

              // Compute the Jacobian inverse and derivatives
              double dJw = dV;
              if (continuous)
              {
                dJw *= wg[i]*wg[j]*wg[k]*utl::Jacobian(J,dNdu[1],Xnod,dNdu[1],false);
                if (dJw == 0.0) continue; // skip singular points
              }

              // Integrate the mass matrix
              eA.outer_product(phi[0], phi[0], true, dJw);

              // Integrate the rhs vector B
              for (size_t r = 1; r <= sField.rows(); r++)
                eB[r-1].add(phi[0],sField(r,ip+1)*dJw);
            }

        for (int i = 0; i < p11*p21*p31; ++i) {
          for (int j = 0; j < p11*p21*p31; ++j)
            A(mnpc[i]+1, mnpc[j]+1) += eA(i+1, j+1);

          int jp = mnpc[i]+1;
          for (size_t r = 0; r < sField.rows(); r++, jp += nnod)
            B(jp) += eB[r](1+i);
        }
      }

  return true;
}
/*  Apply light/power settings for current power source */
static void applyLightSettings(QPowerStatus *p)
{
    int initbright;
    int intervalDim;
    int intervalLightOff;
    int intervalSuspend;
    bool dim;
    bool lightoff;
    bool suspend;

    bool canSuspend;

    QSettings config("Trolltech","qpe");

    QSettings hwConfig("Trolltech", "Hardware");
    hwConfig.beginGroup("PowerManagement");
    if (p->wallStatus() == QPowerStatus::Available) {
        config.beginGroup("ExternalPower");
        canSuspend = hwConfig.value("CanSuspendAC", false).toBool();
    } else {
        config.beginGroup("BatteryPower");
        canSuspend = hwConfig.value("CanSuspend", false).toBool();
    }

    intervalDim = config.value("Interval_Dim", 20).toInt();
    config.setValue("Interval_Dim", intervalDim);
    intervalLightOff = config.value("Interval_LightOff", 30).toInt();
    config.setValue("Interval_LightOff", intervalLightOff);
    if (canSuspend) {
        if (p->wallStatus() == QPowerStatus::Available) {
            intervalSuspend = config.value("Interval", 240).toInt();
            config.setValue("Interval", intervalSuspend);
        } else {
            intervalSuspend = config.value("Interval", 60).toInt();
            config.setValue("Interval", intervalSuspend);
        }
        suspend = config.value("Suspend", true).toBool();
        config.setValue("Suspend", suspend);
    } else {
        intervalSuspend = 0;
        config.setValue("Interval", intervalSuspend);
        suspend = false;
        config.setValue("Suspend", suspend);
    }

    initbright = config.value("Brightness",  qpe_sysBrightnessSteps()).toInt();
    config.setValue("Brightness", initbright);

    dim = config.value("Dim", true).toBool();
    config.setValue("Dim", dim);
    lightoff = config.value("LightOff", false).toBool();
    config.setValue("LightOff", lightoff);

    config.sync(); //write out for syncronisation with light app

    int i_dim =      (dim ? intervalDim : 0);
    int i_lightoff = (lightoff ? intervalLightOff : 0);
    int i_suspend = (suspend ? intervalSuspend : 0);

    QtopiaServiceRequest eB("QtopiaPowerManager", "setBacklight(int)" );
    eB << -3; //forced on
    eB.send();

    QtopiaServiceRequest e("QtopiaPowerManager", "setIntervals(int,int,int)" );
    e << i_dim << i_lightoff << i_suspend;
    e.send();
}